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Toposes  and  G r o u p o i d s  

IEKE MOERDIJK* 

Department of Mathematics 
University of Chicago 

The aim of this paper is to explain to what extent the category of 
Grothendieck toposes can be described in terms of groupoids (in the cate- 
gory of locales). In the first section, I describe how every groupoid G gives 

rise to a topos BG, and in section 2, I discuss some of the functorial proper- 
ties of this constrution G ~ BG. After having introduced two completeness 
properties of groupoids, we will see that toposes can be obtained by localizing 
groupoids (§4) or by considering geometric morphisms as obtained by tensor- 
ing with something analogous to a bimodule (§5). In section 6 I briefly discuss 
the fundamental group of a topos. 

This paper provides a summary of my earlier papers [M2], [M3], [M4]. Since 
the proofs given there are often long and technical, and involve extensive use 
of change-of-base methods, I believe it is worthwhile to present these results 
all together in a more directly accessible way, and save the reader from being 
distracted by perhaps less digestible technicalities. 

1. Equlvariant sheaves.  
We will be concerned with groupoids in the category of spaces (i.e., locales), 

briefly called continuous groupoids. If G is such a continuous groupoid, we 
write Go (resp.G1) for the space of objects (morphisms) of G, do for the domain, 
dl for the codomain, m for composition and s for the map associating the 
identity-morphism to a given object. So G is given as a diagram of locales 

7r 0 d o ----.-+ 

a 1 X a l  r a  G 1  ( s G 0  
V 0 7ri d 1 _._._.+ 

having the usual properties. In the particular case where Go = 1, we have a 
group-object in locales, or a continuous group. A homoraorphisra of groupoids 

G ~ H consists of two continuous maps Go ~ H0 and G1 HI satisfying 
the usual identities. A groupoid G is called open if do and dl : G1 --~ Go 

*Research supported by a Huygensfellowship of the Z.W.O. 
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are bo th  open maps  (this implies tha t  m is open as well). In this paper, all 

groupoids are assumed to be open. 

If G is a cont inuous  groupoid,  a G-space is a space E over Go equipped  

wi th  a (contravar iant)  act ion of G on the right; i.e., there  are maps  E P--* Go 

and  E × G1 _L~ E satisfying the  usual  condit ions.  (Ra ther  t han  expressing 
Go 

these by c o m m u t a t i v e  diagrams,  we just  write the  equat ions in set- theoret ic  

language; so the  domain  of the  action m a p  E × G1 -~ E is the  set of pairs 
Go 

(e,g) with dig = p(e), and  the  equat ions are p(e . g) = dog, e . s(p(e)) = e, 
( e . g ) . h = . (g  o h)  w h e r e  g o h = r e (g ,  h ). ) A morp ism of  a-spaces E Z' 
is a m a p  of spaces (locales) over Go which preserves the  action. This  defines 

a category (G-spaces). 

A G-space E is open if its projec t ion E P--* Go is an open map;  this implies 

tha t  the  act ion E × G1 -:-* E is open (recall tha t  G is assumed to be an open 
Go 

groupoid) .  

A G-space is called dtale if E p Go is a local homeomorph i sm.  This  means  

tha t  E is a sheaf on Go, such tha t  the morph i sms  of G act on the  fibers of E: 
g 

if x ---* y is a point  of G1, the  action defines a m a p  

g* : Ey--~ E~, g * ( e ) = e . g  

1.1 PROPOSITION. The category of dtale G-spaces or equivariant G-sheaves, 

is a Grothendieck topos. 

This  topos is deno ted  by BG,  and called the  classifying topos of G. 

We remark  tha t  the  definit ion of the  topos B G  also makes  sense if G is just  

a continuous category (a category object  in locales -- spaces), r a ther  than  a 

groupoid.  

Let me  give some examples.  

(1) The  easiest case is where G is an abstract  group (Go = 1 and G1 is a 

discrete space). The  topos B G  is then  s imply the  category of G-sets; i.e., 

objects  are sets X equipped  with an action X × G _L~ X ,  and morph i sms  are 

funct ions  which preserve the  action. Simple as they are, these toposes arises 

na tura l ly  in m a n y  contexts.  B G  is a K(G,  1)-topos, and  it classifies G-torsors,  

so (wri t ing [-,-] for i somorphism classes of geometr ic  morph i sms)  
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(see [JW]).  Moreover for any abstract  group, G is an atomic topos [BD]. 

