Measurement of CP-Violating Asymmetries in B⁰ Decays to CP Eigenstates

6 University of Birmingham, Birmingham B15 2TT, United Kingdom
7 Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
8 University of Bristol, Bristol BS8 1TL, United Kingdom
9 University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
10 Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11 Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12 University of California at Irvine, Irvine, California 92697
13 University of California at Los Angeles, Los Angeles, California 90024
14 University of California at San Diego, La Jolla, California 92093
15 University of California at Santa Barbara, Santa Barbara, California 93106
16 Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, California 95064
17 California Institute of Technology, Pasadena, California 91125
18 University of Cincinnati, Cincinnati, Ohio 45221
19 University of Colorado, Boulder, Colorado 80309
20 Colorado State University, Fort Collins, Colorado 80523
21 Technische Universität Dresden, Institut für Kern- u. Teilchenphysik, D-01062 Dresden, Germany
22 Ecole Polytechnique, F-91128 Palaiseau, France
23 University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
24 Elon College, Elon College, North Carolina 27244-2010
25 Dipartimento di Fisica and INFN, Università di Ferrara, I-44100 Ferrara, Italy
26 Florida A&M University, Tallahassee, Florida 32307
27 Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
28 Dipartimento di Fisica and INFN, Università di Genova, I-16146 Genova, Italy
29 Harvard University, Cambridge, Massachusetts 02138
30 University of Iowa, Iowa City, Iowa 52242-3160
31 Iowa State University, Ames, Iowa 50011
32 Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France
33 Lawrence Livermore National Laboratory, Livermore, California 94550
34 University of Liverpool, Liverpool L69 3BX, United Kingdom
35 University of London, Imperial College, London SW7 2BW, United Kingdom
36 Queen Mary, University of London, London E1 4NS, United Kingdom
37 University of London, Royal Holloway, and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
38 University of Louisville, Louisville, Kentucky 40292
39 University of Manchester, Manchester M13 9PL, United Kingdom
40 University of Maryland, College Park, Maryland 20742
41 University of Massachusetts, Amherst, Massachusetts 01003
42 Laboratoire de Physique Nucléaire H. E., Universités Paris VI et VII, F-75252 Paris, France
43 McGill University, Montréal, Canada QC H3A 2T8
44 Dipartimento di Fisica and INFN, Università di Milano, I-20133 Milano, Italy
45 University of Mississippi, University, Mississippi 38677
46 Laboratoire Rene J.A. Lévesque, Université de Montréal, Montréal, Canada QC H3C 3J7
47 Mount Holyoke College, South Hadley, Massachusetts 01075
48 Dipartimento di Scienze Fisiche and INFN, Università di Napoli Federico II, I-80126 Napoli, Italy
49 University of Notre Dame, Notre Dame, Indiana 46556
50 Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
51 University of Oregon, Eugene, Oregon 97403
52 Dipartimento di Fisica and INFN, Università di Padova, I-35131 Padova, Italy
53 Laboratoire de Physique Nucléaire de Lyon, Université Lyon 1, 69622 Villeurbanne, France
54 Dipartimento di Fisica and INFN, Università di Pavia, I-27100 Pavia, Italy
55 University of Pennsylvania, Philadelphia, Pennsylvania 19104
56 Scuola Normale Superiore and INFN, Università di Pisa, I-56010 Pisa, Italy
57 Prairie View A&M University, Prairie View, Texas 77446
58 Princeton University, Princeton, New Jersey 08544
59 Dipartimento di Fisica and INFN, Università di Roma La Sapienza, I-00185 Roma, Italy
60 Universität Rostock, D-18051 Rostock, Germany
61 Rutgers University, New Brunswick, New Jersey 08903
62 Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
63 DAPNIA, Commissariat à l’Energie Atomique/Saclay, F-91911 Gif-sur-Yvette, France
64 University of South Carolina, Columbia, South Carolina 29208
65 Stanford Linear Accelerator Center, Stanford, California 94309
66 Stanford University, Stanford, California 94305-4060
67 TRIUMF, Vancouver, British Columbia, Canada V6T 2A3

2517
We present measurements of time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurement uses a data sample of 23×10^6 Y(4S) $\rightarrow BB$ decays collected by the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we find events in which one neutral B meson is fully reconstructed in a CP eigenstate containing charmion and the flavor of the other neutral B meson is determined from its decay products. The amplitude of the CP-violating asymmetry, which in the standard model is proportional to $\sin2\beta$, is derived from the decay time distributions in such events. The result is $\sin2\beta = 0.34 \pm 0.20$ (stat) ± 0.05 (syst).

