The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/128885

Please be advised that this information was generated on 2017-09-02 and may be subject to change.
Study of the Rare Decays $B^0 \to D_s^{(*)+} \pi^-$ and $B^0 \to D_s^{(*)-} K^+$

1Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
2Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
3Institute of High Energy Physics, Beijing 100039, China
4University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6University of Birmingham, Birmingham, B15 2TT, United Kingdom
7Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
8University of Bristol, Bristol BS8 1TL, United Kingdom
9University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
10Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12University of California at Irvine, Irvine, California 92697, USA
13University of California at Los Angeles, Los Angeles, California 90024, USA
14University of California at San Diego, La Jolla, California 92093, USA
15University of California at Santa Barbara, Santa Barbara, California 93106, USA
16University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
17California Institute of Technology, Pasadena, California 91125, USA
18University of Cincinnati, Cincinnati, Ohio 45221, USA
19University of Colorado, Boulder, Colorado 80309, USA
20Colorado State University, Fort Collins, Colorado 80523, USA
21Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
22École Polytechnique, LLR, F-91128 Palaiseau, France
23University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
24Elon University, Elon University, North Carolina 27244-2010, USA
25Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
26Florida A&M University, Tallahassee, Florida 32307, USA
27Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
28Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
29Harvard University, Cambridge, Massachusetts 02138, USA
30University of Iowa, Iowa City, Iowa 52242, USA
31Iowa State University, Ames, Iowa 50011-3160, USA
32Laboratoire de l’Acélérateur Linéaire, F-91898 Orsay, France
33Lawrence Livermore National Laboratory, Livermore, California 94550, USA
34University of Liverpool, Liverpool L69 3BX, United Kingdom
The measurement of the CP-violating phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix \cite{1} is an important part of the present scientific program in particle physics. CP violation manifests itself as a nonzero area of the unitarity triangle \cite{2}. While it is sufficient to measure one of the angles to demonstrate the existence of CP violation, the unitarity triangle needs to be overconstrained by experimental measurements in order to demonstrate that the CKM mechanism is the correct explanation of this phenomenon. Several theoretically clean measurements of the angle β exist \cite{3}, but there is no such measurement of the two other angles α and γ. A theoretically clean measurement of $\sin(2\beta+\gamma)$ can be obtained from the study of the time evolution for $B^0 \rightarrow D^{(*)+} \pi^-$ \cite{4} decays, which are already available in large samples at the B factories, and for the corresponding CKM-suppressed modes $B^0 \rightarrow D^{(*)+} \pi^+$ \cite{5}. This measurement requires a knowledge of the ratio of the decay amplitudes $R^{(*)} = |A(B^0 \rightarrow D^{(*)+} \pi^-)/A(B^0 \rightarrow D^{(*)-} \pi^+)|$.

Unfortunately a determination of $|A(B^0 \rightarrow D^{(*)+} \pi^-)|$ from a measurement of $\mathcal{B}(B^0 \rightarrow D^{(*)+} \pi^-)$ is not possible...
The decays $B^0 \to D_s^{(*)-} K^+$ are a probe of the dynamics in B decays because they are expected to proceed mainly via a W-exchange diagram (see Fig. 1(d)), not observed so far. In addition, these modes can be used to investigate the role of final state rescattering, which can substantially increase the expected rates [7]. Figure 1 shows the Feynman diagrams for the decays $B^0 \to D_s^{(*)-} \pi^+$, $B^0 \to D_s^{(*)+} \pi^-$, $B^0 \to D_s^{(*)+} \pi^-$, and $B^0 \to D_s^{(*)-} K^+$.