(2) If G is a topological group, BG is the category of continuous G-sets, i.e., 

sets X equipped with an action X x G 2-*X which is continuous if X is given 
the discrete topology. Continuity of the action is equivalent to the requirement 

tha t  all stabilizer subgroups 

{geVlx .9=x}  

are open. For a topological group G, BG is still an atomic topos, since one can 

simply write a given continuous G-set X as the sum of its orbits: for x E X,  

the orbit O(z) = {x .g  I g E G} is the smallest subobject  of X containing x. 

If U C G is an open subgroup, the set of right cosets G/U is an object of BG, 
and clearly 

O(x) a/s  
as objects of BG. Consequently, the full subcategory of objects of the form 
G/U (U an open subgroup of G) equipped with the atomic Grothendieck 

topology (all maps are covers) is a site for BG. 
Toposes of continuous G-sets form the natura l  setting for so-called 

permuta t ion-models  in set-theory ([Fo], [Fr]). On the other  hand,  it is hard  
to say what  a topos BG classifies, for a general topological group G. This 

is related to the fact that  many different topological[ groups G determine the 

same topos BG; see [M3], and section 6 below. 
(3) Let G be a profinite topological group, with a fundamenta l  system of 

open normal  subgroups {Ui}. So Gi = G/Ui is a finite group and G = lim Gi 
( 

is a filtered inverse limit of finite groups and surjections. An object X of BG, 
i.e., a continuous G-set, can be wri t ten as a union 

X = U X i  

where Xi is a Gi-set, and the actions of Gi on Xi for the different i satisfy an 

obvious compabil i ty requirement:  simply let Xi = {x E X I S~ D_ Ui}. 
The cohomology of BG is precisely the Galois cohomology of G: 

* G H*(BG, A) H G ~ I ( , A )  

for any (discrete) G-module A (see [S]), and BG is still a K(G,  1)-topos, i.e., 

the profinite fundamenta l  group of BG is G, and the other homotopy groups 

vanish (see e.g. [AM]). 
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(4) More generally, if G__ = {Gi}i is a filtered inverse system of discrete groups 
and surjective homomorphisms (Grothendieck calls this a strict progroup), one 
may consider sets X which can be writ ten as a union X = U Xi of compatible 
ai-sets X~, just like in the preceding example (see [SGA4,  p. 319]). Such 
sets X again form a topos BG, which is still a K(7r, 1)-topos if one interprets 
the fundamental  group as a progroup [AM]. BG__ is an example of a topos 
of equivariant sheaves: although the inverse limit lim Gi may be trivial as a 
topological group, it is not so when one computes the inverse limit 

G = lira Gi 
t - ------  

in the category of locales. One thus obtains a prodiscrete continuous group G, 
and BG is the same as BG__; in fact 

B G =  B(li_m ai) -limBGi, = BG. 

(This example is discussed in detail in [M4]; see also section 6 below.) 
(5) A well-known particular case of (2) above is the Schanuel topos 

B(Aut(N)), where Aut(N) is the group of permutat ions of the natural  num- 
bers with the usual (product) topology. If you compute a site for the Schanuel 
topos consisting of coset-objects A u t ( N ) / g  for U a (basic) open subgroup, you 
will find that  the Schanuel topos is precisely sheaves on (the opposite category 
of) the category of finite sets and monomorphisms, equipped with the atomic 
topology. 

One may also put all finite sets and inclusions together, and look at the 
topological monoid Mono(N) of monomorphisms N ~ N. Let B(Mono(N))  
be the topos of sets equipped with a continuous action of Mono(N). It is an 
instructive exercise to verify that  the inclusion Aut(N) ~-~ Mono(N) induces 
an equivalence 

B(Aut(N))  ~_ B(Mono(N)).  

This is an instance of a general phenomenon,  discussed in §3 below. 
B(Aut(N))  classifies the notion of an infinite decidable set. From the point 

of view of homotopy and cohomology however, nothing like the situation in 
(3) and (4) holds, since B(Aut(N))  is contractible (see [JW]).  