We consider CP-violating asymmetries in the time distributions of B0 and \bar{B}^0 mesons provided a direct test of the standard model of electroweak interactions [1]. For the neutral B decay modes reported here, corrections to CP-violating effects from strong interactions are absent, in contrast to the K_L^0 modes in which CP violation was discovered [2].

Using a data sample of 23×10^6 BB pairs recorded at the Y(4S) resonance by the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider at the Stanford Linear Accelerator Center, we have fully reconstructed a sample B_{CP} of neutral B mesons decaying to the CP eigenstates $J/\psi K^0_s$, $\psi(2S)K^0_s$, and $J/\psi K^0_s$. We examine each of the events in this sample for evidence that the other neutral B meson decayed as a B0 or \bar{B}^0, designated as a B0 or \bar{B}^0 flavor tag. The final B_{CP} sample contains about 360 signal events.

When the Y(4S) decays, the P-wave BB state evolves coherently until one of the mesons decays. In one of

$$f_\pm(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{2\tau_{B^0}(1 + |\lambda|^2)} \times \left[1 + \frac{|\lambda|^2}{2} \pm \frac{1 - |\lambda|^2}{2} \cos(\Delta m_{B^0}\Delta t) \right],$$

where τ_{B^0} is the B^0 lifetime and Δm_{B^0} is the mass difference determined from $B^0\bar{B}^0$ mixing [4], and where the lifetime difference between neutral B mass eigenstates is assumed to be negligible. The first oscillatory term in Eq. (1) is due to interference between direct decay and decay after mixing. A difference between the B^0 and \bar{B}^0 distributions or a Δt asymmetry for either tag is evidence for CP violation.

If all amplitudes contributing to $B^0 \rightarrow f$ have the same weak phase, a condition satisfied in the standard model for charmonium-containing $b \rightarrow c\bar{c}x$ decays, then $|\lambda| = 1$. For these CP eigenstates the standard model predicts $\lambda = \eta_fe^{-2i\beta}$, where η_f is the CP eigenvalue of the state f and $\beta = \arg(-V_{cd}V_{cb}^*/V_{ud}V_{ub})$ is an angle of the unitarity triangle of the three-generation Cabibbo-Kobayashi-Maskawa (CKM) matrix [5]. Thus, the time-dependent CP-violating asymmetry is

$$A_{CP}(\Delta t) = \frac{f_+(\Delta t) - f_-(\Delta t)}{f_+(\Delta t) + f_-(\Delta t)} = -\eta_f \sin2\beta \sin(\Delta m_{B^0}\Delta t),$$

where $\eta_f = -1$ for $J/\psi K^0_s$ and $\psi(2S)K^0_s$ and +1 for $J/\psi K^0_s$.

A measurement of A_{CP} requires determination of the experimental Δt resolution and the fraction of events in which the tag assignment is incorrect. A mistag fraction w reduces the observed asymmetry by a factor $(1 - 2w)$.

Several samples of fully reconstructed B^0 mesons are used in this measurement. The B_{CP} sample contains candidates reconstructed in the CP eigenstates $J/\psi K^0_s(K^0_s \rightarrow \pi^+\pi^-\pi^0\pi^0)$, $\psi(2S)K^0_s(K^0_s \rightarrow \pi^+\pi^-\pi^0\pi^0)$, and $J/\psi K^0_s$. The J/ψ and $\psi(2S)$ mesons are reconstructed through their decays to e^+e^- and $\mu^+\mu^-$; the $\psi(2S)$ is
also reconstructed through its decay to $J/\psi \pi^+ \pi^-$. A sample of B decays B_{flav} [6] used in the determination of the mistag fractions and Δt resolution functions consists of the channels $D^{(s)\ast}h^+ (h^+ = \pi^+, \rho^+, a_1^\pm)$ and $J/\psi K^{0}(K^{0} \rightarrow K^+ \pi^-)$. A control sample of charged B mesons decaying to the final states $J/\psi K^{(s)+}$, $\psi(2S)K^{+}$, and $D^{(s)\ast}\pi^+$ is used for validation studies.