In this Letter we present measurements of the branching fractions for the decays $B^0 \to D_s^{(*)+} \pi^-$ and $B^0 \to D_s^{(*)-} K^+$. The analysis uses a sample of 84×10^6 $\Upsilon(4S)$ decays into $B\bar{B}$ pairs collected in the years 1999–2002 with the BABAR detector at the PEP-II asymmetric-energy B-factory [8]. Since the BABAR detector is described in detail elsewhere [9], only the components that are crucial to this analysis are summarized here. Charged-particle tracking is provided by a five-layer silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH). For charged-particle identification, ionization energy loss (dE/dx) in the DCH and SVT and Cherenkov radiation detected in a ring-imaging device are used. Photons are identified and measured using the electromagnetic calorimeter, which comprises 6580 thallium-doped CsI crystals. These systems are mounted inside a 1.5 T solenoidal superconducting magnet. We use the GEANT [10] software to simulate interactions of particles traversing the BABAR detector, taking into account the varying detector conditions and beam backgrounds.

We select events with a minimum of four reconstructed charged tracks and a total measured energy greater than 4.5 GeV, determined using all charged tracks and neutral clusters with energy above 30 MeV. In order to reject continuum background, the ratio of the second and zeroth order Fox-Wolfram moments [11] must be less than 0.5. So far, only upper limits have been reported for the modes studied here [12]. Therefore the selection criteria are optimized to maximize the ratio of signal efficiency over the square root of the expected number of background events.

Candidates for D_s^+ mesons are reconstructed in the modes $D_s^+ \to \phi \pi^+$, $K_S^0 \bar{K}_L^0$, and $K^{*0} K^+$, with $\phi \to K^+ K^-$, $K_S^0 \to \pi^+ \pi^-$, and $K^{*0} \to K^+ \pi^-$. The K_S^0 candidates are reconstructed from two oppositely charged tracks with an invariant mass $493 < M_{\pi^+ \pi^-} < 501$ MeV/c2. All other tracks are required to originate from a vertex consistent with the $e^+ e^-$ interaction point. In order to identify charged kaons, two selections are used: a pion veto with an efficiency of 95% for accepting kaons and 20% for pions, and a tight kaon selection with an efficiency of 85% for kaons and 5% pion misidentification probability. Unless the tight selection is specified, the pion veto is always adopted. The ϕ candidates are reconstructed from two oppositely charged kaons with an invariant mass $1009 < M_{K^+ K^-} < 1029$ MeV/c2. The K^{*0} candidates are constructed from K^- and π^+ candidates and are required to have an invariant mass in the range $856 < M_{\pi^- K^0} < 936$ MeV/c2. The polarization of the K^{*0} (ϕ) mesons in the D_s^+ decays are also utilized to reject backgrounds through the use of the helicity angle θ_H, defined as the angle between one of the decay products of the K^{*0} (ϕ) and the direction of flight of the D_s^+ in the K^{*0} (ϕ) rest frame. Background events are distributed uniformly in $\cos \theta_H$ since they originate from random combinations, while signal events are distributed as $\cos^2 \theta_H$. The K^{*0} candidates are therefore required to have $|\cos \theta_H| > 0.4$, while for the ϕ candidates we require $|\cos \theta_H| > 0.5$. In order to reject background from $D_s^+ \to K^0_S \pi^+$ or $K^{*0} \pi^+$, the K^+ in the reconstruction of $D_s^+ \to K^0_S K^+$ or $K^{*0} K^+$ is required to pass the tight kaon identification criteria introduced above. Finally, the D_s^+ candidates are required to have an invariant mass within 10 MeV/c2 of the nominal value [13].

We reconstruct $D_s^{(*)-}$ candidates in the mode $D_s^{(*)-} \to D_s^+ \gamma$ by combining D_s^+ and photon candidates. Photons that form a π^0 candidate, with $122 < M_{\gamma \gamma} < 147$ MeV/c2, in combination with any other photon with energy greater than 70 MeV, are rejected. The mass difference between the D_s^+ and the D_s^+ candidates is required to be within 14 MeV/c2 of the nominal value [13].

