PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link. http://hdl.handle.net/2066/129079

Please be advised that this information was generated on 2017-07-27 and may be subject to change.
IEKE MOERDIJK

The classifying topos of a continuous groupoid. II

Cahiers de topologie et géométrie différentielle catégoriques,

<http://www.numdam.org/item?id=CTGDC_1990__31_2_137_0>
RÉSUMÉ. Dans cet article, on construit une completion γG pour chaque groupoïde G, et on montre que tout foncteur continu exact $BG\to BH$ entre les topos classifiants des groupoïdes continus G et H est obtenu par produit tensoriel avec un espace muni d'une action de γG à gauche et de γH à droite ("bi-espace"). On en déduit une description complète de la catégorie des topos en termes de groupoïdes continus et de tels bi-espaces.

If G is a continuous groupoid, i.e., a groupoid in the category of spaces, it is natural to consider the category of étale G-spaces. These form a topos BG, called the classifying topos of G. It arises naturally in many contexts, e.g. in foliation theory where G is a groupoid of germs of local diffeomorphisms of a foliated manifold (see e.g. [11]), and BG is the étendue associated to a foliation (already described by Grothendieck and Verdier in [12], IV.9).

The generality of the construction is beautifully demonstrated by A. Joyal and M. Tierney, who show in [6] that every Grothendieck topos is equivalent to a category of the form BG, for a suitable continuous groupoid G.

In Part I (cf. [7]). I discussed many properties of the functor $G\to BG$. This functor is not full, but it was proved there that the category of toposes can be obtained from a category of groupoids by a calculus of fractions, in the sense of Gabriel and Zisman (see [2]).

The aim of this second part is to describe the morphisms of toposes $BH\to BG$ in terms of the continuous groupoids G and H, in a way which is somewhat in the spirit of Morita theory for modules over commutative rings.

The argument proceeds in two steps. First, I construct for each continuous groupoid G a completion γG. γG is a continuous category (no longer a groupoid), but the étale γG-spaces are the same as the étale G-spaces. i.e., there is an equivalence of categories

1 Supported by a Huygens Fellowship of the ZWO.
The second step is to show that for each geometric morphism \(f: BH \to BG \) there exists a space \(R(f) \) equipped with an action by \(\gamma H \) on the right and one by \(\gamma G \) on the left, such that the inverse image functor \(f^* \) comes from tensoring with \(R(f) \): there is a natural isomorphism

\[
E \otimes_{\gamma G} R(f) \cong f^*(E)
\]

for each étale \(G \)-space \(E \).

Just like the category of commutative rings can be made into a bicategory with bimodules as morphisms and the tensor product as composition (cf. [1]), such spaces equipped with an action of \(\gamma G \) on the left and one of \(\gamma H \) on the right — call them bispaces — form the morphisms of a bicategory with continuous groupoids as objects and tensor-product as composition. It is a formal consequence of (2) that the 2-category of toposes is equivalent to a bicategory of groupoids and such bispaces, as I will spell out in Section 6.

Although this paper is a sequel to Part I ([7]), familiarity with all of Part I is by no means necessary. However, I do assume that the reader is familiar with the preliminaries listed in Section 1 of Part I (appropriate references are given there), as well as with Sections 5 and 6 of Part I. Some of the basic facts from Part I are quickly reviewed in Section 1 below.

I should also say that the results of this paper have already been worked out for the case of continuous groups (not groupoids) in my paper [8]. The technical details are much easier for groups, and for the reader with an interest in these details, it might be more pleasant to read [8] first.

The author is much indebted to A. Kock and the referee. Both spotted numerous inaccuracies, and moreover made various suggestions which have improved the paper substantially.

CONTENTS.

1. The topos associated to a continuous groupoid
2. Lax fibered products of toposes
3. Completion of continuous groupoids
4. Bispaces
5. Bispaces induced by geometric morphisms
6. Equivalence between toposes and groupoids
References.
1. THE TOPOS ASSOCIATED TO A CONTINUOUS GROUPOID.

In this section, we briefly review a construction of the classifying topos of a continuous groupoid, discussed in Part I.

1.1. DEFINITION OF BG (see I, 5.1-5.4). Let G be a continuous groupoid, i.e., a groupoid object in the category of spaces (in the generalized sense, see e.g. [6]). As in Part I, we write $d_0: G_1 \rightarrow G_0$ and $d_1: G_1 \rightarrow G_0$ for the domain and codomain. $m: G_1 \times_{G_0} G_1 \rightarrow G_1$ for the composition $(m(f,g) = f \cdot g)$, and $s: G_0 \rightarrow G_1$ for the identity: so these are all continuous maps of spaces satisfying the usual identities. As in Part I, we will always assume that d_0 and d_1 are open maps (it then follows that m must be open, too).

A G-space is a space $p: E \rightarrow G_0$ over G_0 equipped with an action of G on the right. $E \times_{G_0} G_1 \rightarrow E$, satisfying the usual identities. So a G-space is a triple (E, p, \cdot), but we usually just write E to refer to the triple. A map of G-spaces $f: E \rightarrow E'$ is a map over G_0 which preserves the action.

A G-space E is called open, resp. étale, if the map $f: E \rightarrow G_0$ is open, resp. étale (i.e., a local homeomorphism). Note that this implies that the action $E \times_{G_0} G_1 \rightarrow E$ is an open map. BG is the full subcategory of $(G$-spaces) consisting of étale G-spaces. BG is a topos, called the classifying topos of G. The canonical geometric morphism whose inverse image is given by forgetting the action is denoted by $\pi_G: Sh(G_0) \rightarrow BG$.

The construction is functorial in G: if $\varphi: H \rightarrow G$ is a homomorphism of continuous groups, φ induces a geometric morphism $B\varphi: BH \rightarrow BG$ (I.5.4).

The construction relativizes to an arbitrary base topos: if G is a continuous groupoid in a topos E, the étale G-spaces in E form a topos over E, which we denote by $B(E,G)$. An important property is the stability of the construction under change-of-base (not in the least because stability allows us to use point-set arguments, as was pointed out throughout Part I: cf. in particular 1.5.3). We restate it explicitly here.

1.2. Stability THEOREM (I.6.7). Let $p: F \rightarrow E$ be a geometric morphism and let G be a continuous groupoid in E (we assume that $G_1 \rightarrow G_0$ is open). Then there is a canonical equivalence of toposes

$$F \backslash E \sim B(F, p^*(G)).$$
1.3. Generators for BG (1.6.1). Let G be a continuous groupoid, and let $U \subset G_0$ be an open subspace. An open U-congruence is an open subspace $N \subset G_1$ such that $d_0(N), d_1(N) \subset U$ and N contains all identities ($s(U) \subset N$) and is closed under inverse and composition. We factor out such an N to obtain an étale G-space, namely

$$G_1 \cap d_1^{-1}(U)/N,$$

a space over G_0 by d_0, with action given by composition.

Intuitively one can think of $G_1 \cap d_1^{-1}(U)/N$ in point-set terms: the elements are equivalence classes $[g]$ of morphisms $g: x \to x'$ in G with $x', x \in U$. Two such $g_1: x \to x_1$ and $g_2: x \to x_2$ are equivalent if $g_2 \cdot g_1^{-1} \in N$. The action of G on the right is described by

$$[g] \cdot h = [gh] = [m(g, h)].$$

Since the quotient in (1) is stable, one may use change-of-base techniques to actually exploit this point-set description of the étale G-space $G_1 \cap d_1^{-1}(U)/N$.

The étale G-spaces which are of the form (1) generate BG; the corresponding full subcategory is denoted by S_G, or $S(G)$.

1.4. Maps between generators. As explained in 1.6, a section

$$a: V \to G_1 \cap d_1^{-1}(U)/N$$

(i.e., $d_0 \cdot a = id_V$) where $V \subset G$ is an open subspace, induces a morphism

(2) $$\tilde{a}: G_1 \cap d_1^{-1}(V)/M \to G_1 \cap d_1^{-1}(U)/N$$

if M is a sufficiently small open V-congruence. In point-set notation, \tilde{a} is described by

(3) $$\tilde{a}([g]) = [a(d_1g) \cdot g].$$

Every morphism in $S(G)$ is of the form (2). A generating G-space of the form (1) always has one distinguished section given by the identity, which we denote by

$$s: W \to G_1 \cap d_1^{-1}(U)/N$$

for any open $W \subset U$.

1.5. Inverses in $S(G)$. Let

$$\tilde{a}: G_1 \cap d_1^{-1}(V)/M \to G_1 \cap d_1^{-1}(U)/N$$

be a map in $S(G)$ coming from a section $a: V \to G_1 \cap d_1^{-1}(U)/N$ as above. Then there is a collection $\{U_i\}$ of open subspaces of
U, with open \(U_i \)-congruences \(N_i \subset N \), such that there are sections \(b_j : U_i \to G_1 \cap d_1^{-1}(V)/M \) with the property that

\[
\{ b_j : G_1 \cap d_1^{-1}(U_i)/N_i \to G_1 \cap d_1^{-1}(V)/M \}_j
\]

is an epimorphic family, and for each \(i \), \(a \cdot b_j \) is the natural subquotient map \(G_1 \cap d_1^{-1}(U_i)/N_i \to G_1 \cap d_1^{-1}(U)/N \).

To see this, we use a point-set argument (and implicit base extension). Let \(\xi \) be a point of \(G_1 \cap d_1^{-1}(V)/M \) (in any base extension) and choose (by going to some further open surjective base extension) a point \(g : z \to \gamma \) of \(G_1 \) with \(\gamma \in V \) and \(\xi = [g] \). and a point \(h : \gamma \to x \) in \(G_1 \) with \(x \in U \) and \(a(\gamma) = [h] \). Let

\[
b_x : U_x \to G_1 \cap d_1^{-1}(V)/M
\]

be a section through the point \([h^{-1} : x \to \gamma]\). Since the space \(G_1 \cap d_1^{-1}(V)/M \) is étale over \(G_0 \), we may assume (by choosing \(U_x \) small enough) that \(a \cdot b_x = s \) (the identity section, cf. 1.4). Choose \(M_x \) small enough for \(b_x \) to induce a map

\[
G_1 \cap d_1^{-1}(U_x)/M_x \to G_1 \cap d_1^{-1}(V)/M.
\]

Then clearly \(a \cdot \tilde{b}_x = s \); moreover

\[
\tilde{b}_x \cdot [g \cdot h] = [g \cdot h \cdot b_x(x)] = [g] = \xi.
\]

1.6. Continuous categories. Notice that the definition of the category \(BG \) of étale \(G \)-spaces given in 1.1 also makes sense if \(G \) is just a continuous category (a category object in the category of spaces), rather than a groupoid. Below, we will use the same notation \(BG \) for the category of étale \(G \)-spaces in the case of a continuous category \(G \). \(BG \) is still a topos, but many of the results of Part I do not extend to this case where \(G \) is a continuous category.

