The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/129080

Please be advised that this information was generated on 2017-02-10 and may be subject to change.
TOPOSES ARE COHOMOLOGICALLY EQUIVALENT TO SPACES

By A. Joyal and I. Moerdijk

This purpose of this paper is to prove that for every Grothendieck topos \(\mathcal{E} \) there exist a space \(X \) and a covering \(\varphi : X \to \mathcal{E} \) which induces an isomorphism in cohomology

\[
H^n(\mathcal{E}, A) \cong H^n(X, \varphi^*A) \quad (n \geq 0)
\]

for any abelian group \(A \) in \(\mathcal{E} \). Moreover for \(n = 1 \) this is also true for nonabelian \(A \). This implies, by a result of Artin and Mazur, that \(\varphi \) induces an isomorphism of etale homotopy groups.

1. Construction of the cover. Let \(\mathcal{E} \) be a Grothendieck topos, and let \(G \) be an object of \(\mathcal{E} \). \(\text{En}(G) \) is the space (in this paper ‘space’ means space in the sense of [JT], chapter IV, unless explicitly said otherwise) of infinite-to-one partial enumerations of \(G \); in other words, \(\text{En}(G) \) is characterized by the property that for any map \(f : \mathcal{T} \to \mathcal{E} \) of toposes, the points of the induced space \(f^*(\text{En}(G)) \) in \(\mathcal{T} \) correspond to diagrams \(\mathbb{N} \leftarrow U \to f^*G \) in \(\mathcal{T} \) with the property that for any \(n \in \mathbb{N}, U - \{0, \ldots, n\} \to f^*G \) is still epi. We write \(\mathcal{E}[\text{En}(G)] \) for the category of sheaves in \(\mathcal{E} \) on the space \(\text{En}(G) \), and \(\varphi : \mathcal{E}[\text{En}(G)] \to \mathcal{E} \) for the corresponding geometric morphism. The properties of the space \(\text{En}(G) \) and the map \(\varphi \) were extensively discussed in [IM]. For the present purpose, we recall the following basic facts. First of all, for a suitable object \(G \) of \(\mathcal{E} \), \(\mathcal{E}[\text{En}(G)] \) is equivalent to the topos \(\text{Sh}(X_\mathcal{E}) \) of sheaves on a space \(X_\mathcal{E} \) in \(\text{Sets} \), so that \(\varphi \) corresponds to a cover

\[
\varphi : \text{Sh}(X_\mathcal{E}) \to \mathcal{E}.
\]

Manuscript received 6 November 1988.

Supervised by a Huygens Fellowship of the NWO.

This geometric morphism is connected and locally connected; in particular, \(\varphi^* : \mathcal{E} \to \text{Sh}(X_\emptyset) \) has a left adjoint \(\varphi \), such that for any \(E \in \mathcal{E} \) and \(S \in \text{Sh}(X_\emptyset) \),

\[
(2) \quad \varphi_!(\varphi^*(E) \times S) \cong E \times \varphi_!(S).
\]

For any \(G \) in \(\mathcal{E} \), there exists a surjective geometric morphism \(p : \mathcal{B} \to \mathcal{E} \) where \(\mathcal{B} \) is the category of sheaves on a complete Boolean algebra (Barr’s theorem, [BJ]), such that \(p^*G \) is countable (cf. [JT]). \(\mathcal{B} \) is a model of set theory, and the induced space \(\text{En}(p^*G) \cong p^*(\text{En}(G)) \) in \(\mathcal{B} \) has enough points, i.e. is an ordinary topological space, which can be described as follows: the points of \(\text{En}(p^*(G)) \) are functions \(\alpha : U \to p^*G \) with \(U \subset \mathbb{N} \) and \(\alpha^{-1}(g) \) infinite for all \(g \in p^*(G) \); the basic open sets are the sets of the form \(V_u = \{ \alpha | \forall i \in \text{domain}(u) : i \in U \text{ and } \alpha(i) = u(i) \} \), where \(u \) ranges over all functions \(u : K \to p^*G \) defined on a finite set \(K \subset \mathbb{N} \). It is not difficult to prove that each basic open set \(V_u \) (in particular, the space itself, \(V_\emptyset \)) is contractible ([JM]).

