Search for the Radiative Decays $B \to \rho \gamma$ and $B^0 \to \omega \gamma$

111801-1 0031-9007/04/92(11)/111801(7)$22.50 © 2004 The American Physical Society 111801-1
These processes are mediated by the $B\rightarrow K^*\gamma$ process mediated by the $b\rightarrow s\gamma$ transition, but with the final-state s quark replaced by a d quark, and the relevant element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix changed from V_{ts} to V_{td}. There may also be contributions resulting from physics beyond the SM, such as supersymmetry [2]. Recent calculations of the branching fraction in the SM indicate a range $\mathcal{B}(B^+\rightarrow \rho^+\gamma) = (0.9 - 1.5) \times 10^{-6}$ in the standard model (SM), the decays $B\rightarrow \rho\gamma$ and $B^0\rightarrow \omega\gamma$ proceed primarily through an underlying $b\rightarrow d\gamma$ electromagnetic “penguin” diagram that contains a top quark in the loop [1]. These processes are analogous to the $B\rightarrow K^*\gamma$ process mediated by the $b\rightarrow s\gamma$ transition, but with the final-state s quark replaced by a d quark, and the relevant element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix changed from V_{ts} to V_{td}. There may also be contributions resulting from physics beyond the SM, such as supersymmetry [2]. Recent calculations of the branching fraction in the SM indicate a range $\mathcal{B}(B^+\rightarrow \rho^+\gamma) = (0.9 - 1.5) \times 10^{-6}$.
The reconstruction uses quantities instrumented with resistive plate chambers to imaging Cherenkov detector (DIRC) is used for resolution. A kinematic fit with true mass greater than 50 MeV. The invariant mass of the candidates reconstructed in the calorimeter, each with resolution of 0.133 GeV. The range is due to uncertainties in the value of the latter are denoted by an asterisk.

A charged pion selection based on charged pions that have opposite charge and a common vertex. The primary photon in the B decay is identified as an energy deposition in the EMC. The decay must meet a number of criteria (described in detail in our Letter [8] on \(B \rightarrow K^+\gamma \)) that reduce background from charged particles, hadronic showers, and \(\pi^0 \) and \(\eta \) decays.

As in Ref. [8], the charged tracks used in identifying the meson candidates are combined from \(\pi^0 \) and \(\eta \) decays.

Neutral pion candidates are identified using two photon candidates reconstructed in the calorimeter, each with energy greater than 50 MeV. The invariant mass of the pair is required to satisfy \(15 < m_{\gamma\gamma} < 150 \) MeV/c\(^2\), which removes pairs whose invariant mass differs from the true \(m_{\pi^0} \) by more than about 3 times the experimental resolution. A kinematic fit with \(m_{\gamma\gamma} \) constrained to \(m_{\pi^0} \) is used to improve the momentum resolution.

A \(\rho^0 \) candidate is reconstructed by selecting two identified pions that have opposite charge and a common vertex. The \(\rho^+ \) candidates are obtained by pairing \(\pi^0 \) candidates with an identified charged pion. We select \(\rho^+ \) candidates with invariant mass \(m_{\pi^0\pi^+} \) within 250 MeV/c\(^2\) of \(m_{\pi^0} \) and momentum \(2.3 < p_{\pi^+} < 2.85 \) GeV/c. The \(\omega \) candidates are reconstructed from combinations of oppositely charged identified pions with a common vertex and \(\pi^0 \) candidates with invariant mass \(m_{\pi^-\pi^+\pi^0} \) within 23 MeV/c\(^2\) of \(m_{\omega} = 783 \) MeV/c\(^2\) and momentum \(2.4 < p_{\pi^-\pi^+\pi^0} < 2.8 \) GeV/c. The \(m_{\pi^-\pi^+\pi^0} \) resolution is slightly poorer in data than in Monte Carlo (MC) simulation. The resulting change in signal efficiency of the \(m_{\pi^-\pi^+\pi^0} \) selection is accounted for as a systematic error in the signal efficiency.

The photon and \(\rho/\omega \) meson candidates are combined to form the \(B \) meson candidates. We define \(\Delta E = E_B - E_{\text{beam}} \), where \(E_{\text{beam}} \) is the energy of each beam and \(E_B = E_\gamma + E_{\rho/\omega} \) is the energy of the \(B \) meson candidate. The signal candidates are centered at \(\Delta E = 0 \) with resolution of about 50 MeV and a tail towards negative \(\Delta E \) due to the asymmetric-energy response of the EMC. We also define the beam-energy-substituted mass \(m_{\text{ES}} = \sqrt{E_\gamma^2 + E_{\rho/\omega}^2 - p_B^2} \), where \(p_B \) is the momentum of the \(B \) candidate modified by scaling the photon energy to make \(E_\gamma + E_{\rho/\omega} - E_{\text{beam}} = 0 \). This procedure reduces the tail in the signal \(m_{\text{ES}} \) distribution that results from the asymmetric calorimeter response. The signal candidates peak at \(m_{\text{ES}} = m_B \) with a resolution of about 3 MeV/c\(^2\), dominated by the beam-energy spread.