(6) Naturally, if X is a space, 

Sh(X) = BX,  
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where on the  right,  X s tands  for the  trivial g roupoid  whose only morph i sms  

are identit ies.  More generally, if G is a topological group acting as a group 

of t rans format ions  on a topological  space X,  by X x G _2+ X say, one can 

cons t ruc t  a topological  g roupoid  

xa=(x×a  ~ x )  
7rl 

i.e., X is the  space of objects  of X a ,  X x G the  space of morphisms ,  and  

do(x,  g) = x . g, d l ( x ,  g) = z ,  etc. T h e n  B X a  is precisely the  topos of sheaves 

E on X equipped  with an action by the group G which lifts the original action 

of G on X,  i.e., 

commutes .  

E x G  ~ E 

1 1 
X x G  ~ X 

(7) Let M be a foliated manifold,  and  let Hol(M) be the  ho lonomy groupoid  

of M:  its space of objects  is M,  and a m o r p h i s m  from x to y in this g roupoid  

is a h o m o t o p y  class of pa ths  I ~) L, where L C M is the  leaf o f x  a n d y  

(if x and y are on different leaves, there are no morph i sms  from x to g). This  

set has the  s t ruc ture  of a manifold,  so Hol(M) is a cont inuous  (differentiable) 

groupoid.  B H o l ( M )  is the  category of sheaves on M which are locally cons tant  

on each leaf. 

(8) An 6 tendue  is a topos $ such tha t  for some cover B --~ I in g, g / B  is 

equivalent  to Sh(G0) for some space Go. The  d iagram 

(1) B x B x B  ~ B x B  ~ B 

is a (trivial) g roupoid  in £, and gives rise to a cont inuous  groupoid  

do 
(2) G = ( a l  =~ Go) 

dl 

where Sh(G1) = Sh(a0) ~ Sh(a0) = C/(B x B); i . e . ,  the functor X ~-~ Sh(X) 

f rom spaces (locales) to toposes sends this groupoid  (2) to the  groupoid  

e / (B × B × B) ~ e/(B × B) =, e /B  
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obtained from (1) by slicing. Thus, an object of B G  is an object E ~ B of 

E / B ,  equipped with an isomorphism 0 : E x B -+ B x E over B x B, which 

can be described in set-theoretic notat ion (using the internal  logic of E!) as 

follows: for points bl, b2 of B there is an isomorphism 

e ~  

Obl,b 2 : p - l (b l )  ~ p-l(b2) 

such that  

(3) Ob, b = id, Ob2,b 3 0 0 b l , b  2 ~- Obl,b 3. 

But then clearly E ~ B is just  a projection: let E l  ~ be the quotient of 

E obtained by identifying e with Op(a),b(e ) for any e E E and b C B. Then,  

writ ing [e] for the equivalence class of e in E~ ~ ,  the map 

E L ( E / ~ )  × B, = 

is an isomorphism, with (well-defined, by (3)) inverse map ¢ defined by 

0([e],b) = Op(e),b(e). Thus,  we obtain an equivalence 

B G ~ _ E .  

(Notice that  G is a groupoid whose domain and codomain maps are local 

homeomorphisms.)  
The si tuation described in (8) is discussed in SGA4, expos6 IV. The equiva- 

lence B G  ~_ E is a very simple case of a result due to A. Joyal and M. Tierney, 

which asserts that  any topos is of the form BG: 

2.1 REPRESENTATION THEOREM. ([JT]) For any Grothendieck topos E there 
exists an open continuous groupoid G such that $ is equivalent to BG.  

2. Basic Propert ies .  
In this section I will describe some of the elementary functorial properties. 

Detailed proofs of the results in this section can be found in [M2,I,§4-6]. 

First of all, the construction of the topos B G  can be performed over any 
base topos. More precisely, if £ is a topos and G is a continuous groupoid in 
$, one may  consider 6tale G-spaces inside $; these form a topos B(3 ,  G) over 

$, and we write 

B(E, G) '-L E 
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for the canonical geometric morphism. A most important fact is that one can 
use change-of-base methods in the context of toposes of the form B($, G), 
since this construction is stable: 

2.1 STABILITY THEOREM. Let F I_~ $ be a geometric morphism, and let G be 

a continuous groupoid in $. Then f # ( G )  is a continuous groupoid in Y:, and 

there is a canonical equivalence 

B ( F , f # G )  ~_ Y: x B(g ,  G). 
£ 

In this theorem, f #  denotes the pullback functor from spaces in C to spaces 
in ~-. 