2. Relative Čech cohomology. In this section, let \(Y \) be a space in a topos \(\mathcal{E} \). One can define the relative Čech cohomology groups of \(Y \) with coefficients in an abelian group object in \(\mathcal{E}[Y] \), i.e. a sheaf (or in fact, just a presheaf) of abelian groups on \(Y \) in \(\mathcal{E} \),

\[
\hat{H}^p_\mathcal{E}(Y, A).
\]

These cohomology groups are group objects in \(\mathcal{E} \). Their construction is completely parallel to the usual construction of the Čech cohomology groups of a topological space; indeed, the latter construction immediately translates to the context of a space in a topos \(\mathcal{E} \), by viewing \(\mathcal{E} \) as a universe for (constructive) set theory (cf. [BJ]).

More explicitly, let \(S \in \mathcal{E} \) and let \(\mathcal{U} : S \to \mathcal{O}(Y) \) be an open cover of \(Y \) indexed by \(S \). Let \(A \) be a (pre)sheaf of abelian groups on \(Y \) in \(\mathcal{E} \); so \(A \) is given by a map \(A \to \mathcal{O}(Y) \) in \(\mathcal{E} \) equipped with the structure of a (pre)sheaf. Let

\[
\mathcal{U}_p : S_p = S \times \cdots \times S \xrightarrow{\text{ag}\text{p+1}} \mathcal{O}(Y)^{p+1} \xrightarrow{\wedge} \mathcal{O}(Y)
\]

be the map in \(\mathcal{E} \) obtained from \(\mathcal{U} \) by intersection in \(Y \), and let
(3) \[C^p(\mathcal{U}, A) = \prod_{S_p} (A \times_{S_p} S_p) \]

where \(\Pi_{S_p}: \mathcal{E}/S_p \to \mathcal{E} \) is the right adjoint of the functor \(S_p^*: \mathcal{E} \to \mathcal{E}/S_p \) (cf. [J], p. 36). The \(C^p(\mathcal{U}, A) \), \(p \geq 0 \), give a cochain complex \(C^0(\mathcal{U}, A) \to C^1(\mathcal{U}, A) \to \cdots \) in the usual way, with the differential defined via alternating sums. The cohomology groups of this complex are denoted by \(H^n_\mathcal{E}(\mathcal{U}, A) \). One may now take the colimit of these groups over the \textit{internal} diagram in \(\mathcal{E} \) of all open covers of \(\mathcal{O}(Y) \) (so this involves internal covers of \(Y \) in \(\mathcal{E}/E \) for arbitrary \(E \)), and obtain the relative Čech cohomology groups

(4) \[\tilde{H}_\mathcal{E}(Y, A) = \lim_{\to \mathcal{U}} H^n_\mathcal{E}(\mathcal{U}, A) \quad (p \geq 0). \]

Straightforward modifications of the standard argument show that these cohomology groups have the usual properties. For instance, if we write \(\varphi: \mathcal{E}[Y] \to \mathcal{E} \) for the canonical geometric morphism and \(e_E: \mathcal{E}/E \to \mathcal{E} \) for the geometric morphism given by \(e_E^* = E^* = (X \mapsto X \times E \overset{\pi}{\to} E) \), then for any open cover \(\mathcal{U} \) of \(e_E^*(Y) \) in \(\mathcal{E}/E \),

(5) \[H^n_{\mathcal{E}/E}(\mathcal{U}, e_E^*(A)) \cong e_E^*\varphi_*A, \]

where \(E \) is any object of \(\mathcal{E} \); hence

(6) \[H^n_\mathcal{E}(Y, A) \cong \varphi_*A. \]

And for an injective object \(I \) of the category \(\text{Ab} \mathcal{E}[Y] \) of abelian sheaves on \(Y \) in \(\mathcal{E} \),

(7) \[H^n_{\mathcal{E}/E}(\mathcal{U}, e_E^*I) = 0 \quad (n > 0) \]

for any \(E \) in \(\mathcal{E} \) and any open cover \(\mathcal{U} \) of \(e_E^*(Y) \) in \(\mathcal{E}/E \), so

(8) \[\tilde{H}_\mathcal{E}(Y, I) = 0 \quad (n > 0) \]

3. A \textit{relative Cartan-Leray spectral sequence}. As before, let \(Y \) be a space in a topos \(\mathcal{E} \), and let \(\varphi: \mathcal{E}[Y] \to \mathcal{E} \) be the corresponding
geometric morphism. $\mathcal{E}[Y]$ is a subtopos of the topos $\mathcal{E}^{\mathcal{O}(Y)^{op}}$ of presheaves on $\mathcal{O}(Y)$ in \mathcal{E}, and we write $i: \mathcal{E}[Y] \hookrightarrow \mathcal{E}^{\mathcal{O}(Y)^{op}}$ for the inclusion. The following is a relative version of SGA4, exp V, p. 24.