We combine $D_s^{(*)+}$ candidates with a track of opposite charge to form a B candidate, and assign the candidate to the $B^0 \to D_s^{(*)+} K^+$ mode if the track satisfies the tight kaon selection and to the $B^0 \to D_s^{(*)+} \pi^+$ mode otherwise. In order to reject events where the D_s^+ comes from a B decay and the pion or kaon comes from the other B, we require the two decay products to have a probability greater than 0.25% of originating from a common vertex.
The remaining background is predominately combinatorial in nature and arises from continuum $q\bar{q}$ production. This source is suppressed based on event topology. We compute the angle (θ_T) between the thrust axis of the B meson candidate and the thrust axis of all other particles in the event. In the center-of-mass frame (c.m.), $B\bar{B}$ pairs are produced approximately at rest and form a uniform $\cos\theta_T$ distribution. In contrast, $q\bar{q}$ pairs are produced back to back in the c.m. frame, which results in a $|\cos\theta_T|$ distribution peaking at 1. Based on the background level of each mode, $|\cos\theta_T|$ is required to be smaller than a value that ranges between 0.7 and 0.8. We further suppress backgrounds using a Fisher discriminant F constructed from the scalar sum of the c.m. momenta of all tracks and photons (excluding the B candidate decay products) flowing into nine concentric cones centered on the thrust axis of the B candidate [14]. The more spherical the event, the lower the value of F. We require F to be smaller than a threshold that varies from 0.04 to 0.2 depending on the background level.

We extract the signal using the kinematic variables $m_{ES} = \sqrt{E_b^2 - (\sum p_i^2)^2}$ and $\Delta E = \sum_i (m_i^2 + p_i^2 - E_b^2)$, where E_b is the beam energy in the c.m. frame, p_i is the c.m. momentum of daughter particle i of the B meson candidate, and m_i is the mass hypothesis for particle i. For signal events, m_{ES} peaks at the B meson mass with a resolution of about 2.5 MeV/c^2 and ΔE peaks near zero, indicating that the candidate system of particles has total energy consistent with the beam energy in the c.m. frame.

The ΔE signal band is defined by $-41 < \Delta E < 31$ MeV and within the band we define the events with $m_{ES} > 5.27$ GeV/c^2 as the signal candidates.

After the aforementioned selection, three classes of backgrounds remain. First, the amount of combinatorial background in the signal region is estimated from the sideband of the m_{ES} distribution which is described by a threshold function $\frac{dN}{dm_{ES}} \propto m_{ES}\sqrt{1 - m_{ES}^2/E_b^2} \times \exp[-\xi(1 - m_{ES}^2/E_b^2)]$, characterized by the shape parameter ξ [15].

Second, B meson decays such as $B^0 \rightarrow D^+ \pi^-, \rho^-$ with $D^+ \rightarrow K^0_S \pi^+$ or $\bar{K}^{*0} \pi^+$ can constitute a background for the $B^0 \rightarrow D^+_s \pi^-$ mode if the pion in the D decay is misidentified as a kaon (reflection background). These backgrounds have the same m_{ES} distributions as the signal but different distributions in ΔE. The corresponding backgrounds for the $B^0 \rightarrow D^- K^+$ mode ($B^0 \rightarrow D^- K^+, K^{*+}$) have a branching fraction 10 times smaller.

Finally, rare B decays into the same final state, such as $B^0 \rightarrow \bar{K}^{(*)0} K^+ \pi^-$ or $\bar{K}^{(*)0} K^+ K^-$ (charmless background), have the same m_{ES} and ΔE distributions as the $B^0 \rightarrow D^+_s \pi^-$ or $B^0 \rightarrow D^- K^+$ signal. Figure 2 shows the ΔE distribution for the $B^0 \rightarrow D^+_s \pi^-$ and $B^0 \rightarrow D^- K^+$ signals and for various sources of background. The branching fraction of the charmless background is not well measured; therefore we need to estimate the sum of the reflection and charmless background (referred to as cross contamination) directly with data. This is possible because both of these background sources have a flat distribution in the D^+_s candidate mass (M_{Ds}^{comb}) while the signal has a Gaussian distribution.

![FIG. 2](image_url) The ΔE distribution for $B^0 \rightarrow D^+_s \pi^-$ (top) and $B^0 \rightarrow D^- K^+$ (bottom) candidates in data compared with the distributions of the combinatorial background, estimated from the m_{ES} sideband, the cross contamination, estimated from the M_{Ds}^{comb} sidebands, and the simulation of the signal, normalized to the observed yield. The inset shows the ΔE distribution of the separate contributions to the cross contamination to the $B^0 \rightarrow D^+_s \pi^-$ signal as predicted by simulation. The reflection backgrounds are normalized to the known branching fractions [13], while the normalization of the charmless background is arbitrary.