In what follows, we fix an arbitrary base topos S, and just write B G  for 
B ( S ,  G). Some basic properties of the topos B G  follow from properties of G; 

e.g. 

2.2 PROPOSITION. Let G be a continuous groupoid in the base topos 8.  

(1) I f  Go is an open space, then B G  Z S is open. 

(2) I f  Go is locally connected and do,dl : G1 =f; Go are both open, then 

B G  ~ S is locally connected. 
( d0 ,d l )  

(3) I f  Go is an open space and G1 ~ Go x Go is an open map, then 

B G  ~ S is atomic. 

(For open maps, see [J2], [JT]; for locally connected maps see [BP], [M1, 
Appendix]; for atomic maps see [BD].) To prove 2.2, one may use properties 
of the projection map 

7r G 
Sh(G0)-----~ B G  

whose inverse 7r~ is the forgetful functor. Here we have 

~rG 
2.3 PROPOSITION. (1) I f  do,d1 : G1 =2; Go are both open, so is Sh(Go) ---~ 

B G .  
7r G 

(2) I f  do, dl are both locally connected, so is Sh(Go) ---* BG.  
~r G 

(3) I f  do,d1 : G1 ==3 Go are both local homeomorphisms, then Sh(Go) ---~ B G  

is atomic. 

One can apply 2.2 to get sharper forms of the representation Theorem 1.2 

(2.4(4) appears in SGA4,1oc. cit). 
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2.4 COROLLARY. Let E be a topos over S. Then 

(1) E ~ S is open if and only if $ ~_ BG for some continuous groupoid with 

G1 ::~ Go -+ 1 all open maps. 
(2) e --, a is (connected) locally connected if and only if e ~_ BG for a 

continuous groupoid with G1 =3 Go ---* 1 all (connected) locally connected 

maps. 

(3) E ~ S is (connected) atomic if and only if E ~_ B G  for a continuous 
(do,d1) 

groupoid G with Go --~ 1 open (and surjective) and G1 ~ Go × Go 

open (and surjective). 
(4) E is an dtendue if and only if E "~ BG for a groupoid G with both 

G1 ==t Go local homeomorphisms. 

The construction is functorial in G: if G ~ H is a continuous homomor- 

phism, the pullback of an 4tale H-space E f~ H0 along Go ~0 H0 has an 
obvious induced action by G, and this gives the inverse image of a geometric 
morphism 

B(~)  : BG --* BH.  

G ~ H is called open if both Go H0 and G1 H1 are open maps. More- 
over, imitat ing the usual categorical notions, ¢p is called essentially surjective 

dlTr2 
if Go x Hi  ~ H0 is an open surjection, full if G1 --+ H1 × (Go × Go) 

Ho (HoxH0) 
is an open surjection, and fully faithful if 

G1 ~ H1 

1 1 
Go x Go ) Ho x Ho 

is a pullback; ~ is an essential equivalence if ~ is open, fully faithful and 

essentially surjective. 
The basic properties are 

2.5 THEOREM. Let Bqo : BG ---* B H  be the geometric morphism induced by a 

continuous homomorphism G ~-~ H. 

(1) I f  cpo is open, B~2 is open. 
(2) I f  ~p is essentially surjective then B ~  is surjective. 
(3) I f  ~p is essentially surjective and full, then B ~  is connected. 

(4) y is open and full, then is atomic. 
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(5) 
And  

(6) 

(7) 

I f  ~ is an essential equivalence, B ~  is an equivalence of toposes. 

of a 8omewhat different nature: 

I f  ~o and G1 =~ Go are locally connected and H1 =3 Ho are open, then 

B ~  is locally connected. 

I f  ~o and G1 ::~ Go are local homeomorphisms and H1 :=$ Ho are open, 

then B ~  is atomic. 