Lemma 1. For any abelian group A in $\mathcal{E}[Y]$, there exists a spectral sequence

$$E_2^{p,q} = \check{H}_q^p(Y, R^q i_*(A)) \Rightarrow R^{p+q} \varphi_*(A).$$

Proof. Let $0 \to A \to I$ be an injective resolution of A in $\mathcal{A}b_{[\mathcal{E}][Y]}$. For an open cover \mathcal{U} of Y in \mathcal{E}, one has a double complex of abelian groups $C^{p,q}(\mathcal{U}) = C^p(\mathcal{U}, I^q)$ (cf. (3)). By (5) and (7) above, the cohomology of the total complex is $H^p H^q(C^{*,*}(\mathcal{U})) = R^p \varphi_*(A)$, so we obtain a spectral sequence

$$E_2^{p,q}(\mathcal{U}) = H^p H^q(C^{*,*}(\mathcal{U})) = H^p_\mathcal{E}(\mathcal{U}, R^q i_* A) \Rightarrow R^{p+q} \varphi_*(A)$$

in the standard way ([G]). The same applies to open covers of $e_E^*(Y)$ in \mathcal{E}/E for any object E of \mathcal{E}, so by taking the internal colimit in \mathcal{E} over all open covers of Y, we obtain a spectral sequence as stated in the lemma.

Now let $B \subseteq \mathcal{O}(Y)$ be a basis for Y in \mathcal{E} which is closed under binary meets. Call B A-acyclic if for every morphism $B : E \to B$ in \mathcal{E},

$$\check{H}_q^p(B, A|B) = 0. \quad (q > 0)$$

In (10), B stands for the open subspace of $e_E^*(Y)$ determined by the given morphism $B : E \to B \subseteq \mathcal{O}(Y)$, and $A|B \in \mathcal{A}b((\mathcal{E}/E)[B])$ is the sheaf induced by A.

$$\begin{array}{ccc}
(\mathcal{E}/E)[B] & \hookrightarrow & (\mathcal{E}/E)[e_E^* Y] \\
\downarrow & & \downarrow \varphi \\
(\mathcal{E}/E) & \to & \mathcal{E}
\end{array}$$

Lemma 2. If B is an A-acyclic basis for Y as above, then $\check{H}_q^p(Y, A) \cong R^p \varphi_* A$, for all $p \geq 0$.

Proof. We show by induction on \(n \) that \(E^q_2 = 0 \) for all \(p \) and all \(q \) with \(0 < q < n \), in the spectral sequence of Lemma 1. Suppose this holds for \(n \). Then (cf. [CE], p. 328) \(\tilde{H}^q(Y, A) = R^i\varphi_*A \) for \(i < n \), and there is an exact sequence \(0 \to \tilde{H}^q(Y, A) \to R^i\varphi_*A \to E^{0,n}_2 \to \tilde{H}^{q+1}(Y, A) \to R^{n+1}\varphi_*A \). But \(E^{0,n}_2 = \tilde{H}^0(Y, R^ni_*A) \to \varphi^*R^ni_*A \) \(n \to 0 \), so \(H^q(Y, A) \equiv R^n\varphi_*A \). Applying this argument not to \(Y \), but to any open subspace \(B \) (for any morphism \(B,E \to B \), cf the diagram (11)), our assumption on \(B \) gives that \(R^n\varphi_i(A) \) \(B = 0 \), where \((-) \mid B \) denotes the restriction functor \(\mathcal{E}_Y \to \mathcal{E}_B \). Thus if in the spectral sequence (9) above, \(\mathcal{U} \) is a cover consisting of basic open sets from \(\mathcal{B} \), then \(E^{p,q}_2(\mathcal{U}) = H^q(\mathcal{U}, 0) = 0 \) for all \(p \). Since such covers consisting of basic opens are cofinal in the internal system of all covers, it follows by passing to the colimit that \(E^{p,q}_2 = 0 \) (all \(p \)) in the spectral sequence of Lemma 1. So the inductive statement in the beginning of the proof holds for \(n + 1 \), and Lemma 2 is proved.