We consider candidates in the \(\pi^0 \) background. As in Ref. [8], we calculate the thrust angle \(\theta_T \), the \(B \)-production angle \(\theta_B \), and the helicity angle \(\theta_H \). For \(B^0 \rightarrow \rho/\omega \) events, we select the candidate with the smallest value of \(\Delta E \).

We construct a neutral pion candidate by combining the signal from the continuum \(q\bar{q} \) background. As in Ref. [8], we calculate the thrust angle \(\theta_T \), the \(B \)-production angle \(\theta_B \), and the helicity angle \(\theta_H \). For \(B^0 \rightarrow \rho/\omega \) events, we select the candidate with the smallest value of \(\Delta E \).
in the ω rest frame. We also calculate several additional discriminating variables. The energy flow of the event excluding the B-meson daughters in 10° cones centered on the photon-candidate momentum provides discrimination between the jetlike continuum background and the more spherical signal events. For suppression of the initial-state radiation background, we consider R_2, the ratio of second- to zeroth-order Fox-Wolfram moments [10] in the frame recoiling from the photon momentum. We define the net flavor content as $\sum|N_i^+ - N_i^-|$, where N_i^\pm are the number of e^\pm, μ^\pm, K^\pm, and slow pions of each sign identified in the event [11]. On average, $B\bar{B}$ events have larger net flavor than continuum events. In the $B^0 \rightarrow \rho^0 \gamma$ and $B^0 \rightarrow \omega \gamma$ analyses, we use the separation along the beam axis of the B-meson candidate vertex and that of the rest of the event. This variable is useful due to the finite B lifetime. In the $B^0 \rightarrow \omega \gamma$ analysis, we use the ω Dalitz angle θ_ω, which is defined as the angle between the π^0 and the π^+ in the $\pi^+ \pi^- \pi^0$ rest frame [12]; $\cos \theta_\omega$ follows a $\sin^2 \theta_\omega$ distribution for true ω decays, as opposed to the uniform distribution of combinatorial background.

The background-suppression variables are combined into one discriminating variable via a neural network, which responds nonlinearly to the input variables and exploits correlations between the variables [13]. A separate neural network is trained for each mode.

The output for the neural network trained for $B^0 \rightarrow \rho^0 \gamma$ is shown in Fig. 1(b), where the MC simulation of the continuum background is compared with the off-resonance data, and the output for MC-simulated $B^0 \rightarrow D^- \pi^+$ decays is compared with $B^0 \rightarrow D^- \pi^+$ decays reconstructed in the on-resonance data. The latter comparison provides a cross-check of those input variables that depend on the properties of the other B meson in the event. This includes all of the variables except for θ_H and θ_D, which, for this check, are modeled using the signal distributions.

To suppress the continuum background, we make a selection on the neural-network output that is optimized for minimum statistical error as determined using MC samples of signal and background. The efficiency of this selection for the $B \rightarrow D \pi$ control sample differs slightly between the data and MC simulation. We account for this difference as a systematic error in the signal efficiency. For $B^+ \rightarrow \rho^+ \gamma$, we also require $|\cos \theta_H| < 0.6$ to reject $B^+ \rightarrow \rho^+ \pi^0$ events, which have a $\cos^2 \theta_H$ distribution, as opposed to the expected $\sin^2 \theta_H$ distribution of the signal process.

After applying the neural network, $\cos \theta_H$, and fitregion selection to the on-resonance data, 449 events remain in the $B^0 \rightarrow \rho^0 \gamma$ data, 480 events for $B^+ \rightarrow \rho^+ \gamma$, and 54 events for $B^0 \rightarrow \omega \gamma$. MC studies indicate that about 90% of the background in these samples comes from continuum events, and only about 10% from $B\bar{B}$.

For the signal extraction, we perform an unbinned extended maximum likelihood fit to the selected events.