3. C o m p l e t i o n s  o f  C o n t i n u o u s  G r o u p o i d s .  

Let G be a continuous groupoid. I will describe a continuous groupoid 
and a continuous category 7(G), together with maps 

8 
G --+ G C 7(G), 

such that  these all define the same topos: 

"" B G  "" BT(G)  B G --~ --~ . 

3.1 C o n s t r u c t i o n  o f  7(G) (cf [M2,II,§3]). Consider the lax pullback 

(1) 

dl 
£ , Sh(G0) 

~'G 
Sh(G0) ~ B G  

£ is actually a localic topos, i.e., there is a unique locale 7(G)1 such that  

£ ~- Sh(7(G)I).  7(G) is the category with 7(G)0 = Go as space of objects, 
7(G)1 as space of morphisms, and do, dl from diagram (1) as domain and 

codomain. 
By the universal property of (1), points of 7(G)1 are triples (x, y, a),  where 

x and y are points of Go, and a : eVy --~ evx is a natural  transformation 
(ev~ : Sh(G0) --~ Sets takes the fiber at x). do (x , y ,a )  = x, d l ( x , y , a )  = y. 
It is clear how to define composition in 7(G) on points. By change of base 
(Yoneda lemma) this actually defines the structure of a continuous category 

on 7(a). 
The universal property of (I) gives a homomorphism of continuous categories 

8 
c - - ,  
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which is the identity on objects; on morphisms, O sends a point g of G1 to the 

triple (dog, dig, g*). 

3.2 PROPOSITION. G o 7(G) induces an equivalence of topose8 

B a - - ,  B~,(G). 

3.3 C o n s t r u c t i o n  of  G. G is the subcategory of 7(G) with the same 
objects, but only the isomorphisms of 7(G) as arrows: so G is in fact a contin- 

uous groupoid, and G L ~f(G) factors through e C ~(G). Vl can be directly 
described by the pullback 

(2) 

Sh(G1) , Sh(G0) 

Sh(a0) , B a  

0 
We call G dtale complete if G ---* G is an isomorphism. 

3.4 PROPOSITION. G L G induces an equivalence of toposes 

~ B ~  B G  

This is a consequence of the descent theorem for open geometric morphisms 

([JT]). 
3.5 EXAMPLE: (cf [M3]) Let G be a topological group with a countable base 

at the identity element e. Then 

~(G) = lim G/U 
( 

U 

where U ranges over open subgroups (ordered by inclusion), and G / U  is the 
set of right cosets Ux (the quotient topology on G / U  is the discrete one). 7(G) 
is a topological monoid, with multiplication defined by the formula 

(2 • f])u -- Uxu . yx51u~ U 
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where we write a point of 7(G) as a sequence ~ = {U. xu}u.  For instance, for 

the group Aut (S)  of isomorphisms of some infinite set S, we have 

7(Aut (S) )  = { 1 -  1 maps S ~ S} 

Notice also that  if G = lim Gi is profinite, then 7(G) ~- G; this holds in fact 
+____ 

for arbi t rary localic prodiscrete groups (§1, example (4); and §6 below). 

4 .  T o p o s e s  as  a l o c a l i z a t i o n  o f  g r o u p o i d s .  

Let [Top]'denote the category of Grothendieck toposes (over some fixed base 

topos) and isomorphisms classes of geometric morphisms. I will describe how 

[Top] can be considered as a localization of a category of continuous groupoids. 
(Detailed proofs are given in [M2, I,§7].) 

First of all, the category of continuous groupoids is a 2-category in a natura l  

way: 1-cells G ~ H are continuous homomorphisms,  and if G =2; M are two 
¢ 

such, a 2-cell c~ : ~p =* ¢ is the localic analogue of a na tura l  t ransformation,  
0/ 

i.e., a continuous map Go --* H1 such that  dos = ~, dl(~ -- ¢,  and 

Vl 

(¢,-d0) l 

H1 × H1 
H0 

(Oldl,cPi) 
HI × H1 

Ho 

m 

) H1 

commutes.  Let [Groupoids] denote the category of continuous groupoids and 

isomorphism classes of continuous homomorphisms.  Let ECG C [Groupoids] 

be the full subcategory given by the &ale complete groupoids. 