![FIG. 3](image_url) The m_{ES} distributions for the $B^0 \rightarrow D^+_s \pi^-$ (top left), $B^0 \rightarrow D^+_s K^+$ (top right), $B^0 \rightarrow D^+_s \pi^-$ (bottom left), and $B^0 \rightarrow D^- K^+$ (bottom right) candidates within the ΔE band in data after all selection requirements. The fits used to obtain the signal yield are described in the text. The contribution from each D^+_s mode is shown separately.
Possible contamination from $B \to D_s^{(*)} X$ decays is determined with simulation and found to be negligible. The cross contamination for the decays $B^0 \to D_s^{(*)} \pi^-$ and $B^0 \to D_s^{-} K^+$ is dominated by the reflection background, which we estimate from simulation. Cross feed between $B^0 \to D_s^{(*)} \pi^-$ and $B^0 \to D_s^{-} K^+$ modes is estimated to be less than 1%.

Figure 3 shows the m_{ES} distribution in the ΔE signal band for each of the modes. We perform an unbinned maximum-likelihood fit to each m_{ES} distribution with a threshold function to characterize the combinatorial background and a Gaussian distribution to describe the sum of the signal and cross-contamination contributions. The mean and the width of the Gaussian distribution are fixed to the values obtained in a copious $B^0 \to D_s^{(*)} \pi^+$ control sample. For the $B^0 \to D_s^{+} \pi^-$ and $B^0 \to D_s^{-} K^+$ analyses, we obtain the threshold parameter ξ from a fit to the distributions of m_{ES} in data, after loosening the $M_{D_s}^{\mathrm{exp}}$ and ΔE requirements. In the case of $B^0 \to D_s^{+} \pi^-$ and $B^0 \to D_s^{-} K^+$, due to the low background level, we use simulated events to estimate ξ.

No fit is performed with the $B^0 \to D_s^{-} K^+$ sample due to the small number of events. Whenever there are enough events, we fit each D_s decay mode separately, as well as the combination of all modes. The cross contamination is estimated by performing the same fit on the events in the data $M_{D_s}^{\mathrm{exp}}$ sidebands (4$\sigma < |M_{D_s}^{\mathrm{exp}} - 19.6806 \text{ MeV}/c^2| < 8\sigma$), where the resolution is $\sigma = 5 \text{ MeV}/c^2$). The number of observed events, the background expectations, and the reconstruction efficiencies estimated with simulated events are summarized in Table I.

In the $B^0 \to D_s^{+} \pi^-$ ($B^0 \to D_s^{-} K^+$) mode the fit yields a Gaussian contribution of 21.4 \pm 5.1 (16.7 \pm 4.3) events and a combinatorial background of 7.8 \pm 1.7 (3.5 \pm 1.3) events. The cross contamination is estimated to be 3.7 \pm 2.4 (2.7 \pm 1.9) events. The probability of the background to fluctuate to the observed number of events, taking into account both Poisson statistics and uncertainties in the background estimates, is 9.5×10^{-4} (5.0 $\times 10^{-4}$). For a Gaussian distribution this would correspond to 3.3σ (3.5σ). Given the estimated reconstruction efficiencies we measure $B(B^0 \to D_s^{+} \pi^-) = (3.2 \pm 0.9) \times 10^{-5}$ ($B(B^0 \to D_s^{-} K^+) = (3.2 \pm 1.0) \times 10^{-5}$), where the quoted error is statistical only. We also set the 90% C.L. limits $B(B^0 \to D_s^{+} \pi^-) < 4.1 \times 10^{-5}$ and $B(B^0 \to D_s^{-} K^+) < 2.5 \times 10^{-5}$.