2. Lax fibered products of toposes.

Let \(G \to E \leftarrow F \) be geometric morphisms of \(S \)-toposes (where \(S \) is the base). The **lax fibered product**, or **lax pullback** is the universal solution (up to equivalence of hom-categories) to having a pair of geometric morphisms \(T \to F, T \to G \), together with a natural transformation (all over \(S \))

\[
\begin{array}{ccc}
T & \to & F \\
\downarrow & & \downarrow \\
G & \leftarrow & E
\end{array}
\]
1. MOERDIJK

(between the inverse image functors). We write \(F =_E G \) for this universal topos and

\[
\begin{array}{c}
F =_E G \\
\downarrow \\
G
\end{array}
\quad
\begin{array}{c}
\downarrow \\
E =_E E
\end{array}
\quad
\begin{array}{c}
\uparrow \\
F \times_S G
\end{array}
\quad
\begin{array}{c}
\downarrow \\
E \times_S E
\end{array}
\]

(1)

for the corresponding universal square. It can be constructed as a pullback

\[
\begin{array}{c}
F =_E G \\
\downarrow \\
G
\end{array}
\quad
\begin{array}{c}
\downarrow \\
E =_E E
\end{array}
\quad
\begin{array}{c}
\uparrow \\
F \times_S G
\end{array}
\quad
\begin{array}{c}
\downarrow \\
E \times_S E
\end{array}
\]

(2)

2.1. LEMMA. The construction of lax fibered products is stable. i.e., if \(T \to S \) is an extension of the base, then

\((F =_E G) \times_S T \cong (F \times_S T) =_E (G \times_S T) \).

PROOF. Obvious.

The following theorem was found independently by Pitts ([10], Theorem 4.5) and the author (preprint version (1986) of the present paper): our methods of proof were completely different:

2.2. THEOREM. Let \(F \to E \to G \) be geometric morphisms with lax fibered product \(F =_E G \), as in (1). If \(F \to E \) is open, then so is the projection \((F =_E G) \to G \).

For the proof of 2.2, we shall use the Sierpiński space \(S \): it has two distinguished points, an open \(1 \) and a closed one \(0 \). For toposes \(T \) and \(E \) over \(S \), a geometric morphism \(h: T \times_S \text{Sh}(S) \to E \) is equivalent to a pair of morphisms \(h_0, h_1: T \to E \), together with a natural transformation \(h_0^* = h_1^* \). Clearly the topos \(F =_E G \) of (1) can also be constructed as the pullback

\[
\begin{array}{c}
F =_E G \\
\downarrow \\
E \times_S E
\end{array}
\quad
\begin{array}{c}
\downarrow \\
E \times_S E
\end{array}
\quad
\begin{array}{c}
\uparrow \\
F \times_S G
\end{array}
\quad
\begin{array}{c}
\downarrow \\
E \times_S E
\end{array}
\]

(3)

where \(E \times_S \text{Sh}(S) \) is the exponential of \(S \)-toposes [5].

PROOF of 2.2. Let us first observe that it suffices to prove that

- 142 -
for an S-topos E, the evaluation $\text{ev}_1: E^{\text{Sh}(S)} \to E$ is open. Indeed, one can construct the pullback (3) in two stages,

$$F = E^G = (E^{\text{Sh}(S)},_E F) \times_E G$$

as in

\[
\begin{array}{ccc}
E^{\text{Sh}(S)} & \xrightarrow{\text{ev}_1} & E \\
\downarrow\pi_1 & & \downarrow\text{ev}_0 \\
E & \xrightarrow{E^{\text{Sh}(S)}_E F} & E^{\text{Sh}(S)} \\
\end{array}
\]

and use that open maps are stable under pullback.

To prove that $\text{ev}_1: E^{\text{Sh}(S)} \to E$ is open, we follow an idea similar to the proof of 191, 2.1. If $E = \text{Sh}(X)$, for a space X in S, then $\text{Sh}(X)^{\text{Sh}(S)} \approx \text{Sh}(X^S)$, where the exponential X^S of spaces has a presentation of the form (U_0, U_1) where $U_1 \subset U_0 \subset X$ are open subspaces of X. Then $(U_0, U_1) \subset X^S$ is the subspace defined by saying that a map $h: T \to X^S$ factors through (U_0, U_1) iff

$$h_0 \leq h_1$$

as maps $T \to X$. and $h_0(T) \subset U_0$, $h_1(T) \subset U_1$. Clearly $\text{ev}_1(U_0, U_1) = U_1$, so ev_1 is open.

If E is any topos, a construction of Joyal (see [6]) gives a space Y and an open surjection $\rho: \text{Sh}(Y) \to E$. By considering the diagram

\[
\begin{array}{ccc}
\text{Sh}(Y)^{\text{Sh}(S)} & \xrightarrow{\rho^{\text{Sh}(S)}} & E^{\text{Sh}(S)} \\
\downarrow\text{ev}_1 & & \downarrow\text{ev}_1 \\
\text{Sh}(Y) & \xrightarrow{\rho} & E \\
\end{array}
\]

we find that it is enough to show that $\text{Sh}(Y)^{\text{Sh}(S)} \to E^{\text{Sh}(S)}$ is a (stable) surjection. Recall that $\text{Sh}(Y) \to E$ is constructed as a pullback

\[
\begin{array}{ccc}
\text{Sh}(Y) & \to & \text{Sh}(X_U) \\
\downarrow & & \downarrow \\
E & \to & S[U]
\end{array}
\]

where $E \to S[U]$ is a localic geometric morphism into the object classifier $S[U]$ and $\text{Sh}(X_U)$ classifies partial enumerations of the generic object U. So by exponentiating the pullback (2) by $\text{Sh}(S)$, it is enough to show that

\[
\text{Sh}(X_U)^{\text{Sh}(S)} \to S[U]^\text{Sh}(S)
\]
is a stable surjection. We will show that for any geometric
morphism \(f : T \rightarrow S[U]^\text{Sh}(S) \) (\(T \) any topos over \(S \)) there is an open
surjection \(g : T' \rightarrow T \) and a commutative diagram

\[
\begin{array}{ccc}
T' & \xrightarrow{f} & \text{Sh}(X_U)^{\text{Sh}(S)} \\
\downarrow g & & \downarrow \text{Sh}(X_U)^{\text{Sh}(S)} \\
T & \xrightarrow{f} & S[U]^\text{Sh}(S)
\end{array}
\]

(4)

from which it follows that \(\text{Sh}(X_U)^{\text{Sh}(S)} \rightarrow S[U]^\text{Sh}(S) \) is a stable
surjection. By working in \(T \) it is enough to take the case \(T = S \)
(="sets"). The given map \(f \) corresponds to a pair \(A_0, A_1 \) of sets
together with a function \(\alpha : A_0 \rightarrow A_1 \). We need to find partial
enumerations \(\mathbb{N} \supset U_i \xrightarrow{\varepsilon_i} A_i \) \((i = 0, 1)\) such that \(\alpha \cdot \varepsilon_0 = \varepsilon_1 \) on
\(U_0 \cap U_1 \), in some base extension \(T' \), for this precisely defines a
map \(h : T \rightarrow \text{Sh}(X_U)^{\text{Sh}(S)} \) making (4) commute. There is an open
surjection \(T' \rightarrow T \) such that there are partial enumerations
\(\mathbb{N} \supset V_i \xrightarrow{\beta_i} A_i \) in \(T \). Let \(U_0 = V_0, \ U_1 = V_0 \cup V_1 \); then

\[
U_0, U_1 \subseteq \mathbb{N} + \mathbb{N} \approx \mathbb{N}, \text{ and } U_0 \cap U_1 = V_0 \subseteq \mathbb{N} + \mathbb{N}.
\]

so if we define \(\varepsilon_0 = \beta_0, \ \varepsilon_1|V_0 = \alpha \beta_0, \ \varepsilon_1|V_1 = \beta_1 \), the proof is com-
plete.

We furthermore have:

2.3. LEMMA. Let \(F \rightarrow E \rightarrow G \) be geometric morphisms with lax fi-
bered product \(F \times_E G \). If \(F \) and \(G \) are spatial toposes (i.e., \(F \approx \text{Sh}(X), \ G \approx \text{Sh}(Y) \) for spaces \(X, Y \)). then so is \(F \times_E G \).

PROOF. If \(F \) and \(G \) are spatial, so is \(F \times_S G \). Moreover. \(E \times_E E \times_S E \) is spatial (since the left hand side classifies mor-
phisms of \(E \)-models while the right hand side classifies pairs of \(E \)-models: the latter kind of structure bounds the former). So also the top arrow in the pullback (2) is spatial. Since the composite of spatial morphisms is spatial, \(F \times_E G \) is a spatial
topos.

3. COMPLETION OF CONTINUOUS GROUPOIDS.

In this section we will construct a continuous category \(\gamma G \)
for any continuous groupoid \(G \). \(\gamma G \) is a kind of completion of
\(G \), which still defines the same topos; i.e., there is an equiva-
rence \((\gamma G) \approx BG \), induced by a continuous homomorphism \(G \rightarrow \gamma G \)
of continuous categories.

3.1. DEFINITION of \(\gamma G \). Let \(G \) be a continuous groupoid, with
classifying topos BG. We define a continuous category γG as follows: the space of objects is the same as that of G, i.e., $(\gamma G)_0 = G_0$, and the space of morphisms $(\gamma G)_1$ is defined by the lax fibered product

![Diagram](image)

(1)

Notice that this lax fibered product is indeed spatial by 2.4, so γG_1 is uniquely defined as a space. The two geometric morphisms d_0 and d_1 in (1) define the domain and codomain. The identity $s: \gamma G_0 \to \gamma G_1$ is defined by the universal property of (1) and the identity transformation from π_G^0 to itself. Composition in γG, which is a map

(2)

$$m: (\gamma G)_1 \times_{\gamma G_0} (\gamma G)_1 \to (\gamma G)_1$$

(where the pullback in (2) is along d_0 on the left, d_1 on the right) is defined by the universal property of $\text{Sh}(\gamma G_1)$ as follows: write π_1 and π_2 for the two projections

$$\gamma G_1 \times_{\gamma G_0} \gamma G_1 \xrightarrow{\pi_1} \gamma G_1$$

so that there is an isomorphism

(3)

$$d_0 \pi_1 \cong d_1 \pi_2$$

and consider the composition of 2-cells

(4)

$$\pi_G d_1 \pi_1 \xrightarrow{\xi \cdot \pi_1} \pi_G d_0 \pi_1 \cong \pi_G d_1 \pi_2 \xrightarrow{\xi \cdot \pi_2} \pi_G d_0 \pi_2.$$

Since (1) is a lax fibered product, there is a unique continuous map of spaces

$$m: \gamma G_1 \times_{\gamma G_0} \gamma G_1 \to \gamma G_1$$

such that $d_1 m = d_1 \pi_1$, $d_0 m = d_0 \pi_2$.

and the composition (4) coincides with $\xi \cdot m$:

![Diagram](image)

(5)

It is somewhat tedious but straightforward to verify that γG thus defined is indeed a continuous category, by using the universal property of γG_1. Alternatively, by stability (3.2 below)
composition in γG can be described in point-set language (using change-of-base) and it is then obvious that the laws of a category hold. cf. 3.5 below.