4.2 PROPOSITION. The class E__ of isomorphism classes of essential equiva- 
lences (cf ~2) admits a calculus of right fractions (in the sense o f /GZ])  in 
the category [Groupoids], as well as in the subcategory ECG of dtale complete 
groupoids. 

4.2 LOCALIZATION THEOREM. The functor B from continuous groupoids to 

toposes induces an equivalence 

ECa[ E_ [Top]. 
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4.3 REMARK: In the proof of 4.2, one uses the following construction. If 

B G  ~ B H  is any geometric morphism, define a space K0 by the pullback 

D0 Sh(K0) Sh(H0) 

ra f 
Sh(Go) ~ B G  ~ B H  

and make K0 into a groupoid by defining K1 as the pullback 

~Pl 
K1 ~ G1 

l 1 
K 0 x K 0  ~ Go x G 0  

so tha t  we obtain an essential equivalence K ~ G. 

then f gives a homomorptf ism K ~-~ H such that  

B K  

B G  ~ B H  

If H is @tale complete, 

commutes  (up to natural  isomorphism). 

We remark  here that  it can be shown that  K0 can be equipped with an action 

of G on the right and one of H on the left, and that  the induced functor 

B H  ---* B G ,  E ~ E ® Ko 
H 

is natura l ly  isomorphic to the inverse image f* of the given geometric mor- 

phism f .  Thus,  every geometric morphism comes from tensoring by a "bis- 

pace", a space with two actions as above. However, this part icular  construction 

does not take care of 2-cells, i.e., natural  t ransformations between geometric 
morphisms. In the next section, a more careful construction will be given that  

does take these 2-cells into account. 
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5. G e o m e t r i c  M o r p h i s m s  as T e n s o r  P r o d u c t s .  
In this section I will describe the category Top(BH, B G )  of geometric mor- 

phisms and natural  transformations between their inverse image functors, com- 

pletely in terms of the completions 7 H  and 7G, and spaces equipped with an 
action by each of these completions. The reader can find detailed proofs in 
[M2,II,§4-6]. 

5.1 B i spaces .  Let G and H be continuous groupoids, with completions 
,-yG and -),H (cf. 3.1). A ~/G- ~fH-bispace (or briefly bispace) is a space R which 
is at the same t ime a left ")'G-space and a right ~H-space, such that  the two 
actions commute with each other. So there are projections PG : R ---+ Go and 

• do 
PH : R --~ H0, and action maps ~'(G)I x R --* R (pullback along ")'(G)I ~ Go), 

Go 
dl 

R x "y(H)I -:-*R (pullback along ")'(H)I ---* H0) satisfying the usual identities 
H0 

for an action (covariant for.,  contravariant for *), as well as three compatibili ty 
conditions expressed by the following commutat ive diagrams: 

(1) x R A n P", H0 
Go r2 

(2) R × "/(H)I :~ R Pa, Go 
Ho Wl 

(3) 

i x .  
x R  x R x "y(H)I , ~f(G)I G0 "y(Gh a0 H0 

*×11 1" 

R x "~(Hh , R 
H0 

A h o m o m o r p h i s m  of bispaces R ~ R' is a continuous map of spaces which is 
compatible with both actions. This defines a category 

(TG- "),H-bispaces). 

5.2 T e n s o r  p r o d u c t s .  If R is a bispace as above, and E is a (right) 
7(G)-space, the tensor product E ® R is defined by the usual coequalizer 

~(a) 
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diagram 

(4) 
E x ,  

E x 7(G)a x R ~ E x R - - - * E ® R  
Go Go . x R Go 7G 

This coequalizer can be pretty unmanageable, mainly because it need not be 
stable. However, if the actions of 7(G) on E and R are both given by open 
maps, then (4) is stable. 

5.3 O p e n  b ispaces ,  flat b lspaces .  A bispace R as in 5.1 is open if 
* o 

PH : R ~ Ho is open, both actions 7(G)1 x R ~ R and R x 7(H)1 ~ R  are 
Go H0 

, ,  ! 
open, and the diagonal action 7(G)1 ~0 7(G)l a0x R L R H0X R ( p(~,~ ,r) = 

• r, • r)") is open. 

LEMMA. I f  R is an open bispace and E is an dtale G-space (which can be 

considered as an dtale 7(V)-space,  c f  3.2) then E ® R is an dtaIe H -  (or 
7(a) 

7(H)-)  space. 