For $B \rightarrow \rho \gamma$, the fit uses m_{ES}, ΔE^*, and $m_{\pi\pi}$, whereas for $B^0 \rightarrow \omega \gamma$, only m_{ES} and ΔE^* are used. The measured variables are largely uncorrelated, even after the $P_{\pi\pi}$ (or $p_\pi^* - p_\pi^0$) cut, allowing the probability density function (PDF) to be constructed as a product of independent distributions for each variable. Since the $B\bar{B}$ backgrounds have PDFs that largely resemble continuum but are much smaller, the signal extraction uses only a continuum component to describe the background. Biases due to $B\bar{B}$ backgrounds are considered below. The signal m_{ES} and ΔE^* distributions are described by the "crystal ball" shape [14], with the exception of the m_{ES} distribution for $B^0 \rightarrow \rho^0 \gamma$, where the Gaussian distribution is used. The relativistic Breit-Wigner line shape is used for the signal $m_{\pi\pi}$ distribution. The signal PDF parameters are obtained from MC simulation. The background m_{ES} and ΔE^* distributions are described by the ARGUS threshold function [15] and a second-order polynomial, respectively. The background $m_{\pi\pi}$ function is a sum of a Breit-Wigner component and a combinatorial component described by a first-order polynomial. The background PDF parameters are determined in the fit, with the exception of the $m_{\pi\pi}$ resonant fraction, which is fixed to the value measured in off-resonance data.

The ΔE^* vs m_{ES} distributions of the selected $B \rightarrow \rho \gamma$ and $B^0 \rightarrow \omega \gamma$ candidates are shown in Fig. 2 and the fitted signal yields are shown in Table I. No significant signal is seen in any mode. The quality of the fit is checked by comparing the overall likelihood of the fit with values obtained from an ensemble of

![FIG. 2. ΔE^* vs m_{ES} fit regions for (a) $B^0 \rightarrow \rho^0 \gamma$, (b) $B^+ \rightarrow \rho^+ \gamma$, and (c) $B^0 \rightarrow \omega \gamma$ candidates. The boxes indicate the regions where signal events would appear: $0.2 < \Delta E^* < 0.1$ GeV and $5.27 < m_{ES} < 5.29$ GeV/c^2. Assuming $\mathcal{B}(B^0 \rightarrow \rho^0 \gamma) = \frac{1}{2} \mathcal{B}(B^+ \rightarrow \rho^+ \gamma) = \mathcal{B}(B^0 \rightarrow \omega \gamma) = 10^{-5}$, we expect 9.9, 12.1, and 3.4 signal events in these regions, respectively.](image-url)
The signal yields and errors obtained from the signal extraction fit, the ranges of observed biases from $\bar{B}B$ backgrounds, selection efficiencies (ϵ), and the inferred branching fractions (B) for $B^0 \rightarrow \rho^0 \gamma$, $B^+ \rightarrow \rho^+ \gamma$, and $B^0 \rightarrow \omega \gamma$ in the on-resonance data sample. The “upper limit” is a 90% C.L. limit. The efficiencies include the partial branching fractions for the ρ/ω decays considered.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Yield (Events)</th>
<th>Bias (Events)</th>
<th>Upper limit (Events) (%)</th>
<th>ϵ</th>
<th>B (10^{-6})</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \rightarrow \rho^0 \gamma$</td>
<td>4.8$^{+5.7}_{-4.7}$</td>
<td>$(-0.5, 0.8)$</td>
<td>12.4</td>
<td>12.3</td>
<td>$0.4_{-0.5}^{+0.6}$</td>
</tr>
<tr>
<td>$B^+ \rightarrow \rho^+ \gamma$</td>
<td>6.2$^{+7.2}_{-6.2}$</td>
<td>$(-0.1, 2.0)$</td>
<td>15.4</td>
<td>9.2</td>
<td>$0.7_{-0.8}^{+0.9}$</td>
</tr>
<tr>
<td>$B^0 \rightarrow \omega \gamma$</td>
<td>0.1$^{+2.7}_{-2.0}$</td>
<td>$(-0.3, 0.5)$</td>
<td>3.6</td>
<td>4.6</td>
<td>$0.0_{-0.7}^{+0.7}$</td>
</tr>
</tbody>
</table>

The statistical uncertainties of the PDF parameters, one of which is the background $m_{\pi\pi}$ resonant fraction, are used as ranges within which we vary the parameters of the $B \rightarrow (\rho/\omega)\gamma$ fits. The resulting variations in the fitted signal yield, which amount to 5% for $B^0 \rightarrow \rho^0 \gamma$ and $B^0 \rightarrow \omega \gamma$ and 10% for $B^+ \rightarrow \rho^+ \gamma$, are taken as systematic uncertainties. The total multiplicative systematic error, including the signal-efficiency uncertainty, is 8% for $B^0 \rightarrow \rho^0 \gamma$ and 13% for $B^+ \rightarrow \rho^+ \gamma$ and $B^0 \rightarrow \omega \gamma$.

