The following full text is a publisher’s version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/128815

Please be advised that this information was generated on 2017-08-07 and may be subject to change.
Measurement of the branching fraction for $B \rightarrow D^0 K^*$

A comprehensive test of CP violation within the standard model requires precision measurements of the three sides and three angles of the unitarity triangle, which are combinations of various Cabibbo-Kobayashi-Maskawa (CKM) matrix elements [1]. The measurement of the angle γ of the unitarity triangle is challenging and requires larger samples of B mesons than are currently available. A precise determination of γ at the B factories is likely to use many different decay modes. Decays of the form $B \to D^{(*)}K^{*}$ can provide a theoretically clean determination of γ [2]. For some of the proposed methods, there are distinct advantages to using the K^* modes [3]. In this paper we measure the branching fraction for one of these decays, $B^- \to D^0 K^{*-}$, which was first observed by the CLEO experiment [5]. If the D^0 is...
reconstructed in its decay to CP eigenstates, the $b\rightarrow c\bar{u}s$ and $b\rightarrow \bar{u}c\bar{s}$ quark transitions interfere, giving access to the phase γ through the measurement of direct CP violation asymmetries. However, the branching fractions for D^0 decays to CP eigenstates are only of the order of 1%, too small for the size of the available data sample. Therefore, for this analysis, we use decay modes of the D^0 and K^{*+} that have clear experimental signatures and sufficiently high branching fractions. This measurement provides an important first step towards establishing the feasibility of using the decay $B^-\rightarrow D^0K^{*-}$ for a future determination of γ.

We present here a measurement of the branching-fraction for the decay $B^-\rightarrow D^0K^{*-}$ using data collected with the BABAR detector at the SLAC PEP-II e^+e^- storage ring. The data correspond to an integrated luminosity of 81.5 fb$^{-1}$ taken at center-of-mass energies close to the $Y(4S)$ resonance, giving a sample of approximately $86\times10^6\,B\bar{B}$ pairs. We reconstruct D^0 candidates through the decays $D^0\rightarrow K^-\pi^+$, $D^0\rightarrow K^-\pi^+\pi^0$, and $D^0\rightarrow K^-\pi^+\pi^-\pi^+$. K^{*-} candidates are identified through the decay $K^{*-}\rightarrow K_S^0\pi^-$, with the K_S^0 decaying to a pair of charged pions. The decay $K^{*-}\rightarrow K^-\pi^0$ was not used in this analysis, due to the considerably larger backgrounds present.

A detailed description of the BABAR detector can be found elsewhere [6]. Only detector components relevant to this analysis are described here. Charged-particle trajectories are measured by a five-layer double-sided silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH), operating in the field of a 1.5-T solenoid. Charged-particle identification is achieved by combining measurements of ionization energy loss (dE/dx) in the DCH and SVT with information from a detector of internally reflected Cherenkov light (DIRC). Photons are detected in a CsI(Tl) electromagnetic calorimeter (EMC).

We set the event-selection criteria to minimize the statistical error on the branching fraction, using simulations of the signal and background. In general, charged tracks are required to have at least 12 DCH hits and a minimum transverse momentum of 0.1 GeV, and to originate from the interaction point, within 10 cm along the beam direction and 1.5 cm in the transverse plane. We use less restrictive selection criteria for tracks used to reconstruct $K_S^0\rightarrow\pi^+\pi^-$ candidates, to allow for displaced K_S^0 decay vertices. Photon candidates are identified in the EMC as deposits of energy isolated from charged tracks. They are required to have a minimum energy of 30 MeV and a shower shape consistent with that of a photon.

We use pairs of photons to reconstruct π^0 candidates, which are required to have an invariant mass between 125 and 144 MeV. We reconstruct K_S^0 candidates from pairs of oppositely charged tracks fitted to a common vertex. They are required to have an invariant mass within 8 MeV of the K_S^0 mass [7].

To reconstruct K^{*-} candidates, we combine K_S^0 candidates with charged tracks. We require the K^{*-} candidate to have an invariant mass within 75 MeV of 892 MeV. In addition, the K_S^0 vertex is required to be displaced by at least 3 mm from the K^{*-} vertex.