So an open bispace R induces a functor 

g(R)* = - N R :  B G  ---, B H  
"rG 

R is called f iat  (on the left) if g(R)* = - ® R is left-exact. We denote the full 
7G 

subcategory of (TG-TH-bispaces) consisting of the flat ones by 

Flat(Ta,  7H). 

So we obtain a functor 

Flat(-rG,-yH) L Top(BH, BG). 

5.4 THEOREM. The func tor  g has a ful ly  faithful  right adjoint 

R :  Top(BH,  B G )  --~ Flat(fiG, ~/H). 
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The construct ion of R is easy enough to describe: given a geometric mor- 

phism B H  ~ BG, R(f )  is constructed as the lax pullback 

(5) 

Sh(R(f ) )  , Sh(Go) 

rH f 
Sh(Ho) , B M  , BG 

(this lax pullback is a localic topos, so determines a unique space R( f ) ) .  By 

the universal proper ty  of (5), R ( f )  can be equipped with the s t ructure  of a 
7G-TH-bispace.  It follows from 5.4 as stated that  tensoring with _R(f) defines 

a functor which is natural ly  isomorphic to f* (the counit of g ~ R is an 

isomorphism): 

5.5 COROLLARY. For every geometric morphism B H  A BG there is a natural 
isomorphism of functors BG --+ BH: 

f,  ® 2 r ~ /  / * \  
_ 

7G 

Let us call a flat bispace R complete if ~R : R --* _Rq(R) is an isomorphism. 

One can then form a large bicategory whose objects are continuous groupoids 

G, whose 1-cells G --* H are complete flat 7G-fH-bispaces ,  and whose 2-cells 
are homomorphisms of such. The tensor product  = composition of 1-cells is 

given by first taking the tensor product  of flat bispaces and then completing; 
R 

i.e., for G ~ H ~ K,  we define 

1 (n ® 
7(H) 

5.6 COROLLARY. This bicategory of continuous groupoids and complete fiat 
bispaces is equivalent to the dual of the bicategory of toposes and geometric 
morphisms. 

6. P o i n t e d  a t o m i c  t o p o s e s ,  Ga lo i s  t o p o s e s ,  a n d  t h e  f u n d a m e n t a l  

g r o u p .  
In this section, I come back to toposes of the form BG for a continuous group 

G. Such a topos is connected, atomic, and has a canonical point $ p a  BG 
whose inverse image p~ is the forgetful functor ($ is an arbi t rary base topos). 

It is proved in [JT] that  the converse also holds: 
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6.1 THEOREM. (see [JT]) For any atomic connected S-topos E --~ $ with 

a point S f~ £, there exists a continuous group G in S such that $ ~_ BG 
as S-toposes, and p corresponds to the canonical point Pa of BG under the 
equivalence. 

If (£ ,p)  and (~', q) are pointed S-toposes, I write Top.(($' ,  q), (£,p))  for the 

category of pointed maps; i.e. the objects are pairs ( f , a ) , 9  v ~ $ over $ 

~ d  ~ : f q  ~ p (over S ) ,  and the  maps  Z : ( f , ~ )  --~ ( f ' , ~ ' )  are natural  

t ransformations f* -~ if* compatible with the a 's ,  i.e., for each E C £, 

b* f*(E)  , p*(E) 

q*f'*(E) 

commutes. Note tha t  if q is faithful, there can be at most one such 3, and 
is an isomorphism. So for continuous groups G and H,  the 2-cells define an 
equivalence relation on Top.((BH, pH), (BG, pG)), with quotient denoted by 
[(BH, pH) , (BG,  pG)].. 

I will also consider the category Top.+((.T, q), ($,p) whose objects are maps 
of pointed toposes (f ,  a as above, and whose morphisms (f ,  a )  ---+ ( i f ,  a ' )  are 
natura l  t ransformations f* --~ if* (no compatibil i ty with a and a '  required). 

From 5.4 one can deduce the following result (see [M3]). 

6.2 THEOREM. For continuous groups G and H, the canonical functor 

(1) Hom(TH, TG) ~ [(BH, pH),(BG,pa)].  

is an isomorphism of sets, and 

(2) Hom(TH, 7G) --~ Top+((BH, ptt ), (BG,pG)) 

is an equivalence of categories. 