A description of the B_{abar} detector can be found in Ref. [7]. Charged particles are detected and their momenta measured by a combination of a silicon vertex tracker (SVT) consisting of five double-sided layers and a central drift chamber (DCH), in a 1.5-T solenoidal field. The average vertex resolution in the z direction is 70 μm for a fully reconstructed B meson. We identify leptons and hadrons with measurements from all detector systems, including the energy loss (dE/dx) in the DCH and SVT. Electrons and photons are identified by a CsI electromagnetic calorimeter (EMC). Muons are identified in the instrumented flux return (IFR). A Cherenkov ring imaging detector (DIRC) covering the central region, together with the dE/dx information, provides $K^-\pi$ separation of at least 3 standard deviations for B decay products with momentum greater than 250 MeV/c in the laboratory.

We select events with a minimum of three reconstructed charged tracks, each having a laboratory polar angle between 0.41 and 2.54 rad and an impact parameter in the plane transverse to the beam less than 1.5 cm from the beam line. The event must have a total measured energy in the laboratory greater than 4.5 GeV within the fiducial regions for charged tracks and neutral clusters. To help reject continuum background, the second Fox-Wolfram moment [8] must be less than 0.5.

An electron candidate must have a ratio of calorimeter energy to track momentum, an EMC cluster shape, a DCH dE/dx, and a DIRC Cherenkov angle (if available) consistent with an electron.

A muon candidate must satisfy requirements on the measured and expected number of interaction lengths penetrated, the position match between the extrapolated DCH track and IFR hits, and the average and spread of the number of IFR hits per layer.

A track is identified as a kaon candidate by means of a neural network that uses dE/dx measurements in the DCH and SVT, and comparison of the observed pattern of detected photons in the DIRC with that expected for kaon and pion hypotheses.

Candidates for $J/\psi \rightarrow \ell^+ \ell^-$ must have at least one decay product identified as a lepton (electron or muon) candidate or, if outside the calorimeter acceptance, must have DCH dE/dx information consistent with the electron hypothesis. Tracks in which the electron has radiated are combined with bremsstrahlung photons, reconstructed as clusters with more than 30 MeV lying within 35 mrad in polar angle and 50 mrad in azimuth of the projected photon position on the EMC. The second track of a $\mu^+\mu^-$ pair, if within the acceptance of the calorimeter, must be consistent with being a minimum ionizing particle. Two identified electron or muon candidates are required for J/ψ or $\psi(2S) \rightarrow \ell^+ \ell^-$ reconstruction in the higher-background $\psi(2S)K^0$ and $J/\psi K^0$ channels.

We require a J/ψ candidate to have $2.95 \leq m_{\ell^+\ell^-} \leq 3.14$ GeV/c^2 or $3.06 \leq m_{\mu^+\mu^-} \leq 3.14$ GeV/c^2, and a $\psi(2S) \rightarrow \ell^+ \ell^-$ candidate to have $3.44 \leq m_{\ell^+\ell^-} \leq 3.74$ GeV/c^2 or $3.64 \leq m_{\mu^+\mu^-} \leq 3.74$ GeV/c^2. Requirements are made on the lepton helicity angle in order to provide further discrimination against background. For the $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$ mode, mass-constrained J/ψ candidates are combined with pairs of oppositely charged tracks considered as pions; the resulting mass must be within 15 MeV/c^2 of the $\psi(2S)$ mass [4].

A $K^{0}_s \rightarrow \pi^+ \pi^-$ candidate must satisfy $489 < m_{\pi^+\pi^-} < 507$ MeV/c^2. The distance between the J/ψ or $\psi(2S)$ and K^{0}_s vertices is required to be at least 1 mm.

Pairs of π^0 candidates with total energy above 800 MeV are considered as K^{0}_S candidates for the $J/\psi K^{0}_S$ mode. We determine the most probable K^{0}_S decay point along the path defined by the initial K^{0}_S momentum vector and the J/ψ vertex by maximizing the product of probabilities for the daughter π^0 mass-constrained fits. Allowing for vertex resolution, we require the displacement from the J/ψ vertex to the decay point between -10 and $+40$ cm and the π^0 mass evaluated at this point to be between 470 and 550 MeV/c^2.