Notice that the definition of γG is functorial in G.

3.2. **Stability Lemma.** Let $p: F \to E$ be a geometric morphism, and let G be a continuous groupoid in E. Then there is an isomorphism of continuous categories in F. $p^\pi(\gamma G) \cong \gamma p^\pi(G)$.

Proof. Obvious from 2.1.

3.3. **The continuous homomorphism** $\theta: G \to \gamma G$. Let G be a continuous groupoid in the base topos, with associated continuous category γG. The action of G on étale spaces defines a natural transformation $\mu: d_1^* \pi_{\gamma G} \to d_0^* \pi_G$:

\[
\begin{array}{ccc}
\text{Sh}(G_1) & \overset{d_1}{\longrightarrow} & \text{Sh}(G_0) \\
\downarrow d_0 & & \downarrow \pi_G \\
\text{Sh}(G_0) & \underset{\mu}{\overset{\pi_G}{\longrightarrow}} & \text{BG}
\end{array}
\]

so by the universal property of 3.1 (1), there is a unique continuous map

$\theta_1: G_1 \to (\gamma G)_1$ such that $d_0 \theta_1 = d_0 \cdot d_1 \theta_1 = d_1$ and $\mu = \xi \cdot \theta_1$.

Letting $\theta_0: G_0 \to (\gamma G)_0$ be the identity, we obtain a continuous homomorphism

(2) $\theta: G \to \gamma G$.

Clearly, the definition is natural in G and stable under change-of-base. We will come back to this map θ in 3.9 below.

3.4. **Remark.** Let $\hat{G}_1 \subset \gamma G_1$ be the subspace of invertible morphisms in the category γG, with inclusion $i: \hat{G}_1 \subset \gamma G_1$. Then $\xi' = \xi \cdot i$ is an isomorphism and

\[
\begin{array}{ccc}
\text{Sh}(\hat{G}_1) & \overset{d_1}{\longrightarrow} & \text{Sh}(G_0) \\
\downarrow d_0 & & \downarrow \pi_G \\
\text{Sh}(G_0) & \underset{\xi'}{\overset{\pi_G}{\longrightarrow}} & \text{BG}
\end{array}
\]

is a pullback of toposes. The continuous groupoid \hat{G} (with $\hat{G}_0 = G_0$) is precisely the étale completion of G considered in 1.7.2.
3.5. Points of γG. Let G and γG be constructed in the base topos S. A point of γG_1 is a triple (x, x', α) where x and x' are points of G_0 and α is a natural transformation $\alpha: ev_{x'} \Rightarrow ev_x$; here $ev_x: BG \rightarrow S$ is the functor taking an étale G-space E to its fiber E_x over x. Codomain and domain are given by:

$$d_0(x, x', \alpha) = x, \quad d_1(x, x', \alpha) = x'.$$

Clearly if $g: x \rightarrow x'$ is a map in G (a point of G_1) then the action of g defines a natural transformation

$$g^*: ev_{x'} \Rightarrow ev_x$$

given in point-set notation by

$$g^*_E(e) = e \cdot g.$$

So (x, x', g^*) defines a point of γG_1, and this describes precisely the map ε on points:

$$\varepsilon(g) = (d_0g \cdot d_1g \cdot g^*).$$

Notice that by stability and change-of-base, ε can actually be defined by formula (4), provided one interprets g as a point of G_1 (or really p^*G, but we suppress base-extensions from notation) in an arbitrary base extension $p: E \rightarrow S$.

Composition in γG_1 can be described similarly: to define $m: \gamma G_1 \times \gamma G_0 \rightarrow \gamma G_1$, it is enough (Yoneda Lemma) to define for each test space T a function

$$m_T: \text{Cts}(T, \gamma G_1) \times \text{Cts}(T, \gamma G_0) \rightarrow \text{Cts}(T, \gamma G_1),$$

natural in T. But a pair of continuous maps $T \rightarrow \gamma G_1$ in the domain of m_T is nothing but a pair of points of γG_1, two triples (x, x', α) and (x', x'', β), not in S but in the base extension $Sh(T)$, and $m_T((x, x', \alpha), (x', x'', \beta))$ is just $(x, x'', \alpha \cdot \beta)$. So from the point of view of test spaces, it is clear that composition is associative, etc.

Let us consider a point (x, x', α) of γG_1 more closely: First of all, $\alpha: ev_{x'} \Rightarrow ev_x$ is completely determined by its components at generators $G_1 \cap d_1^{-1}(U)/N$ of BG. Moreover, if $[g]$ is any point of $G_1 \cap d_1^{-1}(U)/N$ in any base-extension, represented by a morphism $g: x' \rightarrow y$ with $y \in U$, then for a small neighborhood V of x' we can find a section $\sigma: V \rightarrow G_1 \cap d_1^{-1}(U)/N$ of the étale G-space $G_1 \cap d_1^{-1}(U)/N$ such that $\sigma(y) = [g]$, and this defines a morphism in BG.

$$\tilde{a}: G_1 \cap d_1^{-1}(V)/M \rightarrow G_1 \cap d_1^{-1}(U)/N$$

with $\tilde{a}(x') = [g]$, for M small enough (see 1.4). Now $\alpha_{G_1 \cap d_1^{-1}(V)/M}([x'])$ is represented by some arrow $h: y \rightarrow z$ in G where z is a point of V; naturality of α as in
1. MOERDIJK

\[\begin{array}{c}
(G_1 \cap d_1^{-1}(V)/M)_x \xrightarrow{\tilde{a}_x} (G_1 \cap d_1^{-1}(U)/N)_x \\
\alpha \downarrow \quad \downarrow \alpha = \alpha (G_1 \cap d_1^{-1}(U)/N)
\end{array} \]

\[\begin{array}{c}
(G_1 \cap d_1^{-1}(V)/M)_x \xrightarrow{\tilde{a}_x} (G_1 \cap d_1^{-1}(U)/N)_x
\end{array} \]

gives

\[\alpha_{G_1 \cap d_1^{-1}(V)/M}([g]) = \tilde{a}_x (\alpha (G_1 \cap d_1^{-1}(V)/M)([s x'])) = \tilde{a}_x ([h]) = [a(z) \cdot h]. \]

In other words, \(\alpha \) is completely determined by its values

\[\alpha_{G_1 \cap d_1^{-1}(V)/M}([s x']) \in (G_1 \cap d_1^{-1}(V)/M)_x, \]

where \(V \) ranges over all neighborhoods of \(x' \) and \(M \) over all open \(V \)-congruences. So \(\alpha \) corresponds to a unique point in the space

\[\lim_{V, M} (G_1 \cap d_1^{-1}(V)/M)_x \]

i.e., given points \(\lambda, \lambda' \) of \(G_0 \), the space \(\gamma_G(\lambda, \lambda') \subset \gamma_G_1 \) of morphisms \(\lambda \to \lambda' \) is precisely the inverse limit (5).

\[\gamma_G(\lambda, \lambda') \cong \lim_{V, M} (G_1 \cap d_1^{-1}(V)/M)_x. \]

Therefore, we will also write points of \(\gamma_G_1 \) as triples

(7) \((\lambda, \lambda', \tilde{g})\) where \(\tilde{g} \) is a sequence

(8) \(\tilde{g} = ([g_{V, M}]_{V, M}) \)

of equivalence classes \([g_{V, M}: \lambda \to \lambda_{V, M}]\) with \(\lambda_{V, M} \in V \) (\(V \) ranging over neighborhoods of \(\lambda' \). \(M \) over open \(V \)-congruences).

If \(G \) is a continuous group \((G_0 = 1)\) then (6) reduces to

\[\gamma_G \cong \lim_{M} G/M \]

where \(M \) ranges over the open subgroups of \(G \). So \(\gamma_G \) is precisely the monoid associated to \(G \) that I considered in [8] (there \(\gamma_G \) was called \(M(G) \)).

3.6. Points of \(\gamma_G \) (bis). By the preceding discussion, we may use the following scheme to define points of \(\gamma_G(\lambda, \lambda') \) where \(\lambda \) and \(\lambda' \) are given points of \(G_0 \). Suppose \(V_0 \supseteq V_1 \supseteq V_2 \supseteq \cdots \) is a neighborhood basis at \(\lambda' \), and that \(M_i \subset G_1 \) \((i = 1, 2, \ldots)\) is a system of open \(V_i \)-congruences (cf. 1.3) such that

\[M_{j+1} \subset M_j \cap V_{j+1} = M_j \cap (d_0, d_1)^{-1}(V_{j+1} \times V_{j+1}) \]

which form a cofinal system at \(\lambda' \) in the sense that for any neighborhood \(W \) of \(\lambda \) and any open \(W \)-congruence \(N \subset G_1 \), there
is an i such that $V_i \subset W$ and $M_i \subset N$, thus giving rise to a map in $\mathcal{S}(G)$,

$$\tilde{s} : G_1 \cap d_1^{-1}(V_i)/M_i \to G_1 \cap d_1^{-1}(W)/N$$

(cf. 1.3). Moreover, suppose that $U_0 \supset U_1 \supset \cdots$ is a neighborhood basis at x. Let

$$a_i : U_i \to G_1 \cap d_1^{-1}(V_i)/M_i \quad (i = 0, 1, 2, \ldots)$$

be a coherent family of sections of the étale G-spaces $G_1 \cap d_1^{-1}(V_i)/M_i$, coherent in the sense that for each i, \[u_{i+1} \quad \xrightarrow{a_{i+1}} \quad G_1 \cap d_1^{-1}(V_{i+1})/M_{i+1} \]

\[\downarrow \quad \tilde{s} \]

\[U_i \quad \xrightarrow{a_i} \quad G_1 \cap d_1^{-1}(V_i)/M_i \]

commutes. Then $[a_i]_i$ defines a point of $\gamma G(x, x')$: in the form of 3.5 (8), if V is any neighborhood of x and M is a V-congruence, choose i so large that $V_i \subset V$, $M_i \subset M$, so that there is a map

$$\tilde{s} : G_1 \cap d_1^{-1}(V_i)/M_i \to G_1 \cap d_1^{-1}(V)/M$$

and let

$$[g_{V,M}] = \tilde{s}(a_i(x)) \in G_1 \cap d_1^{-1}(V)/M.$$

3.7. REMARK. If one writes points of γG_1 as triples (x, x', \tilde{g}) where \tilde{g} is a sequence as in 3.5 (8), then composition in γG can be described as follows: if (x', x'', \tilde{h}) is another such point, then \[(x', x'', \tilde{h}) \cdot (x, x', \tilde{g}) = (x, x'', \tilde{k}) \]
where the sequence \tilde{k} has components $[k_{U,M}]$ $(U$ a neighborhood of x'', M an open U-congruence) defined by choosing a section $a : V \to G_1 \cap d_1^{-1}(U)/M$ through $[h_{U,M}]$ on a neighborhood V of x', letting \tilde{N} be an open V-congruence small enough for a to define a morphism of G-spaces \[\tilde{a} : G_1 \cap d_1^{-1}(V)/\tilde{N} \to G_1 \cap d_1^{-1}(U)/M \]

and then setting $[k_{U,M}] = \tilde{a}([g_{V,N}])$.