In (1), Hom(Tg ,  TG) is the set of continuous homomorphisms; in (2), 
H o m ( ~ H , ~ G )  is the same set made into a category, where for homomor- 
phisms ~ and ¢ : ~fH ---* ~/G, a map ~ ---+ ¢ is a point y of ~f(G) such that  
~ ( x ) . y  = y .  ¢(x). 



296 

I now briefly discuss how Grothendieck 's  theory  of the  fundamen ta l  group 

(see [SGA1]) ,  in te rp re ted  as a p rogroup  as in [AM],  fits into this context .  

For details I refer the  reader  to [M4]; some of wha t  follows has independen t ly  

been considered by J. Kennison,  see [K]. 

A prodiscre te  group is a cont inuous  group G which is the  inverse limit (in 

locales!) of a filtered inverse sys tem of discrete groups (and surject ive homo-  

morphisms ,  as one may  wi thout  loss of general i ty assume).  Since clearly for a 

prodiscre te  group G, G -~ G ~ 7(G),  we have 

6.3 COROLLARY. The embedding of prodiscrete groups into pointed toposes is 
fully faithful; in fact 

Hom(H, G) ~_ Top+((BH, pH), (BG,pG)) 

whenever G and H are continuous groups with G prodiscrete. 

The  image of the embedd ing  in 6.3 can be characterized as follows. Recall 

t ha t  an a t o m  A in a topos £ is normal if it is an Aute (A)- to rsor  in $. A Galois 
topos is a po in ted  connected a tomic  topos which is genera ted  by its normal  

a toms.  F rom [M3,§3], I quote: 

6.4 THEOREM. A pointed topos ($,p) is a GaIois topos if and only if there 
exists a prodiscrete continuous group G such that g ~_ BG (p corresponding to 
Pc as in 6.1). 

Let £ ~-+ S be a connected  locally connected  topos over S.  An object  E 

of $ is locally constant if there  are an S in S and a V --~ 1 in $ such tha t  

E x V ~ 3'*(S) x V over V. The  connected  locally cons tan t  objects  form 

a no rma l  a tomic  site, and  if one closes off under  sums,  one obta ins  a topos  

~rl(E), and  the  inclusion rrl(~) C £ is the  inverse image of a surjective geometr ic  

m o r p h i s m  

: E -- 

If $ has a po in t  p, 7rl(~" ) has a point  ~(p),  and  therefore by 6.4 there  exists a 

prodiscre te  group 7rl (g ,p )  such tha t  

(Trl(E),¢fl(p)) ~ (BTrl(g' ,p),~), 

where  p = P,rl(C,p) is the  canonical  point  of B(Trl(E,p)). 
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6.5 PROPOSITION. Let ($,p) be a connected locally connected pointed topos. 

($,p) L (B~i(E,p) ,p)  is the universal map into a aalois topos; i.e., for every 
Galois topos 9, composition with ~p defines an equivalence 

Top(B(~(C,p)),9) : Top(E,9) 

(which restricts to equivalences 

ro~+ (B(~l(c,p)),~) _~ r0p+(E,9) 

and 

Top .(B~I(C,p), a) ~- Top .(C, a)). 

In the parenthetical remark, we have suppressed the points from the nota- 
tion. Putt ing 6.3, 6.4, and 6.5 together, we obtain 

6.6 COROLLARY. Let (g,p) be a connected locally connected topos. For any 
prodiscrete group G there is an equivalence (natural in G) 

Top.+((g,p),(BG,pG)) ~ Hom(Trl(E,p),G) 

Since for a discrete group G, any two points of BG are isomorphic, we 
conclude 

6.7 COROLLARY. Let (~,p)  be a connected locally connected pointed topos. (a) 
For any discrete group G, 

Top(£,BG) ~_ Hom(~rl(£,p), G) 

(b) For any abelian group A, 

HI(C,A) ~ Hom(~l(g,p) ,A)  

Note that (b) follows from (a) and the fact that B A  classifies A-torsors, i.e., 
HI(E,A) -- Top(C, BA) (cf. eg [JW], [J1]). 
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