A K^{0}_S candidate is formed from a cluster not matched to a reconstructed track. For the EMC the cluster must have energy above 200 MeV, while for the IFR the cluster must have at least two layers. We determine the K^{0}_S energy by combining its direction with the reconstructed J/ψ momentum, assuming the decay $B^0 \rightarrow J/\psi K^{0}_S$. To reduce photon backgrounds, EMC clusters consistent with a $\gamma \gamma$ decay are rejected and the transverse missing momentum of the event projected on the K^{0}_S candidate direction must be consistent with the K^{0}_S momentum. In addition, the center-of-mass J/ψ momentum is required to be greater than 1.4 GeV/c.

B_{CP} candidates used in the analysis are selected by requiring that the difference ΔE between the energy of the B_{CP} candidate and the beam energy in the center-of-mass frame be less than 3 standard deviations from zero and that, for K^{0}_S modes, the beam-energy-substituted mass $m_{\text{ES}} = \sqrt{\langle E_{\text{beam}} \rangle^2 - \langle p_B \rangle^2}$ must be greater than 5.2 GeV/c^2. The resolution for ΔE is about 10 MeV, except for $J/\psi K^{0}_S$ (3 MeV) and the $K^{0}_S \rightarrow \pi^0 \pi^0$ mode (33 MeV). For the purpose of determining numbers of events, purities, and efficiencies, a signal region $m_{\text{ES}} > 5.27$ GeV/c^2 is used for all modes except $J/\psi K^{0}_S$.

Figure 1 shows the resulting ΔE and m_{ES} distributions for B_{CP} candidates containing a K^{0}_S and ΔE for the candidates containing a K^{0}_L. The B_{CP} sample is composed of 890 events in the signal region, with an estimated background of 260 events, predominantly in the $J/\psi K^{0}_S$ channel. For that channel, the composition, effective η_s, and ΔE distributions of the individual background sources are
from recovering unidenti
cated NT2 categories arises primarily from soft pions and
and muons. Based on the output of the neural network algo-
rithm, events are tagged as
tagged as
or NT2 (less certain tags) cate-
gories, or not tagged at all. The tagging power of the NT1
and NT2 categories arises primarily from soft pions and
from recovering unidentified isolated primary electrons
and muons.

taken either from a Monte Carlo simulation (for B decays
to J/ψ) or from the m_{τ+τ−} sidebands in data.

For flavor tagging, we exploit information from the in-
completely reconstructed other B decay in the event.
The charge of energetic electrons and muons from semileptonic
B decays, kaons, soft pions from D* decays, and high mo-
mentum charged particles is correlated with the flavor of
the decaying b quark: e.g., a positive lepton yields a B^0
of the track with the highest center-of-mass momentum,
for the
All remaining events are passed to a neural network al-
gorithm whose main inputs are the momentum and charge
of the track, with the highest center-of-mass momentum,
and the outputs of secondary networks, trained with Monte
Carlo samples to identify primary leptons, kaons, and soft
pions. Based on the output of the neural network algo-
rithm, events are tagged as B^0 or B̅^0 and assigned to the
NT1 (more certain tags) or NT2 (less certain tags) cate-
gory, or not tagged at all. The tagging power of the NT1
and NT2 categories arises primarily from soft pions and
from recovering unidentified isolated primary electrons
and muons.

Table I shows the number of tagged events and the signal
purity, determined from fits to the m_{ES} (K^0_L modes) or ΔE
(K^0_S mode) distributions. The measured efficiencies for the
four tagging categories are summarized in Table II.

The uncertainty in the Δt measurement is dominated
by the measurement of the position z_{tag} of the tagging
vertex. The tagging vertex is determined by fitting the
tracks not belonging to the B_{CP} (or B_{flav}) candidate to a
common vertex. Reconstructed K^0_L and Λ candidates
are used as input to the fit in place of their daughters.