Remark. Let \(Y \) be a space in \(\mathcal{E} \), as above. Recall (see [JT]) that an open \(U \subset Y \) is called surjective if it holds in \(\mathcal{E} \) that every cover of \(U \) is inhabited. If \(A \) is a sheaf on \(Y \) and \(\{ U_\alpha : \alpha \in \mathcal{A} \} \) is a family of opens, then \(\Pi\{ A(U_\alpha) | \alpha \in \mathcal{A} \} = \Pi\{ A(U_\alpha) | \alpha \in \mathcal{A}, U_\alpha \text{ surjective} \} \) (where \(\Pi \) is the internal product \(\mathcal{E}/\mathcal{A} \to \mathcal{E} \), as in Section 2). This is analogous to the fact that for \(\mathcal{E} = \text{Sets}, A(U) = \{ ^* \} \) if the empty set covers \(U \). Therefore in Lemma 2 it is enough to assume that \(\mathcal{B} \) is closed under surjective binary meets (i.e. \(B \cap B' \in \mathcal{B} \) whenever \(B \) and \(B' \in \mathcal{B} \) and \(B \cap B' \) is surjective), since by this isomorphism, surjective intersections are the only ones that need to be considered in the complexes \(C^{p,q}(\mathcal{U}) \).

4. The main theorem. Let \(\mathcal{E} \) be a Grothendieck topos, and let \(X_\mathcal{E} \) be the space constructed in Section 1. In the following theorem, \(H^q(X_\mathcal{E}, -) \) denotes the sheaf cohomology of \(X_\mathcal{E} \).

Theorem. The geometric morphism \(\varphi : \text{Sh}(X_\mathcal{E}) \to \mathcal{E} \) has the property that for any abelian group \(A \) in \(\mathcal{E} \), \(R^q\varphi_*(\varphi^*A) = 0 \) for \(q > 0 \) (for \(q = 0, R^q\varphi_*(\varphi^*A) \equiv A \)); consequently, \(\varphi \) induces an isomorphism

\[H^q(\mathcal{E}, A) \to H^q(X_\mathcal{E}, \varphi^*A) \]

for each \(q \geq 0 \).
Proof. The second statement follows from the first by the Leray spectral sequence (SGA4, exp V, p. 35). The first statement is a special case (by construction of X_ξ) of the general fact that for any object G in \mathcal{C}, the corresponding geometric morphism $\varphi : \mathcal{C}[\text{En}(G)] \to \mathcal{C}$ induces isomorphisms $H^q(\mathcal{C}, A) \to H^q(\mathcal{C}[E(G)], \varphi^*A)$, for any abelian group A in \mathcal{C} and any $q \geq 0$. Let B be the basis consisting of opens of the form V_u (u a finite partial function from \mathbb{N} to G, cf. [JM]). $\text{En}(G) = V_\varphi \in B$, and $V_u \cap V_w$ is surjective iff u and w are compatible finite functions, and in that case $V_u \cap V_w = V_{u\cup w}$, so B is closed under surjective finite meets (cf. the remark in Section 3).

We will show that for any injective object I of $\text{Ab}(\mathcal{C})$ and any $q > 0$

$$R^q\varphi_*(\varphi^*I) = 0. \tag{12}$$

This is enough, because φ is connected, i.e. $\varphi_\ast \varphi^* \cong \text{id}$, and (12) says that φ^* maps injectives to φ_\ast-acyclic objects, so there is a spectral sequence ([G]) for the composition $\varphi^* \circ \varphi_\ast$, $E_2^{p,q} = (R^p\varphi_\ast)(R^q\varphi^*)A \Rightarrow R^{p+q}(\varphi_\ast \varphi^*)A$; φ^* is exact and $\varphi_\ast \varphi^* \cong \text{id}$, so $E_2^{p,q} = 0$ for $q > 0$ and $E_2^{0,0} = R^p(\text{id})(A) = 0$ for $p > 0$. Thus $R^q\varphi_*(\varphi^*A) = 0$ for $p > 0$.