3.8. A presentation of γG. From the description of points of γG_1 (in any base extension, by 3.2) it is not difficult to obtain a presentation of the space γG_1, by a preorder equipped with a stable covering system (I.1.1. [6], §III.4). The elements of the preorder B are triples
where $U \subset G_0$ is open, N is an open U-congruence, and A is an open subspace of $G_1 \cap d_1^{-1}(U)/N$.

(Associated with a subspace of γG_1, $[U,N,A]$ is defined by stating that a point (x,x',g) (in any base extension) as in 3.5 (8) lies in $[U,N,A]$ iff $x' \in U$ and $[gU,N] \in A$ (so $x \in d_0(A)$).

The preorder on elements of the form (1) is generated by three conditions:

(i) If $U' \leq U$ then $[U',N|U',A|U'] \leq [U,N,A]$;

(ii) If $A' \leq A$ then $[U,N,A'] \leq [U,N,A]$ (for given U,N);

(iii) If for given U,N' and N are open U-congruences with $N' \subset N$, and

$$\tilde{s} : G_1 \cap d_1^{-1}(U)/N' \to G_1 \cap d_1^{-1}(U)/N$$

denotes the projection (an étale surjection), then for A contained in $G_1 \cap d_1^{-1}(U)/N$.

(a) $[U,N,A] \leq [U,N',\tilde{s}^{-1}(A)]$

and, for $B \subset G_1 \cap d_1^{-1}(U)/N'$,

(b) $[U,N',B] \leq [U,N',\tilde{s}(B)]$.

Notice that (a) and (b) imply

(2) $[U,N,A] = [U,N',\tilde{s}^{-1}(A)]$

since $\tilde{s} \tilde{s}^{-1}(A) = A$.

The covering system on this preorder B is generated by covers of two kinds:

(α) If $\{U_i\}_i$ covers U in G_0, then $\{[U_i,N|K_i,A|K_i]_i\}$ covers $[U,N,A]$;

(β) If $\{A_i\}_i$ covers A in the space $G_1 \cap d_1^{-1}(U)/N$, then $\{[U,N|K,A_i]_i\}$ covers $[U,N,A]$.

Notice that this is a stable generating system.

Alternatively, one can define B as a semilattice, where meets are given by:

(3) $[U,N,A] \wedge [V,M,B] = [U \cap V,N \cap M,U,\tilde{s}^{-1}(A) \cap \tilde{s}^{-1}(B)]$

where $\tilde{s}^{-1}(A)$ is the inverse under

$$\tilde{s} : G_1 \cap d_1^{-1}(U \cap V)/(N \cap M) \to G_1 \cap d_1^{-1}(U)/N,$$

and similarly for $\tilde{s}^{-1}(B)$.

To see that B equipped with this covering system is indeed a presentation of γG_1, it is enough to show that if $P \subset B$ is a subset which is inhabited, closed under meets, and is such that if a cover of some $[U,N,A]$ is contained in P then so is $[U,N,A]$ itself, then P gives rise to a unique point of γG_1. Let
Then \(X' \) defines a point of \(G_0 \) by the covers of type (a) and order-condition (i) (or (3)). Similarly, if \([U,M,A]\) is any element of \(P \), then
\[
\{ A_i \subset G_i \cap d_i^{-1}(U)/M \mid [U,M,A_i] \in P \}
\]
defines a point \([g_{U,M}]\) of \(G_1 \cap d_1^{-1}(U)/M \), and therefore a point \(x = d_0(g_{U,M}) \) of \(G_0 \). Now clearly from (iii), the sequence \(\bar{g} = \{ [g_{U,M}] \} \) where \(U \) ranges over neighborhoods of \(X' \) and \(M \) over open \(U \)-congruences, defines a point \((x, x', \bar{g})\) of \(\gamma G_1 \), by 3.5 (8).

In the sequel, we will refer to opens of \(\gamma G_1 \) of the form \([U,M,A]\) as basic opens, and often (implicitly) use point-set notation
\[
[U,M,A] = \{(x, x', \bar{g}) \mid x \in U, [g_{U,M}] \in A\}
\]
(where the right-hand side is considered as a set of points in a variable base extension).

3.9. Proposition. The continuous homomorphism \(\theta : G \rightarrow \gamma G \) induces an equivalence of toposes \(BG \rightarrow B\gamma G \).

Proof. (As usual, we freely use point-set language as everything is stable, and leave base extensions implicit.) Let \(E \) be an étale \(G \)-space, and let \(g: x \rightarrow y \) be a point of \(G \) (in a base extension). The action by \(g \) gives a map \(g^*: E_Y \rightarrow E_X \) which only depends on \(\theta(g) \). To see this, take \(e \in E_Y \) and a section \(a: U \rightarrow E \) through \(e \), where \(U \) is a neighborhood of \(y \). By continuity, there is a neighborhood \(W \subset G_1 \cap (d_0, d_1)^{-1}(U \times U) \) of \(s(U) \) such that for any \(h \in W \).

\[
\begin{align*}
a(d_1 h) \cdot h & \in a(U). \\
\end{align*}
\]

Let \(W' \) be the closure of \(W \) under inverse and composition. \(W' \) is an open \(U \)-congruence and for any \(h \in W' \), \(a(d_1 h) \cdot h \in a(U) \). So if \(g': x \rightarrow y \) is another point of \(G_1 \) such that \(\theta(g) = \theta(g') \), then \([g] = [g']\) in \(G_1 \cap d_1^{-1}(U)/W' \), and therefore there is (in some open surjective base extension) an \(h \in W' \) with \(hg = g' \). Then
\[
e \cdot g' = (e \cdot h) \cdot g = e \cdot g.
\]

On the other hand, the action \(\cdot : E \times G_0 \rightarrow E \) of \(G \) on \(E \) can be extended to an action \(\cdot : E \times G_0 \rightarrow E \) of \(\gamma G \) in an obvious way: if \((x, x', \alpha)\) is a point of \(\gamma G_1 \) (cf. 3.5). i.e. \(\alpha : ev_y \rightarrow ev_{x'} \), then for \(e \in E_\alpha \)
\[
\begin{align*}
e \cdot \theta(g) = e \cdot g \in E_\alpha,
\end{align*}
\]
Clearly \(e \cdot \theta(g) = e \cdot g \in E_\alpha \), so this indeed extends the action by \(G \) (which by the preceding can be recovered from the action of
1. MOERDIJK

\(\gamma G \). It remains to see that the extension is unique. To this end, it is easier to think of points of \(\gamma G_1 \) as given in the form \((x, y, \tilde{g})\) as in 3.5 (8). If \(e \in E_y \), take a section \(a : U \to E \) through \(e \); then \(e^*(x, y, \tilde{g}) \) is the limit in \(E_x \) of the sequence

\[
(a(d_v(g_{V,M})))^* \psi(g_{V,M}) \quad (V \text{ ranging over neighborhoods of } y \text{ contained in } U),
\]

by continuity of the action \(\ast : E \times_{G_0} \gamma G_1 \to E \). (3) eventually becomes constant, since \(E_x \) is discrete.) So \(\ast \) is completely determined by what it does on \(\gamma G \)-morphisms in the image of \(\psi \).

From this, the equivalence \(BG \cong B\gamma G \) is clear.

3.10. REMARK. If \(E \) is an étale \(G \)-space, the action \(E \times_{G_0} \gamma G_1 \to E \) is an open map, as pointed out in 1.1. It is easy to see that the extension \(E \times_{G_0} \gamma G_1 \to E \) described above is again an open map.

4. BISPACES.

In this section, \(G \) and \(H \) are continuous groupoids, with associated completions \(\gamma G \) and \(\gamma H \). We will discuss how certain spaces equipped with an action by \(\gamma G \), as well as one by \(\gamma H \), give rise to geometric morphisms \(BH \to BG \).

4.1. \(\gamma G \)-\(\gamma H \)-bispaces. A \(\gamma G \)-\(\gamma H \)-bispace is a space \(R \) equipped with an action of \(\gamma G \) on the left and one of \(\gamma H \) on the right, such that these commute; so there are maps \(\rho_G : R \to G_0 \), \(\rho_H : R \to H_0 \), and actions

\[
\ast : \gamma G_0 \times G \to R, \quad R \times H_0 \gamma H_1 \to R
\]
satisfying the usual unit- and associativity identities. When \(\gamma G \) and \(\gamma H \) are understood, we will just speak of bispaces.

If \(R \) and \(R' \) are two \(\gamma G \)-\(\gamma H \)-bispaces, a homomorphism \(f : R \to R' \) of bispaces is a continuous map of spaces which is both a map of \(\gamma G \)-spaces and one of \(\gamma H \)-spaces; i.e., \(f \) satisfies the usual identities

\[
\rho_G f(r) = \rho_G(r), \quad \rho_H f(r) = \rho_H(r), \quad f(\xi + r) = \xi + f(r) \quad \text{and} \quad f(r \cdot \eta) = f(r) \cdot \eta.
\]

This defines a category \((\gamma G \)-\(\gamma H \)-bispaces). A bispace \(R \) is called open if

(i) \(\rho_H : R \to H_0 \) is open:
(ii) both action maps \(\gamma \gamma_{G_1} \times G_0 \to R \) and \(\cdot_{H_0} \gamma_{H_1} \to R \) are open;
(iii) the diagonal action \(\mu: \gamma G_1 \times G_0 \gamma G_1 \times G_0 R \to R \times H_0 R \) defined by \(\mu(\xi, \xi', r) = (\xi \cdot r, \xi' \cdot r) \) is open
(so the pullback \(\gamma G_1 \times G_0 \gamma G_1 \) in (iii) is along \(d_0 \) on both sides).