The systematic errors are dominated by the 25% relative uncertainty for $B(D_s^{+} \to \phi \pi^+)$. The uncertainties on the knowledge of the background come from uncertainties in the ξ parameter, for the combinatorial background, and from the limited number of events in the $M_{D_s}^{\mathrm{exp}}$ sidebands for the cross contamination. They amount to 14%, 16%, 7%, and 36% of the measured branching fractions.

Table I

The number of signal candidates (N_{sigbox}), the Gaussian yield (N_{gaus}), and the combinatorial background (N_{comb}) extracted from the likelihood fit, the cross contamination (N_{cross}), the reconstruction efficiency (ε), the probability (P_{bckg}) of the data being consistent with the background fluctuating up to the level of the data in the absence of signal, the measured branching fraction (B), and the 90% confidence-level upper limit. N_{gaus}, N_{comb}, and B are not available for modes with too few events. N_{cross} is not reported if no event is found in the D_s^{+} mass sideband.

<table>
<thead>
<tr>
<th>B mode</th>
<th>N_{sigbox}</th>
<th>N_{gaus}</th>
<th>N_{comb}</th>
<th>N_{cross}</th>
<th>ε</th>
<th>P_{bckg}</th>
<th>B</th>
<th>90% C.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \to D_s^{+} \pi^-$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D_s^{+} \to \phi \pi^+$</td>
<td>9</td>
<td>8.0 \pm 3.0</td>
<td>2.1 \pm 0.7</td>
<td><0.7</td>
<td>16.9</td>
<td>1.4 $\times 10^{-3}$</td>
<td>3.1 \pm 1.2</td>
<td></td>
</tr>
<tr>
<td>$D_s^{+} \to \bar{K}^0 \pi^+$</td>
<td>12</td>
<td>9.2 \pm 3.4</td>
<td>3.8 \pm 1.0</td>
<td>2.9 \pm 1.8</td>
<td>9.6</td>
<td>2.3 $\times 10^{-2}$</td>
<td>3.5 \pm 1.9</td>
<td></td>
</tr>
<tr>
<td>$D_s^{+} \to K_0^+ K^+$</td>
<td>5</td>
<td>4.2 \pm 2.2</td>
<td>1.9 \pm 0.6</td>
<td>1.2 \pm 1.4</td>
<td>12.3</td>
<td>8.3 $\times 10^{-2}$</td>
<td>2.4 \pm 1.8</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>26</td>
<td>21.4 \pm 5.1</td>
<td>7.8 \pm 1.7</td>
<td>3.7 \pm 2.4</td>
<td>N/A</td>
<td>9.5 $\times 10^{-4}$</td>
<td>3.2 \pm 0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>$B^0 \to D_s^{+} \pi^-$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D_s^{+} \to \phi \pi^+$</td>
<td>2</td>
<td>0.6 \pm 0.3</td>
<td><0.14</td>
<td>7.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D_s^{+} \to \bar{K}^0 \pi^+$</td>
<td>3</td>
<td>2.8 $^{+2.7}_{-1.8}$</td>
<td>0.4 \pm 0.3</td>
<td>0.3 \pm 0.2</td>
<td>3.3</td>
<td>3.9 $\times 10^{-2}$</td>
<td>4.3 $^{+4.7}_{-3.1}$</td>
<td><12</td>
</tr>
<tr>
<td>$D_s^{+} \to K_0^+ K^+$</td>
<td>0</td>
<td>0.4 \pm 0.3</td>
<td><0.14</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>5</td>
<td>4.4 $^{+2.7}_{-2.8}$</td>
<td>1.2 \pm 0.4</td>
<td>0.3 \pm 0.2</td>
<td>N/A</td>
<td>2.3 $\times 10^{-2}$</td>
<td>1.9$^{+1.2}_{-1.3}$ \pm 0.5</td>
<td><4.1</td>
</tr>
<tr>
<td>$B^0 \to D_s^{-} K^-$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D_s^{-} \to \phi \pi^+$</td>
<td>7</td>
<td>5.8 \pm 2.6</td>
<td>1.3 \pm 0.7</td>
<td>1.1 \pm 1.2</td>
<td>13.0</td>
<td>4.5 $\times 10^{-2}$</td>
<td>2.4 \pm 1.3</td>
<td></td>
</tr>
<tr>
<td>$D_s^{-} \to \bar{K}^0 \pi^+$</td>
<td>8</td>
<td>7.3 \pm 2.9</td>
<td>1.7 \pm 0.7</td>
<td><0.7</td>
<td>7.8</td>
<td>1.9 $\times 10^{-3}$</td>
<td>5.0 \pm 2.0</td>
<td></td>
</tr>
<tr>
<td>$D_s^{-} \to K_0^+ K^+$</td>
<td>4</td>
<td>3.7 \pm 2.0</td>
<td>0.6 \pm 0.4</td>
<td>1.3 \pm 1.0</td>
<td>9.2</td>
<td>1.7 $\times 10^{-2}$</td>
<td>2.5 \pm 2.1</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>19</td>
<td>16.7 \pm 4.3</td>
<td>3.5 \pm 1.3</td>
<td>2.7 \pm 1.9</td>
<td>N/A</td>
<td>5.0 $\times 10^{-4}$</td>
<td>3.2 \pm 1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>$B^0 \to D_s^{-} K^-$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D_s^{-} \to \phi \pi^+$</td>
<td>0</td>
<td>0.8 \pm 0.6</td>
<td><0.14</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D_s^{-} \to \bar{K}^0 \pi^+$</td>
<td>1</td>
<td>0.4 \pm 0.4</td>
<td><0.14</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D_s^{-} \to K_0^+ K^+$</td>
<td>1</td>
<td>0.4 \pm 0.4</td>
<td><0.14</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>2</td>
<td>1.6 \pm 0.8</td>
<td><0.14</td>
<td>N/A</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
in the $B^0 \rightarrow D_s^+ \pi^-$, $B^0 \rightarrow D_s^- K^+$, $B^0 \rightarrow D_s^{*+} \pi^-$, and $B^0 \rightarrow D_s^{*0} K^+$ modes, respectively. The rest of the systematic errors, which include the uncertainty on tracking, K_S^0 reconstruction, and charged-kaon identification efficiencies, range between 11% and 14% depending on the mode.