We assume $\mathcal{B}(Y(4S) \rightarrow \bar{B}B) = \mathcal{B}(Y(4S) \rightarrow B^+ B^-) = 0.5$. In calculating upper limits, we correct for bias from $\bar{B}B$ backgrounds by subtracting the smallest observed bias, which is found to be negative for all three modes, from the signal yield. We include the effects of the multiplicative systematic uncertainties by using an extension [17] of the method described in Ref. [18], wherein the systematic and statistical errors are convolved. The resulting 90% confidence level (C.L.) upper limits for the branching fractions are $\mathcal{B}(B^0 \rightarrow \rho^0 \gamma) < 1.2 \times 10^{-6}$, $\mathcal{B}(B^+ \rightarrow \rho^+ \gamma) < 2.1 \times 10^{-6}$, and $\mathcal{B}(B^0 \rightarrow \omega \gamma) < 1.0 \times 10^{-6}$. Although no significant signals are seen, Table I shows the measured \mathcal{B} for each mode. For this calculation, we subtract a bias corresponding to the center of the allowed range, treat the half-width of the range as the systematic error, and add systematic and statistical errors in quadrature.

We also calculate a combined limit for the generic process $B \rightarrow \rho \gamma$ by assuming $\Gamma(B \rightarrow \rho \gamma) = 2 \times \Gamma(B^0 \rightarrow \rho^0 \gamma)$ and using the lifetime ratio $\frac{\tau_{B^0}}{\tau_{B^+}} = 1.083 \pm 0.017$ [9]. The resulting 90% C.L. upper limit is $\mathcal{B}(B \rightarrow \rho \gamma) < 1.9 \times 10^{-6}$. Using the measured value of $\mathcal{B}(B \rightarrow K^+ \gamma)$ [8], this corresponds to a limit of $\mathcal{B}(B \rightarrow \rho \gamma)/\mathcal{B}(B \rightarrow K^+ \gamma) < 0.047$.

This limit may be used to constrain the ratio of CKM elements $|V_{td}/V_{ts}|$ by means of the equation [4]:

$$\frac{\mathcal{B}(B \rightarrow \rho \gamma)}{\mathcal{B}(B \rightarrow K^+ \gamma)} = \left| \frac{V_{td}}{V_{ts}} \right|^2 \left(\frac{1 - m_{\pi}^2/M_B^2}{1 - m_{K^+}^2/M_B^2} \right)^3 \zeta^2 [1 + \Delta R],$$

where ζ describes the flavor-SU(3) breaking between ρ and K^+, and ΔR accounts for annihilation diagrams. ΔR is different for ρ^0 and ρ^+, but we do not take this into account here. Both ζ and ΔR must be taken from theory and there are several different [4,19] values published. As an example, we choose the values $\zeta = 0.76 \pm 0.10$ and $\Delta R = 0.0 \pm 0.2$. We adjust both parameters down by one σ and find the limit $|V_{td}/V_{ts}| < 0.34$ at 90% C.L.

In conclusion, we have found no evidence for the exclusive $b \rightarrow d\gamma$ transitions $B \rightarrow \rho \gamma$ and $B^0 \rightarrow \omega \gamma$ in $(84.4 \pm 0.9) \times 10^6 \bar{B}B$ decays studied with the Babar detector. The 90% C.L. upper limits on the branching fractions are significantly lower than previous values and start to restrict the range indicated by SM predictions [3,4].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing.
organizations that support BABAR. The collaborating institutions thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

*Also with Universita’ di Perugia, Perugia, Italy.
†Also with Universita’ della Basilicata, Potenza, Italy.
‡Also with IFIC, Instituto de Fisica Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain.
§Deceased.

[13] We use the Stuttgart Neural-Network Simulator (http://www-ra.informatik.uni-tuebingen.de/SNNS) to train a neural net with one hidden layer of ten nodes.
[14] The crystal ball (CB) line shape is a modified Gaussian distribution with a transition to a tail function on the low side:

\[f_{CB} = \begin{cases}
\exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right) & \text{for } \frac{x - \mu}{\sigma} > \alpha \\
A \times \left[B - (\frac{x - \mu}{\sigma})^n\right]^{-n} & \text{for } \frac{x - \mu}{\sigma} < \alpha,
\end{cases} \]

where \(A = \frac{\alpha^n}{\sigma^n} \exp\left(-\frac{1}{2} \alpha^2\right)\) and \(B = \frac{\alpha^n}{\sigma^n} - |\alpha|\) are defined such as to maintain continuity of the function and its first derivative.

[15] We use the distribution \(x \sqrt{1 - x^2} \times \exp\left(\frac{\xi}{1 - x^2}\right)\), where \(x = m_{ES}/E_{beam}\), to describe the background \(m_{ES}\) distribution. H. Albrecht et al., Z. Phys. C 48, 543 (1990).