4.2. Tensor products. If \(E \) is a \(\gamma G \)-space, with action \(\cdot: E \times G_0 \gamma G_1 \to E \), and \(R \) is a bispace as above, we may construct the tensor product \(E \otimes_{\gamma G} R \) as the coequalizer of spaces

\[
\begin{array}{ccc}
E \times G_0 \gamma G_1 \times G_0 R & \xrightarrow{E \times \cdot} & E \times G_0 R \\
\downarrow & & \downarrow \\
E \otimes_{\gamma G} R & \xrightarrow{\cdot \cdot R} & E \otimes_{\gamma G} R
\end{array}
\]

If \(E \otimes \cdot \) and \(\cdot \times R \) are open maps, the coequalizer (1) is stable ([8], Lemma 1.2), so in that case we can use change-of-base techniques and point-set arguments to investigate the structure of \(E \otimes_{\gamma G} R \). In particular, the right \(\gamma H \)-space structure of \(R \) can then be used to define a right action of \(\gamma H \) on \(E \otimes_{\gamma G} R \). So if \(R \) is open, (1) defines a functor

\[
\begin{array}{ccc}
\text{(open \(\gamma G \)-spaces)} & \xrightarrow{\cdot \gamma G} & \text{(open \(\gamma H \)-spaces)}
\end{array}
\]

where we call a \(\gamma G \)-space \(E \) open if the action \(E \otimes_{\gamma G} \gamma G_1 \to E \) is an open map.

If \(E \) is an \(\epsilon \text{tale} \) \(G \)-space, we define \(E \otimes_{\gamma G} R \) as the tensor product (1), where \(E \) is regarded as an open \(\gamma G \)-space by 3.9, 3.10.

4.3. **Lemma.** If \(R \) is an open bispace and \(E \) is an \(\epsilon \text{tale} \) \(G \)-space, then \(E \otimes_{\gamma G} R \) is an \(\epsilon \text{tale} \) \(\gamma H \)-space. So \(R \) defines a functor \(\cdot \gamma G R: BG \to BH \).

Proof. Since \(\cdot \gamma G R \) preserves colimits, it is enough to show that \(\cdot \gamma G R \) sends generators to \(\epsilon \text{tale} \) \(\gamma H \)-spaces (colimits in \(BG \) are computed just as colimits of \(G \)-spaces). Take a generator \(G_1 \cap d_1^{-1}(U)/N \) (cf. 1.3). Write \([U, N, s(U)] \) for the basic open (3.8) of \(\gamma G_1 \) given by the open set \(s(U) \subset G_1 \cap d_1^{-1}(U)/N \), where \(s: U \to G_1 \cap d_1^{-1}(U)/N \) is the section coming from the "identity" \(s: G_0 \to G_1 \). Let \(R_U = R \cap p_G^{-1}(U) \), and write \(R_U/[U, N, s(U)] \) for the quotient of \(R_U \) by the action of \([U, N, s(U)]: i.e.,
\[
\begin{array}{ccc}
[U, N, s(U)] \otimes_{\gamma G} R_U & \xrightarrow{\pi_2} & R_U \\
\downarrow & & \downarrow q \\
R_U/[U, N, s(U)]
\end{array}
\]

is a coequalizer. Clearly

\[
(G_1 \cap d_1^{-1}(U)/N) \otimes_{\gamma G} R \cong R_U/[U, N, s(U)]
\]

Now consider the following diagram, in which \(\mu \) is open by as-
sumption (cf. 4.1 (iii)). as is the quotient map \(q \) (by [8], Lemma 1.2), so the diagonal \(\Delta \) must be open.

Since \(\rho_H: R \to H_0 \) is open, it follows that \(\rho_H: R_U/[U,N,s(U)] \to H_0 \) is étale ([6], § V.5). This proves the lemma.

4.4. Left flat bispaces. A \(\gamma G, \gamma H \)-bispace \(R \) is called left-flat if \(R \) is open (4.1) and \(\otimes_{\gamma G} R \) preserves finite limits of étale \(G \)-spaces, i.e. (cf. 4.3) the functor \(\otimes_{\gamma G} R: B_G \to B_H \) is left-exact.

So a left-flat bispace \(R \) induces a geometric morphism \(g(R): B_H \to B_G \) given by

\[
g(R)^*(E) = E \otimes_{\gamma G} R.
\]

If \(R \) and \(R' \) are both left-flat bispaces and \(\gamma: R \to R' \) is a homomorphism of bispaces, then clearly we obtain a natural transformation \(\otimes_{\gamma G} R \to \otimes_{\gamma G} R' \), i.e., a 2-cell \(g(R) \to g(R') \). So if we write \(Flat(\gamma G, \gamma H) \) for the full subcategory of bispaces whose objects are left-flat, and \(Hom_S(B_H, B_G) \) for the category of geometric morphisms \(B_H \to B_G \) over the base topos \(S \), we obtain a functor \(g: Flat(\gamma G, \gamma H) \to Hom_S(B_H, B_G) \).

4.5. PROPOSITION. Let \(G, H, K \) be continuous groupoids, and let \(R \) be an open \(\gamma G, \gamma H \)-bispace, \(S \) an open \(\gamma H, \gamma K \)-bispace. Then

(i) \(R \otimes_{\gamma G} S \) is an open \(\gamma G, \gamma K \)-bispace,

(ii) for any open \(\gamma G \)-space \(E \), there is a canonical isomorphism

\[
(E \otimes_{\gamma G} R) \otimes_{\gamma H} S \cong E \otimes_{\gamma G} (R \otimes_{\gamma H} S).
\]

(iii) if \(R \) and \(S \) are left-flat, so is \(R \otimes_{\gamma H} S \).

PROOF. (i) Consider the diagram

\[
\begin{array}{ccc}
R \otimes_{\gamma H} S & \xrightarrow{q} & R \otimes_{\gamma H} S \\
\pi_2 \downarrow & & \downarrow \rho_{K} \\
R \otimes_{\gamma H} S & \xrightarrow{\pi_2} & S \\
\rho_H \downarrow & & \downarrow \rho_{K} \\
R & \xrightarrow{\rho_H} & H_0
\end{array}
\]
where q is a quotient map. Since ρ_H is open, so is π_2, and hence since ρ_K is open, $\rho_K\pi_2$ is open. Since q is a surjection, it follows that $R \otimes_{\gamma G} S \rightarrow K_0$ is open.

To see that the action γG on $R \otimes_{\gamma G} S$ is open, consider the diagram

\[
\begin{array}{cccc}
\gamma G_1 \times G_0 & R \times H_0 \times S & \times S & R \times H_0 \times S \\
\gamma G_1 \times q & & q \\
\gamma G_1 \times G_0 (R \otimes_{\gamma H} S) & & R \otimes_{\gamma H} S
\end{array}
\]

Since \times and q are open surjections, so are $q \cdot (\times \cdot S)$ and $\gamma G_1 \times q$. Hence

\[
\gamma G_1 \times G_0 (R \otimes_{\gamma H} S) \rightarrow R \otimes_{\gamma H} S
\]

is open.

The proof that the action $(R \otimes_{\gamma H} S)_K \gamma K_1 \rightarrow R \otimes_{\gamma H} S$ is open is similar.

Finally, we show that the diagonal action

\[
\mu: \gamma G_1 \times G_0 \gamma G_1 \times G_0 (R \otimes_{\gamma H} S) \rightarrow R \otimes_{\gamma H} S
\]

is open. Consider the diagram

\[
\begin{array}{cccc}
(R \times R) \times H_0 \times H_0 & (\gamma H_1 \times H_0 \gamma H_1) \times H_0 S & \psi & (R \cdot H_0 R) \times H_0 S \\
(R \times R \times \mu) & & \varphi & \varphi
\end{array}
\]

where in (1), μ is the diagonal of S (an open surjection by hypothesis). τ interchanges the second and third coordinates. $q: R \times H_0 \times S \rightarrow R \otimes_{\gamma H} S$ is the quotient map and φ. ψ are described in point-set notation by

\[
\psi(r, r', h, h', s) = (r \cdot h, r' \cdot h', s), \quad \varphi(r, r', s) = (r \otimes s, r' \otimes s).
\]

The diagram commutes (by the identity $r \cdot h \otimes s = r \otimes hs$ for points of $R \otimes_{\gamma H} S$). ψ is surjective (it splits), while $(R \times R \times \mu$ and $(q \times q) \cdot \tau$ are open surjections, so φ is an open surjection. Next, consider the following diagram where μ' is the diagonal action of R and μ that of $R \otimes_{\gamma H} S$.

- 155 -
Since \(\varphi \) and \(\mu' \) are open surjections, while \(q \) is a surjection, \(\mu \) must be an open surjection.

(iii) This follows from (i) and (ii).

5. BISPACES INDUCED BY GEOMETRIC MORPHISMS.

In this section we will prove our main result, namely that every geometric morphism comes from tensoring with a suitable bispace.

5.1. Construction of the functor \(R \). Let \(G \) and \(H \) be continuous groupoids, with completions \(\gamma_G \) and \(\gamma_H \) respectively, as discussed in §3, and let \(f: BH \to BG \) be a geometric morphism. The \textit{representation} \(R(f) \) of \(f \) as a bispace is the space defined by the lax fibered product

\[
\begin{array}{c}
\gamma_G \times G_0 \gamma_G \times G_0 (R \times H_0 S) \\
\downarrow \mu' \times s \\
R \times H_0 \times H_0 \times S \\
\downarrow \varphi \\
(R \otimes_{\gamma_H} S) \times K_0 (R \otimes_{\gamma_H} S)
\end{array}
\]

is stable if \(E \) is an open \(\gamma_G \)-space (as noted in 4.2): therefore one obtains some other coequalizers from it, and similarly for the coequalizer defining \(R \otimes_{\gamma_H} S \). These fit together in a 3×3 diagram, and the argument then proceeds as in [4] p. 60 (proof of the associativity of composition of profunctors).