The sin2β measurement is made with an unbinned
maximum likelihood fit to the Δt distribution of the com-
bined B_{CP} and B_{flav} tagged samples. The Δt distribu-
tion of the former is given by Eq. (1), with |λ| = 1. The latter
evolves according to the known rate for flavor oscillations
in neutral B mesons. The amplitudes for B_{CP} asymmetries
and for B_{flav} flavor oscillations are reduced by the same

![Figure 1](image_url)

FIG. 1. (a) Distribution of m_{ES} and ΔE for B_{CP} candidates
having a K^0_L in the final state; (b) distribution of ΔE for J/ψK^0_L
candidates.

| TABLE I. Number of tagged events, signal purity, and result of fitting for CP asymmetries in the full CP sample and in various subamples, as well as in the B_{flav} and charged B control samples. Purity is the fitted number of signal events divided by the total number of events in the ΔE and m_{ES} signal region defined in the text. Errors are statistical only. |
|---|---|---|---|
| Sample | N_{tag} | Purity (%) | sin2β |
| J/ψK^0_L, ϕ(2S)K^0_S | 273 | 96 ± 1 | 0.25 ± 0.22 |
| J/ψK^0_L | 256 | 39 ± 6 | 0.87 ± 0.51 |
| Full CP sample | 529 | 69 ± 2 | 0.34 ± 0.20 |
| J/ψK^0_L, ϕ(2S)K^0_S only | | | |
| J/ψK^0_L (K^0_L → π^+π^-) | 188 | 98 ± 1 | 0.25 ± 0.26 |
| J/ψK^0_L (K^0_L → π^0π^0) | 41 | 85 ± 6 | 0.05 ± 0.66 |
| ϕ(2S)K^0_L (K^0_L → π^+π^-) | 44 | 97 ± 3 | 0.40 ± 0.50 |
| Lepton tags | 34 | 99 ± 2 | 0.07 ± 0.43 |
| Kaon tags | 156 | 96 ± 2 | 0.40 ± 0.29 |
| NT1 tags | 28 | 97 ± 3 | 0.03 ± 0.67 |
| NT2 tags | 55 | 96 ± 3 | 0.09 ± 0.76 |
| B^0 tags | 141 | 96 ± 2 | 0.24 ± 0.31 |
| B̅^0 tags | 132 | 97 ± 2 | 0.25 ± 0.30 |
| B_{flav} sample | 4637 | 86 ± 1 | 0.03 ± 0.05 |
| Charged B sample | 5165 | 90 ± 1 | 0.02 ± 0.05 |
factor \((1 - 2w)\) due to mistags. The distributions are both convoluted with a common \(\Delta t\) resolution function and corrected for backgrounds, incorporated with different assumptions about their \(\Delta t\) evolution and convoluted with a separate resolution function. Events are assigned signal and background probabilities based on fits to \(m_{ES}\) (all modes except \(J/yK^0\)) or \(\Delta E (J/yK^0)\) distributions.

The \(\Delta t\) resolution function for signal candidates is represented by a sum of three Gaussian distributions with different means and widths. For the core and tail Gaussians, the widths are scaled by the event-by-event measurement error derived from the vertex fits; the combined rms error is 1.1 ps. A separate offset for the core distribution is allowed for each tagging category to account for small shifts caused by inclusion of residual charm decay products in the tag vertex; a common offset is used for the tail component. The third Gaussian (of fixed 8 ps width) accounts for the fewer than 1% of events with incorrectly reconstructed vertices. Identical resolution function parameters are used for all modes, since the \(B_{tag}\) vertex precision dominates the \(\Delta t\) resolution.

A total of 35 parameters are varied in the final fit, including the values of \(\sin 2\beta\) (1), the average mistag fraction \(w\) and the difference \(\Delta w\) between \(B^0\) and \(\bar{B}^0\) mistags for each tagging category (8), parameters for the signal \(\Delta t\) resolution (9), and parameters for background time dependence (6), \(\Delta t\) resolution (3) and mistag fractions (8). The determination of the mistag fractions and signal \(\Delta t\) resolution function is dominated by the high-statistics \(B_{flav}\) sample, while background parameters are governed by events with \(m_{ES} < 5.27\) GeV/\(c^2\) (except \(J/yK^0\)). We fix \(\tau_{B^0} = 1.548\) ps and \(\Delta m_{B^0} = 0.472\) ps \(^{-1}\) [4]. The largest correlation between \(\sin 2\beta\) and any linear combination of the other free parameters is 0.076.