To prove (12), let I be an injective in $\text{Ab}(\mathcal{C})$, and let \mathcal{U} be an open cover of $\text{En}(G)$ by basic opens, say $\mathcal{U} : S \to \mathcal{B} \subset \mathcal{O}(Y)$ as in Section 2. Let us consider the nerve $N(\mathcal{U})$ of \mathcal{U}. This is the simplicial complex in \mathcal{C} defined as follows: $S_0 = (S_p, p \geq 0)$ is a simplicial complex in \mathcal{C}, with as face $d_i : S_p \to S_{p-1}$ the projection $S^{p+1} \to S^p$ which deletes the i-th coordinate. The morphism $\mathcal{U}_p : S_p \to \mathcal{B} \subset \mathcal{O}(Y)$ can be viewed as an S_p-indexed sum of subobjects of the terminal object 1 of $\mathcal{C}[Y]$, and we write $\Sigma_{S_p} \mathcal{U}_p$ for their internal sum. Then

$$N_p(\mathcal{U}) = \varphi_\ast(\Sigma_{S_p} \mathcal{U}_p),$$

and the faces and degeneracies of S. give $N(\mathcal{U})$ the structure of a simplicial complex over \mathcal{C}. Moreover,

$$C^p(\mathcal{U}, \varphi^*I) \cong I^{N_p(\mathcal{U})}. \tag{13}$$

(cf. (2)), where the differentials on the left correspond to the differentials obtained on the right by alternating sums from the cofaces of the co-
simplicial object $I^{N(U)}$. We claim that $C^p(U, \varphi^*I)$ is an acyclic complex. Since I is injective, it suffices to prove that $\text{Free}(N(U))$ is an acyclic chain complex in $\text{Ab}(\mathfrak{C})$, where $\text{Free}(-)$ denotes the free abelian group functor. To this end, let $p: \mathcal{B} \to \mathfrak{C}$ be a Boolean extension as at the end of Section 1, and consider the pullback square

$$
\begin{array}{ccc}
\mathcal{B}[\text{En}(p^*G)] & \to & \mathfrak{C}[\text{En}(G)] \\
\downarrow \psi & & \downarrow \varphi \\
\mathcal{B} & \to & \mathfrak{C}.
\end{array}
$$

Since φ is locally connected so is ψ, and the Beck-Chevalley condition holds, i.e.

$$p^*\varphi = \psi \circ p^*.$$

Consequently, if we write U' for the cover of $\text{En}(p^*G)$ induced by U via pullback along p, we have $p^*(\text{Free}(N(U))) = \text{Free}(N(U'))$. But \mathcal{B} is a model for set theory (with the axiom of choice), so we are now in a position to apply results from classical topology: the cover U' of $\text{En}(p^*G)$ is a cover by basic opens, and $\text{En}(p^*G)$ as well as each of its basic open subspaces are contractible, so the nerve $N(U')$ of this cover is a contractible simplicial set, and $\text{Free}(N(U'))$ is an acyclic chain complex. Since $p^*(\text{Free} N(U)) = \text{Free}(N(U'))$ and p^* is faithful, it follows that $\text{Free}(N(U))$ is acyclic, as was to be shown.

Now apply this argument not just to $\text{En}(G)$, but to any basic open $B \subset e^*_p(\text{En}(G))$ and any $E \in \mathfrak{C}$ (cf (11), where $Y = \text{En}(G)$ now). Then we conclude that \mathcal{B} is an I-acyclic basis. (12) now follows by Lemma 2, since the whole space $\text{En}(G)$ is a member of \mathcal{B}. This completes the proof of the theorem.

5. Torsors. Let G be a group in a topos \mathfrak{C}. A G-torsor in \mathfrak{C} (or principal G-bundle over \mathfrak{C}) is an object T of \mathfrak{C} equipped with an action $\mu: G \times T \to T$ of G such that $T \to 1$ is epi and $(\mu, \pi_2): G \times T \to T \times T$ is an isomorphism. Recall ([Gi]) that $H^i(\mathfrak{C}, G)$ is the pointed set of isomorphism classes of G-torsors (this is a group if G is abelian). For a space X and a sheaf of groups G on X, $H^i(X, G)$ stands for $H^i(\text{Sh}(X), G)$.
Theorem. Let \(\mathcal{C} \) be a topos, and let \(\varphi : \text{Sh}(X_{\mathcal{C}}) \to \mathcal{C} \) be the cover of Section 1. For any group \(G \) in \(\mathcal{C} \), \(\varphi \) induces an isomorphism

\[
H^1(\mathcal{C}, G) \xrightarrow{\sim} H^1(X_{\mathcal{C}}, \varphi^*G)
\]