Usually, we will just write \(\xi \) for the universal natural transfor-
The classifying topos of a continuous groupoid. II

The aim of this section is to show that $R(f)$ is an open $\gamma G\gamma H$-bispace, and that there is a natural isomorphism $-\otimes_{\gamma G} R(f) \approx f^*$ of functors $BG \rightarrow BH$.

5.2. Bispace structure of $R(f)$. We will show that $R(f)$ has a bispace structure given by an action of γG on the left and one of γH on the right. There are two possible approaches: one is to use the universal property of $R(f)$ (similarly to the approach in 3.1). Alternatively, one can use change-of-base techniques and work with points of $R(f)$; we shall follow the latter approach. It is clear from the definition that a point of $R(f)$ is given as a triple

\[(x, y, \sigma)\]

where $x \in G_0$ and $y \in H_0$ are points, and σ is a natural transformation

\[\sigma: ev_x \rightarrow ev_y \cdot f^*\]

(recall that $ev_x: BG \rightarrow S$ takes an étale G-space E to its fiber E_x over x).

In 3.5, we described points of γG_1 as triples (x, x', α) where $\alpha: ev_x \rightarrow ev_{x'}$. The action \cdot of γG on $R(f)$ on points is simply described by

\[(x, x', \alpha) \cdot (x, y, \sigma) = (x', y, \sigma \cdot (\beta \cdot f^*))\]

(3)

(4)

It is important to note that (3) and (4) apply to points of γG, γH and $R(f)$ defined over any base extension, since by stability of the construction involved, $p^*(R(f)) = R(p^*f)$, in analogy with 3.2. Therefore, using the familiar method of test-spaces and base-extensions, (3) and (4) can be applied to actually define the action maps μ and ν. From this point of view, it is clear that the bispace identities hold for μ and ν.

We remark that the construction of $R(f)$ is functorial in f: if $f, g: BH \rightarrow BG$ are two geometric morphisms, and $\tau: f^* \rightarrow g^*$ is a natural transformation, the universal property of $R(g)$ gives a unique continuous map $R(\tau): R(f) \rightarrow R(g)$ such that $\rho_G \cdot R(\tau) = \rho_G$.

- 157 -
\(\rho_H \cdot R(t) = \rho_H \), and

\[
\pi_G \pi_P f \pi_H \pi_P H \quad \xi(g) = \pi_G \pi_P H \quad g \pi_H \pi_P H.
\]

It is not difficult to check that \(R(t) \) is a homomorphism of bi-spaces.

Let us take a closer look at a point \((x,y,o^-)\) of \(R(f) \). Just as in 3.5, the natural transformation \(\sigma: ev_{\chi} \rightarrow ev_{\cdot} f^* \) is completely determined by its values \(\sigma \vert _d_{^1}^{-1}(U)/M(\{s\chi\}) \) of identities at generators — here \(U \) ranges over open neighborhoods of \(\chi \) and \(M \) over open \(U \)-congruences, as in 3.5. So a point \((\chi, y, o^-)\) of \(R(f) \) can alternatively be represented as a triple

\[
(\chi, y, \vec{r})
\]

where \(\vec{r} = \{r_{U,M}\} \) is a sequence of points

\[
r_{U,M} \in f^* (G_4 \cap d_1^{-1}(U)/M),
\]

coherent in the sense that for any \(U \leq U \) and \(M \leq M \), with associated map

\[
\delta: G_4 \cap d_1^{-1}(U)/M \rightarrow G_4 \cap d_1^{-1}(U)/M
\]

(cf. 1.4) we have

\[
f^* (\delta (r_{U',M'})) = r_{U,M}.
\]

In other words, the fiber \(R(f)(\chi, y) \) over the pair of points \(\chi \) of \(G_0 \), \(y \) of \(H_0 \) can be described as an inverse limit

\[
R(f)(\chi, y) \cong \lim_{\rightarrow} f^*(G_4 \cap d_1^{-1}(U)/M),
\]

Writing points of \(R(f) \) in the form (5), and points of \(\gamma_G \), \(\gamma_H \) in the form 3.5 (7), the actions \(\mu: R(f) \setminus H_0 \gamma H_1 \rightarrow R(f) \) (denoted by \(\cdot \)) and \(\nu: \gamma_G \cdot G_0 \rightarrow R(f) \) (denoted by \(\circ \)) can be described as follows: For \((\chi, y, \vec{r}) \in R(f)\), \((\chi, x, \vec{g}) \in \gamma G\) and \((y, \vec{h}) \in \gamma H\),

\[
(\chi, y, \vec{r}) \cdot (y, \vec{h}) = (\chi, x, \vec{g} \ast \vec{h})
\]

where for \(\chi \leq U \) and open \(U \)-congruence \(M \), \((\vec{r}, \vec{h}) \) is defined by

\[
(\vec{r}, \vec{h})_{U,M} = r_{U,M} \cdot (y, \vec{h}).
\]

the action on the right-hand side of (9) coming from the fact that \(f^*(G_4 \cap d_1^{-1}(U)/M) \in BH \) has a \(\gamma H \)-space structure by 3.9; for the action of \(\gamma G \), we have

\[
(\chi, x, \vec{g}) \circ (\chi, y, \vec{r}) = (\chi, y, \vec{g} \ast \vec{r})
\]

where for \(x \leq U' \) and open \(U' \)-congruence \(M' \), \((\vec{g}, \vec{r}) \) is defined by choosing a section

\[
b: U \rightarrow G_4 \cap d_1^{-1}(U'/M')
\]

with \(x \leq U \). \(b(x) = [g_{U,M}], \) and choosing \(M \) small enough for \(b \)
5.3 Points of $R(f)$. Analogously to 3.6, points of $R(f)$ may be defined in the following way. Let $x \in G_0$ and $y \in H_0$ be points, let $(V_i, M_i), i = 0, 1, 2, \ldots$ be a cofinal system at x (as in 3.6, so $(V_i)_i$ is a neighborhood basis at x, M_i is an open V_i-congruence, etc.), and let $U_0 \supseteq U_1 \supseteq \ldots$ be a neighborhood basis at y. A coherent system of sections $b_i : U_i \rightarrow f^+(G_i \cap d^{-1}_i(U_i)/M_i)$, coherent in the sense that each square
\[
\begin{array}{ccc}
U_{i+1} & \xrightarrow{b_{i+1}} & f^+(G_i \cap d^{-1}_i(U_{i+1})/M_{i+1}) \\
\downarrow & & \downarrow f^*(\tilde{s}) \\
U_i & \xrightarrow{b_i} & f^+(G_i \cap d^{-1}_i(U_i)/M_i)
\end{array}
\]

commutes, defines a point r of $R(f)(x, y)$ in the form 5.2 (5). If V is any open neighborhood of y and M any V-congruence, then for i large enough, $V_i \subseteq V$ and $s : V_i \rightarrow G_i \cap d^{-1}_i(V)/M$ induces a map $\tilde{s} : G_i \cap d^{-1}_i(U_i)/M_i \rightarrow G_i \cap d^{-1}_i(V)/M$, and we put $r_{V, M} = f^*(\tilde{s})(b_i(y))$.

5.4 Basic opens of $R(f)$. Analogously to 3.8, one can show that the space $R(f)$ is generated by opens of the form
\[
[U, M, B]
\]
where $U \subseteq G_0$ is open, $M \subseteq G_1$ is an open U-congruence, and B is an open subspace of the étale H-space $f^+(G_i \cap d^{-1}_i(U)/M)$. Writing points of $R(f)$ in the form 5.2 (5), $[U, M, B] \subseteq R(f)$ is defined as the subspace consisting of those points (in any base-extension) (x, y, \tilde{r}) such that $x \in U$ and $r_{U, M, B} \in B$. Suggestively, we put
\[
[U, M, B] = \{(x, y, \tilde{r}) \mid x \in U, r_{U, M, B} \in B\}.
\]
One can define a presentation of $R(f)$ by a preorder equipped with a stable covering system, completely analogous to 3.8, and details are left to the reader.

5.5 Theorem. Let be a geometric morphism. Then the associa-
ted bispace $R(f)$ is open, i.e. (see 4.1):

(i) $\rho_H: R(f) \to H_0$ is open.

(ii) Both actions $\gamma G_1 \times G_0 R(f) \to R(f)$ and $R(f) \times H_0 \gamma H_1 \to R(f)$ are open.

(iii) The diagonal action (also denoted by μ)

$$\mu: \gamma G_1 \times G_0 \gamma G_1 \times G_0 R(f) \to R(f) \times H_0 R(f)$$

is open.

Proof. (i) is a special case of 2.2. For the second part of (ii), i.e., openness of the action

$$(1) \quad \gamma G_1 \times G_0 R(f) \to R(f),$$

consider a basic open of the domain space, say

$$(2) \quad [U,M,B] \times H_0 [V,N,A]$$

where we may assume that B is the image of a section

$$(3) \quad b: V \to f^*(G_1 \cap d_1^{-1}(U)/M)$$

and A the image of a section

$$(4) \quad a: W \to H_1 \cap d_1^{-1}(V)/N.$$

moreover, we may assume that N is so small that b induces a map

$$(5) \quad \tilde{b}: H_1 \cap d_1^{-1}(V)/N \to f^*(G_1 \cap d_1^{-1}(U)/M).$$

We claim that the image of (2) under the action (1) is the basic open

$$(6) \quad [U,M,\tilde{b}(A)].$$

To prove this, take a point (x,z,\tilde{q}) of $[U,M,\tilde{b}(A)]$ (in any base-extension!). So

$$(7) \quad q_{U,M} = \tilde{b}(a(z)). \ z \in W, \ x \in U.$$

By going to a further open surjective base extension, we may choose a point $\xi: z \to z'$ of G_1 with $z' \notin V$ so that $[\xi] = a(z)$ in the space $H_1 \cap d_1^{-1}(V)/N$. Now let $\tilde{r} = \tilde{q} \cdot \theta(\xi^{-1})$. Then (x,z,\tilde{r}) is a point of $R(f)$. $(z,z',\theta(\xi))$ one of γH_1, and

$$(x,z',\tilde{r}) \cdot (z,z',\theta(\xi)) = (x,z,\tilde{q}).$$

Moreover clearly $(z,z',\theta(\xi)) \in [V,N,A]$. So it remains to show that

$$(x,z',\tilde{r}) \in [U,M,B].$$

By definition of the action of γH on $R(f)$, $r_{U,M} = (\tilde{q} \cdot \theta(\xi^{-1}))_{U,M}$ is constructed as follows: take a section

$$(c: W' \to f^*(G_1 \cap d_1^{-1}(U)/M) through q_{U,M}, \ i.e., \ c(z) = q_{U,M},$$

where W' is some neighborhood of z, and one extends to a map

$$(\bar{c}: H_1 \cap d_1^{-1}(W')/N' \to f^*(G_1 \cap d_1^{-1}(U)/M)$$

for small enough N': then
5.6. PROPOSITION. Let \(R(f) \) be as in 5.5. and let \(U \subseteq G_0 \) be an open subspace, with associated basic, open \([U,N,s(U)] \) (where \(s: U \to G_1 \cap d_1^{-1}(U)/N \)). Then the diagonal action defines an open surjection

\[
(1) \quad [U,N,s(U)] \times G_0 [U,N,s(U)] \times G_0 R(f) \to R(f) \times f^*(G_1 \cap d_1^{-1}(U)) R(f).
\]