The measurement of \(\sin 2\beta\) was performed as a blind analysis by hiding the value of \(\sin 2\beta\) obtained from the fit, as well as the \(CP\) asymmetry in the \(\Delta t\) distribution, until the analysis was complete. This allowed us to study statistical and systematic errors without knowing the numerical value of \(\sin 2\beta\).

The measured mistag rates obtained from the likelihood fit for the four tagging categories are summarized in Table II. As a check, the mistag rates were evaluated with a sample of about 16 000 \(D^{*+} \ell^+ \nu_\ell\) events and found to be consistent with the results from the hadronic decay sample.

The combined fit to the \(CP\) decay modes and the flavor decay modes yields

\[
\sin 2\beta = 0.34 \pm 0.20 \text{ (stat)} \pm 0.05 \text{ (syst)}.
\]

The decay asymmetry \(A_{CP}\) as a function of \(\Delta t\) and the log likelihood as a function of \(\sin 2\beta\) are shown in Fig. 2. If \(|\lambda|\) is allowed to float in the fit, the value obtained is consistent with 1 and there is no significant difference in the value of \(-\eta_y \text{Im}\lambda/|\lambda|\) (identified with \(\sin 2\beta\) in the standard model) and our quoted result. Repeating the fit with all parameters fixed to their determined values except \(\sin 2\beta\), we find that a total contribution of \(\pm 0.02\) to the error on \(\sin 2\beta\) is due to the combined statistical uncertainties in mistag rates, \(\Delta t\) resolution, and background parameters.

The dominant sources of systematic error are the assumed parametrization of the \(\Delta t\) resolution function (0.04), due in part to residual uncertainties in the SVT alignment, and uncertainties in the level, composition, and \(CP\) asymmetry of the background in the selected \(CP\) events (0.02). The systematic errors from uncertainties in \(\Delta m_{B^0}\) and \(\tau_{B^0}\) and from the parametrization of the background in the selected \(B_{flav}\) sample are found to be negligible. An increase of \(0.02\) ps \(^{-1}\) in the assumed value for \(\Delta m_{B^0}\) decreases \(\sin 2\beta\) by \(0.012\).

The large sample of reconstructed events allows a number of consistency checks, including separation of the data by decay mode, tagging category, and \(B_{tag}\) flavor. The results of fits to these subsamples are shown in Table I for the high-purity \(K^0\) events. Table I also shows results of fits with the samples of non-\(CP\) decay modes, where no statistically significant \(CP\) asymmetry is found.

Our measurement of \(\sin 2\beta\) is consistent with, but improves substantially on the precision of, previous determinations [9]. The central value is consistent with the range implied by measurements and theoretical estimates of the magnitudes of CKM matrix elements [10]; it is also consistent with no \(CP\) asymmetry at the 1.7\(\sigma\) level.

We thank our PEP-II colleagues for their extraordinary achievement in reaching design luminosity and high
FIG. 2. The raw asymmetry in the number of B^0 and \bar{B}^0 tags in the signal region, $(N_{B^0} - N_{\bar{B}^0})/(N_{B^0} + N_{\bar{B}^0})$, with asymmetric binomial errors, as a function of Δt for (a) the $J/\psi K_0^0$ and $\phi(2S)K_0^0$ modes ($\eta_f = -1$) and (b) the $J/\psi K_0^0$ mode ($\eta_f = +1$). The solid curves represent the time-dependent asymmetries determined for the central values of $\sin 2\beta$ from the fits for these samples. Eight events that lie outside the plotted interval were also used in the fits. The probability of obtaining a lower likelihood, evaluated using a Monte Carlo technique, is 60%. (c) Variation of the log likelihood as a function of $\sin 2\beta$ for the modes containing K_0^0 (dashed curve), the $J/\psi K_0^0$ mode (dotted curve), and the entire sample (solid curve). For the latter, solid lines indicate the central value and values of the log likelihood corresponding to 1 statistical standard deviation.

*Also with Università di Perugia, Perugia, Italy.
†Also with Università della Basilicata, Potenza, Italy.
‡Deceased.

[6] Throughout this paper, flavor-eigenstate decay modes imply also their charge conjugate.