Proof. The functor \(\varphi^* : \mathcal{C} \to \text{Sh}(X_{\mathcal{C}}) \) is fully faithful, so it restricts to a fully faithful functor from the category of \(G \)-torsors in \(\mathcal{C} \) to that of \(\varphi^*G \)-torsors in \(\text{Sh}(X_{\mathcal{C}}) \). It thus suffices to show that this restriction of \(\varphi^* \) is essentially surjective. By [JM], there is a class \(P \subset (X_{\mathcal{C}})^I \) of paths, such that \(\mathcal{C} \) is equivalent to the full subcategory of \(\text{Sh}(X_{\mathcal{C}}) \) consisting of those sheaves on \(X_{\mathcal{C}} \) which are constant along the paths in \(P \). Let \(T \) be a \(\varphi^*G \)-torsor in \(\text{Sh}(X_{\mathcal{C}}) \). Then \(T \) is locally isomorphic to \(\varphi^*(G) \), and \(\varphi^*(G) \) is constant along all the paths in \(P \). So \(T \) is locally constant along the paths in \(P \), and hence constant along those paths (since the interval \(I \) is simply connected).

6. Etale homotopy. Let \(\mathcal{C} \) be a locally connected topos, and let \(p \) be a point of \(\mathcal{C} \). Artin and Mazur ([AM]) define the etale homotopy groups \(\pi_n(\mathcal{C}, p) \) \((n \geq 0)\), and prove a Whitehead theorem for toposes: a geometric morphism \((\mathcal{F}, q) \to (\mathcal{C}, p)\) of pointed locally connected toposes induces isomorphisms of etale homotopy groups iff it induces isomorphisms of cohomology groups with coefficients in a locally constant abelian group \(A \) in \(\mathcal{C} \), as well as an isomorphism of the fundamental progroups \(\pi_1(\mathcal{F}, q) \to \pi_1(\mathcal{C}, p) \). Our previous results give:

Corollary. For any locally connected pointed topos \((\mathcal{C}, p)\) there exists a pointed space \((X_{\mathcal{C}}, q)\) and a cover \(\varphi : (\text{Sh}(X_{\mathcal{C}}), q) \to (\mathcal{C}, p) \) which induces isomorphisms in etale homotopy,

\[
\pi_n(X_{\mathcal{C}}, q) \xrightarrow{\sim} \pi_n(\mathcal{C}, p) \quad (n \geq 0)
\]

Proof. First of all, we need to modify the construction of the space \(X_{\mathcal{C}} \) slightly, in order to lift the point \(p \): if we replace the set \(N \) of natural numbers by an arbitrary infinite set \(S \) in the construction of Section 1 (and the space of infinite-to-one enumerations \(N \leftarrow U \to G \) by that of infinite-to-one partial maps \(\Delta(S) \leftarrow U \to G \), where \(\Delta S \) denotes the constant object of \(\mathcal{C} \) corresponding to the set \(S \)), we obtain a cover (again called) \(\varphi : X_{\mathcal{C}} \to \mathcal{C} \) with exactly the same properties as before. A straightforward classifying-topos argument shows that if we
choose the cardinality of S sufficiently large (at least that of p^*G) then the given point p can be lifted to a point q of this (modified) space $X_\mathcal{E}$. $X_\mathcal{E}$ is locally connected since \mathcal{E} is, and φ is a locally connected map. Now the result of Section 5 shows that φ induces an isomorphism in π_1 (since $H^1(\mathcal{E}, G) \cong \text{Hom}(\pi_1(\mathcal{E}, p), G)$, cf [AM], Section 10). The corollary follows by the Whitehead theorem just quoted and the theorem of Section 4.

UNIVERSITÉ DU QUÉBEC À MONTREAL, CANADA
UNIVERSITY OF CHICAGO

REFERENCES

[JM] A. Joyal and I. Moerdijk, Toposes as homotopy groupoids, (to appear in _Advances in Math._).