PROOF. Consider a basic open in the domain of (1),

\[
(2) \quad [U_1,N_1,A_1] \times G_0 [U_2,N_2,A_2] \times G_0 [V,M,B]
\]

where \(A_1, A_2, B \) are so small that they can be written as images of sections of appropriate étale spaces, say \(A_i = \text{im}(a_i) \), \(B = \text{im}(b) \). where

\[
a_1: V \to G_1 \cap d_1^{-1}(U_1)/N_1, \quad a_2: V \to G_1 \cap d_1^{-1}(U_2)/N_2
\]

\[
b: W \to f^*(G_1 \cap d_1^{-1}(V)/M).
\]

By choosing \(V \) small enough in (2), we may assume that \(a_i \) is defined on \(V \); moreover by choosing \(M \) small enough, we may assume that the \(a_i \) define maps of \(G \)-spaces

\[
(3) \quad \tilde{a}_i: G_1 \cap d_1^{-1}(V)/M \to G_1 \cap d_1^{-1}(U_i)/N_i.
\]

We claim that the image of the basic open (2) in

\[
R(f) \times f^*(G_1 \cap d_1^{-1}(U)/N) R(f)
\]

is

\[
(4) \quad [U_1,N_1, f^*(\tilde{a}_1)(B)] \times H_0 [U_2,N_2, f^*(\tilde{a}_2)(B)]
\]

Clearly this is enough to prove the proposition.
First, assume $S=\text{Sets}$ and $G_j, H_j, R(f)$ are all countably presented (hence have enough points). Take a pair of points $(\chi_1, \tilde{p}_1), (\chi_2, \tilde{p}_2)$ in the open subspace (γ). So $\chi_j \in U_j$ and $(\tilde{p}_j \cap U_j, N_j) \in \mathcal{F}(\tilde{a}_j \cap \mathcal{B})$. We will define a new point $(\chi, \gamma, \tilde{r}) \in R(f)(\chi, \gamma)$ and morphisms

$$\chi_1 \tilde{g}_1 \chi_2 \tilde{g}_2$$

in γG such that

$$(\chi, \gamma, \tilde{r}) \in [V, M, B],$$

$$(\chi, \chi_j, \tilde{g}_j) \in [U_j, N_j, A_j],$$

$$(\chi, \chi_j, \tilde{g}_j, \gamma, \tilde{r}) = (\chi_j, \gamma, \tilde{p}_j)$$

where $j = 1, 2$.

Fix a neighborhood basis

$$W^0 \supset W^1 \supset \cdots$$

at $y \in H_0$, and fix a descending cofinal system at χ_j.

$$(U_j = U^0_j \supset U^1_j \supset \cdots, N_j = N_j^0 \supset N_j^1 \supset \cdots)$$

(as in 3.6, so $\{U^k_j\}_k$ is a basis at χ_j and N^k_j is an open U^k_j-congruence, etc.). Moreover, let B be a basis for G_0 and let for $B \in B$

$$U^0(B) \supset U^1(B) \supset \cdots$$

be an enumeration of the basic covers of B in a stable generating system. (G_0 is countably presented by assumption.) In (11), \supset means "is refined by". Finally, fix for each $B \in B$ a cofinal system of open B-congruences.

$$M^2(B) \supset M^1(B) \supset \cdots$$

We now construct by induction sequences

$$\{m^k\}_k, \{V^k\}_k, \{M^k\}_k, \{a^k_j\}_k, \{b^k\}_k (j = 1, 2)$$

where

(i) $\{V^k\}_k$ is a descending sequence of basic opens of G_0 (i.e., elements of B) defining a neighborhood base at some point $\chi \in G_0$.

(ii) for $j = 1, 2$, $\{a^k_j: V \hookrightarrow G^k_1 \cap d^{-1}(U^k_j)/N^k_j\}_k$ is a coherent system of sections.

(iii) M^k is an open V^k-congruence such that $\{(V^k, M^k)\}_k$ is a cofinal system at χ, and M^k is so small that a^k_j defines a map

$$\tilde{a}^k_j: G^k_1 \cap d^{-1}(V^k)/M^k - G^k_1 \cap d^{-1}(U^k_j)/N^k_j.$$

(iv) $m_0 < m_1 < \cdots$ is a strictly increasing sequence of natural numbers, and

$$\{b^k: W^m \supset f^*(G^k_1 \cap d^{-1}(V^k)/M^k)\}_k$$

- 162 -
is a coherent system of sections, and

\[(v) \quad f^*(\tilde{a}_j^k)(b_k(y)) = (p_j^k)_{U_j^{k,N_j^k}}.\]

Then by 3.6. 5.3, \(\{b_k\}_k\) defines a point \((x, \tilde{r})\) of \(R(f)(x, y)\) with

\[\rho^k \cdot M^k = b_k(y) \in f^*(G_1 \cap d_1^{-1}(V^k)/M^k),\]

and \(\{a_j^k\}_k\) defines a point \((x, x_j, \tilde{r}_j)\) of \(\gamma G\) with

\[\{(g_j)_{U_j^{k,N_j^k}}\} = a_j^k(x).\]

and \(v\) implies that (8) holds. (6) and (7) are obvious from the initial step of the construction, being the following: Since the pair \((x_1, \tilde{r}_1), (x_2, \tilde{r}_2)\) is in the open (4), we have

\[f^*(\tilde{a}_j)(b(y)) = (p_j^k)_{U_j^{k,N_j^k}} \text{ so we take (assuming that } V \in \mathcal{B}, \text{ which one can do without loss of generality)}\]

\[V^0 = V, M^0 = M, b^0 = b, a_j^0 = a_j.\]

Now we suppose the sequences are defined up to \(k\). For the next step, we first use flatness of \(f^*\) to construct a diagram in \(S(G)\) (cf. 1.3-1.5) of the form

\[
\begin{array}{ccc}
G_1 \cap d_1^{-1}(U_1^{k+1})/N_1^{k+1} & \xrightarrow{\gamma_1} & S_1 \\
\beta_1 & & \delta_1 \\
G_1 \cap d_1^{-1}(U_1^k)/N_1^k & \xrightarrow{\sigma} & S_3 \\
\beta_2 & & \delta_2 \\
G_1 \cap d_1^{-1}(U_2^k)/N_2^k & \xrightarrow{\gamma_2} & G_1 \cap d_1^{-1}(U_1^k)/N_1^k \\
\end{array}
\]

as follows: since

\[\tilde{s}((p_1^k)_{U_1^{k+1}, N_1^{k+1}}) = (p_j^k)_{U_j^{k,N_j^k}} = \tilde{a}_j^k(b^k(y)).\]

there are elements \(S_j\) of \(S(G)\) and maps

\[
G_1 \cap d_1^{-1}(V^k)/M^k \xrightarrow{\delta_j} S_j \xrightarrow{\gamma_j} G_1 \cap d_1^{-1}(U_j^{k+1})/N_j^{k+1}
\]

and an element \(\xi_j \in f^*(S_j)\) such that

\[\tilde{s} \circ \gamma_j = \tilde{a}_j \circ \delta_j, \quad f^*(\gamma_j)(\xi_j) = (p_j^k)_{U_j^{k,N_j^k}}, \quad f^*(\gamma_j)(\xi_j) = b^k(y).\]

Again by flatness of \(f^*\), there are an object \(S_3\) of \(S(G)\), maps
\[\beta_j : S_3 \to S_j \] and a point $\zeta \in f^*(S_j)$ such that
\[\delta_1 \beta_1 = \gamma_2 \beta_2, \quad f^*(\beta_j)(\zeta) = \xi_j \quad (j = 1, 2). \]

By 1.5, there exist a $V' \supseteq V^{k'}$, an $M' \subseteq M^k$, and a map $\alpha : G_j \cap d_1^{-1}(V')/M' \to S_3$ in $\mathbf{S}(G)$ such that $\delta_1 \beta_1 = \delta_2 \beta_2$ is induced by the "identity section" $s : V' \to G_j \cap d_1^{-1}(V^{k')}/M^k$ and such that ζ is in the image of α, say $\zeta = \alpha(\zeta')$.

Now let $V^{k+1} \subseteq V^k$ be an element of a common refinement of the covers $U^k(V^k), \ldots, U^k(V^0)$ such that
\[\zeta' \in f^*(G_j \cap d_1^{-1}(V^{k+1})/M^k(V^{k+1})). \]
such a V^{k+1} exists since $U^k(V^k), U^k(V^{k-1}), \ldots, U^k(V^0)$ all cover V^k. So writing
\[V = U^k(V^k) \cap U^k(V^{k-1}) \cap \cdots \cap U^k(V^0) \]
for their common refinement, $\{f^*(G_j \cap d_1^{-1}(V^k)/M^k(V^k))\}_{V \subseteq V}$ is a cover of $f^*(G_j \cap d_1^{-1}(V^k)/M^k)$. Next, let
\[M^{k+1} = M^k(V^k) \cap M^k(V^{k-1}) \cap \cdots \cap M^k(V^0) \]
and let ζ'' be an element of $f^*(G_j \cap d_1^{-1}(V^{k+1})/M^{k+1})$ projecting to ζ', i.e., $f^*(s(\zeta'')) = \zeta'$.

We are now ready to define the next stage of the sequences: let m_{k+1} be so large that there is a section
\[b_{k+1} : W \cap d_1^{-1}(V^{k+1})/M^{k+1} \]
through ζ'', i.e., $b_{k+1}(\cdot) = \zeta''$. And let $a_{k+1}^{k+1} : V^{k+1} \to G_j \cap d_1^{-1}(V^k)/M^k$ be a section such that $\gamma_j : \beta_j : \alpha = \delta_j^{k+1}$. By choosing m_{k+1} large enough, these are compatible with earlier defined b^k and a^k_j. This completes the description of the induction step.