In conclusion, we report a 3.3σ signal for the $b \rightarrow u$ transition $B^0 \rightarrow D_s^+ \pi^-$ and a 3.5σ signal for the decay $B^0 \rightarrow D_s^- K^+$, and measure

$$\mathcal{B}(B^0 \rightarrow D_s^+ \pi^-) = [3.2 \pm 0.9\text{(stat)} \pm 1.0\text{(syst)}] \times 10^{-5},$$

$$\mathcal{B}(B^0 \rightarrow D_s^- K^+) = [3.2 \pm 1.0\text{(stat)} \pm 1.0\text{(syst)}] \times 10^{-5}.$$

The results are consistent with measurements [16] from the Belle Collaboration of which we became aware after this Letter was submitted. Since the dominant uncertainty comes from the knowledge of the D_s^+ branching fractions we also compute $\mathcal{B}(B^0 \rightarrow D_s^+ \pi^-) \times \mathcal{B}(D_s^+ \rightarrow \phi \pi^-) = (1.13 \pm 0.33 \pm 0.21) \times 10^{-6}$ and $\mathcal{B}(B^0 \rightarrow D_s^- K^+) \times \mathcal{B}(D_s^- \rightarrow \phi \pi^-) = (1.16 \pm 0.36 \pm 0.24) \times 10^{-6}$. The search for $B^0 \rightarrow D_s^{*+} \pi^-$ and $B^0 \rightarrow D_s^{*0} K^+$ yields the 90% C.L. upper limits

$$\mathcal{B}(B^0 \rightarrow D_s^{*+} \pi^-) < 4.1 \times 10^{-5},$$

$$\mathcal{B}(B^0 \rightarrow D_s^{*0} K^+) < 2.5 \times 10^{-5}.$$

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

*Also with Università di Perugia, I-06100 Perugia, Italy

[4] Charge conjugation is implied throughout this Letter, unless explicitly stated.