Now consider $F = \{O \in \mathbf{B} \mid \exists k : V^k \subseteq O\}$. If $O \in F$ and $\{O_j\}_j$ is a basic cover (in the presentation \mathbf{B}) of O, then there is a k with $V^k \subseteq O$ and a k' with $U^{k'}(V^k) \subseteq (O_j \cap V^k)$. Thus $V^{\max(k, k')} \subseteq \text{some } O_j$. This shows that F defines a point α of G_0 such that (V^k) is a neighborhood basis at α, i.e., (i) holds. Moreover, it is clear from the construction that (ii)-(v) hold.

This completes the proof of 5.6 in case $G, H, R(f)$ are all countably presented, and $S = \text{Sets}$. In the general case, one can pass to an open surjective base extension $E \to S$ where all enumerations that we have used ((9)-(12)) exist, by [9], Lemma B.

One then builds a tree of finite initial segments of the sequences $\{m_k\}, \{V^k\}, \{M^k\}, \{a^k_j\}, \{b^k\}$ satisfying (i)-(v), and proves that the tree has an infinite path in a further open surjective base extension $E' \to E$, by [9], Lemma C.

This completes the proof of 5.6.
6. EQUIVALENCE BETWEEN TOPOSES AND GROUPOIDS.

In this section, we will show how the results of Sections 4 and 5 give an equivalence of bicategories between toposes and groupoids.

Let G and H be continuous groupoids. As before, we write $\text{Hom}_S(BH, BG)$ for the category whose objects are geometric morphisms $f : BH \to BG$ over S, and whose morphisms $f \to f'$ are natural transformations $f^* \to f'^*$ over S. Moreover $\text{Flat}(\gamma G, \gamma H)$ denotes the category of left-flat $\gamma G - \gamma H$-bispaces and homomorphisms of bispaces. So there are functors

$$\text{Flat}(\gamma G, \gamma H) \xrightarrow{\text{g}} \text{Hom}_S(BH, BG)$$

defined by

$$g(R)^* = - \otimes G R, \text{Sh}(R(f)) = \text{Sh}(G_0)^{\sim} BG \text{Sh}(H_0)$$

as discussed in 4.4. 5.1. 5.2.

6.1. THEOREM. Let G and H be continuous groupoids. with induced functors

$$\text{Flat}(\gamma G, \gamma H) \xrightarrow{\text{g}} \text{Hom}_S(BH, BG).$$

Then R is fully faithful and right-adjoint to g.

PROOF. Recall that $g(T)^* = - \otimes G T$ while

$$R(f)_{x,y} = \text{lim}_{y \in U, M} f^*(G_1 \cap d^{-1}_1(U) / M)_{y}.$$

(cf. 5.2 (7)). We define the counit and unit of the adjunction, where by stability it is enough to work with points (in some unspecified base-extension). The unit $\eta = \eta_T : T \to Rg(T)$ is defined by taking as fiber $\eta_{x,y}$ over $x \in G_0, y \in H_0$ the map $\eta_{x,y}(t) = (x,y, ([s(x)]_{U,M} \otimes t))$ where $[s(x)]_{U,M}$ denotes the class of $s(x)$ in $G_1 \cap d^{-1}_1(U) / M$: so

$$([s(x)] \otimes t) \in \lim_{U,M} f^*(G_1 \cap d^{-1}_1(U) / M \otimes G T) = Rg(T)_{x,y}.$$

The counit $\epsilon = \epsilon_F : - \otimes G R(f) \to f^*(-)$ has components at generators $G_1 \cap d^{-1}_1(U) / M$.

$$\epsilon_{U,M}(F : x \to x') \otimes (x,y,F) = (\theta(g), \theta)_{U,M}.$$

It is trivial to check that the triangular identities

$$\epsilon_{g(T), g(T^*)} = \text{id}_{g(T)} \quad \text{and} \quad R(\epsilon_F) \cdot R(\eta_T) = \text{id}_{R(\epsilon)}$$

hold (it is enough to check this on points, by stability and base extension). So $g \dashv R$.

We now prove that x is an isomorphism. Again, by stabi-
lity it is enough to show that x is 1-1 on points, and that for any point r in $f^*(G_1 \cap d_1^{-1}(U)/M)$ there exists a point $\xi \in (G_1 \cap d_1^{-1}(U)/M)\otimes_{\gamma G} R(f)$ in some surjective base extension which is mapped to r by x.

To see that x is 1-1 on points, suppose that $\xi, \eta \in G_0$ have the same image under x, i.e.

$$\gamma(\xi) \otimes (\xi_1, \ldots, \xi_n) = \gamma(\eta) \otimes (\eta_1, \ldots, \eta_n)$$

Then for $j = 1, 2,$

$$\gamma(\xi_j) \otimes (\xi_j, \ldots, \xi_n) = \gamma(\eta_j) \otimes (\eta_j, \ldots, \eta_n)$$

(since $\gamma_j \in [\mu M, S(\mu)]$). So $\gamma(\xi_j) \otimes (\xi_j, \ldots, \xi_n) = \gamma(\eta_j) \otimes (\eta_j, \ldots, \eta_n)$.

To see that x is "onto", let $r \in f^*(G_1 \cap d_1^{-1}(U)/M)$. This is an étale space over H_0, by π say, so we get a point $y = \pi(r) \in H_0$ over which r lies. The problem is to find a point $\eta \in G_0$. By going to an open surjective base extension, we may assume that G is countably presented. Let B be a basis for G_0, and let for every open basic $B \in B$, $U^0(B) \supset U^1(B) \supset \cdots$ be an enumeration of the covers in some stable generating system for G_0; and let for each B, $M^0(B) \supset M^1(B) \supset \cdots$ be a cofinal system of B-congruences, just like in the proof of 5.6. We may assume that $U \in B$ and $M = M^0(U)$. Pick $U_0 \in U^0(U)$ such that $r \in f^*(G_1 \cap d_1^{-1}(U)/M)$. Then U_0 exists since $U_0(U)$ is a cover of U and therefore

$$(f^*(\xi) : f^*(G_1 \cap d_1^{-1}(W)/(M|W)) \to f^*(G_1 \cap d_1^{-1}(U)/M))_{U \in U_0(U)}$$

is an epimorphic family. Let $M_0 = M^0(U) \cap M^0(U_0)$, then ξ induces a projection

$$\pi : f^*(G_1 \cap d_1^{-1}(U_0)/M_0) \to f^*(G_1 \cap d_1^{-1}(U_0)/(M|U_0))$$

so there is an $r_0 \in f^*(G_1 \cap d_1^{-1}(U_0)/M_0)$ such that $\pi(r_0) = r$.

Proceeding in this way, we can construct an open surjective base extension (cf. [9], Lemma C) in which there are sequences $(U_k)_k$ and $(r_k)_k$ with

$$U_0 \in U^0(U), U_1 \in U^1(U) \cap U^1(U_0), \ldots, U_k \in U^k(U) \cap \cdots \cap U^k(U_{k-1})$$

and

$$r_k \in f^*(G_1 \cap d_1^{-1}(U_k)/M_k),$$

where

$$M_k = M^k(U_k) \cap \cdots \cap M^k(U_0) \cap M^k(U),$$

such that the projection

$$f^*(\xi) : f^*(G_1 \cap d_1^{-1}(U_k)/M_k) \to f^*(G_1 \cap d_1^{-1}(U_{k-1})/M_{k-1})$$

- 166 -
maps r_k to r_{k-1}. Put $F = \{ V \in \mathcal{G}_0 \mid \exists k : U_k \subseteq V \}$. F is closed under \cap, and if a cover $\bigvee V_j$ is in F, then some V_j must be in F, as is clear from the construction. So F defines a point χ by

$$\chi \in V \Rightarrow \exists k \ (U_k \subseteq V).$$

Moreover by construction, $\{(U_k,M_k)\}_{k}$ is a cofinal system at χ (cf. 3.6), so that (5.3)

$$R(f)_{X,Y} \approx \lim_k f^*(G_1 \cap d^{-1}_1(U_k)/M_k)_y,$$

and hence $(\chi,y,\{r_k\}_k)$ defines a point of $R(f)$ such that $\chi([s(x)]) \otimes (\chi,y,\{r_k\}_k) = r$.

This completes the proof of 6.1.

6.2 COROLLARY. Let G and H be continuous groupoids. Then every geometric morphism $f : BH \to BG$ comes from tensoring by a flat $\gamma G-\gamma H$-bispace: namely, there is a natural isomorphism:

$$f^*(E) \to E \otimes \gamma G R(f).$$

6.3. Complete bispaces. Call a flat $\gamma G-\gamma H$-bispace T complete if $\eta : T \to R\gamma T$ is an isomorphism, i.e., if

$$T_{\chi,y} \approx \lim_{U,M} f^*(G_1 \cap d^{-1}_1(U)/M) \otimes \gamma GT,$$

where U ranges over neighborhoods of χ and M over open U-congruences. We write $CFlat(\gamma G, \gamma H)$ for those flat bispaces which are complete.

By 6.1, there is an equivalence of categories

(1) $CFlat(\gamma G, \gamma H) \cong \text{Hom}_S(BH,BG)$

and every flat $\gamma G-\gamma H$-bispace T has a completion $\hat{T} = R\gamma T$.

The complete bispaces give rise to a bicategory (cf. [1]) (Groupoids) whose objects are continuous groupoids (with open domain and codomain maps d_0 and d_1), whose 1-cells $H \to G$ are complete flat $\gamma G-\gamma H$-bispaces, and whose 2-cells are homomorphisms of bispaces. The composition of 1-cells is given by the completion of the tensor product: if

$$K \to T \to H \to S \to G$$

i.e., T is a complete flat $\gamma H-\gamma G$-bispace and S is a complete flat $\gamma G-\gamma H$-bispace, then $S \cdot T = S \otimes \gamma GT$. The functors

$$g : CFlat(\gamma G, \gamma H) \to \text{Hom}_S(BH,BG)$$

then define a homomorphism of bicategories

(2) (Groupoids) \to (Toposes)
given on objects by the classifying topos construction \(G \vdash \text{BG} \) of Section 1. That this is a homomorphism follows from 4.5, which obviously gives
\[
g(S \cdot T)^* = g(S \otimes_{\gamma \text{H}} T)^* \approx g(T)^* \cdot g(S)^* = (g(S) \cdot g(T))^*.
\]
This homomorphism of bicategories (2) is essentially surjective on objects, by [6], §VIII.3, and an equivalence on Hom-categories, cf. (1) above. So we conclude

6.4. COROLLARY. The homomorphism \((\text{Groupoids}) \rightarrow (\text{Toposes}) \) is an equivalence of bicategories.

This result is valid over any base topos.

REFERENCES.