We reconstruct D^0 candidates from the appropriate combination of tracks and π^0 candidates. The K^- tracks must satisfy kaon identification criteria resulting in an efficiency of 80–95%, depending on the momentum. The probability of a pion to be misidentified as a kaon is less than 5%. We require the momenta of the K^- candidates to be greater than 250 MeV and their polar angle (relative to magnetic-field axis) to be in the interval $0.25<\theta<2.55$ rad to restrict them to a fiducial region where the kaon identification performance can be determined with small uncertainty. The tracks from the D^0 are fitted to a common vertex and we accept candidates if they have an invariant mass within 18 (14) MeV of the D^0 mass for the $K^-\pi^+$ ($K^-\pi^+\pi^0\pi^+$) decay. For the $K^-\pi^+\pi^0$ decay, we use an asymmetric mass requirement $-29<(m-1865\,\text{MeV})<+24\,\text{MeV}$, reflecting the distribution of the energy of the photons from the π^0 decay. It is known that the decay $D^0\rightarrow K^-\pi^+\pi^0$ occurs predominantly through an intermediate state $[K^{*-}(892)\text{ or }\rho^+(770)]$. Hence, to reduce the combinatorial background in the $K^-\pi^+\pi^0$ decay, we select events in the enhanced regions of the Dalitz plot, using amplitudes and phases determined by the CLEO experiment [8].

In reconstructing the decay chain, the measured momentum vector of each intermediate particle is determined by refitting the momenta of its decay products, constraining the mass to the nominal mass of the particle and requiring the decay products to originate from a common point. For the K^{*-} resonance only a geometrical constraint is used in this kinematic fit. Finally, to reconstruct B^- decays, D^0 candidates are combined with K^{*-} candidates.

At this stage of the event selection, the dominant background is from $e^+e^-\rightarrow q\bar{q}$ production. We suppress this background using requirements on the event topology and kinematics, and through the use of a Fisher discriminant. The ratio of the second and zeroth Fox-Wolfram moments [9], which is a measure of the event sphericity and is close to zero for approximately spherical events, is required to be less than 0.5. The absolute value of the cosine of the angle between the thrust axis of the B candidate and the thrust axis of the rest of the event, $|\cos \theta_T|$, is peaked at one for continuum events and is approximately flat for B decays. We require $|\cos \theta_T|<0.8$ for $K^-\pi^+$ and $K^-\pi^+\pi^0$ decays and $|\cos \theta_T|<0.75$ for $K^-\pi^+\pi^+\pi^0$ decays. The Fisher discriminant is built from the momentum of all particles in the event (excluding those used to form the B candidate) and the angle between this momentum and the thrust axis of the reconstructed B^-, both in the center-of-mass frame [10]. The K^{*-} helicity angle θ_H, defined as the angle between the π^- from the K^{*-} decay and the B^- flight direction in the rest frame of the K^{*-}, follows a $\cos^2 \theta_H$ distribution for signal events and is approximately flat for continuum events. To further reject continuum background in the $K^-\pi^-\pi^+\pi^0$ channel, we require $|\cos \theta_H|>0.4$.

The selection criteria just described reject all but approximately 0.001% of the background, while retaining between 4% and 13% of the signal, depending on the D^0 mode. The remaining background has approximately equal contributions from continuum and B decays. In the case of events with
We have studied the candidates and determined that the data are consistent with pure independent of the m performing an unbinned maximum likelihood fit to the ES. To investigate this, we have studied a simulated sample B systematic error. We have also verified that use of the studies of various simulated event samples is included as a ground. Therefore, we assume that the peaking background contributes no enhancement in the signal region from this background. In Table I, we observe a total of 161 2 B candidates: (a) D0 → K − π +, (b) D0 → K − π + π 0, and (c) D0 → K − π + π + π −. The solid lines show the fit used to extract the signal yields, with the distribution parametrized as a Gaussian plus a threshold function as described in the text. The dashed line indicates the combinatorial background component.

FIG. 1. The mES distributions of B − → D 0 K *− candidates: (a) D0 → K − π +, (b) D0 → K − π + π 0, and (c) D0 → K − π + π + π −. The solid lines show the fit used to extract the signal yields, with the distribution parametrized as a Gaussian plus a threshold function as described in the text. The dashed line indicates the combinatorial background component.

B − → D 0 π − events from data and Monte Carlo simulation. This sample is kinematically similar to the B − → D 0 K *− decay. We select B − → D 0 π − events in the same way as the B − → D 0 K *− sample, with the additional requirement that the π − fails loose kaon identification criteria, to remove B − → D 0 K − events. Approximately 3000 B − → D 0 π − candidates in each D 0 decay mode are selected from the data. The purity of the sample is 94% for the K − π + π 0 decay and 98% for the K − π + and K − π + π + π − decays. We use this sample to determine correction factors for the efficiencies for the B − → D 0 π − decay.

TABLE I. Signal yield, efficiency and measured branching fraction B(B − → D 0 K *−) for the three D 0 decay modes. Yields are extracted from the fits to the mES distribution from data (errors are statistical only). Efficiencies are computed from simulated events. For the branching fractions, the first errors are statistical and the second systematic.

<table>
<thead>
<tr>
<th></th>
<th>K − π +</th>
<th>K − π + π 0</th>
<th>K − π + π − π +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal yield</td>
<td>56.2±9.4</td>
<td>51.7±11.0</td>
<td>52.6±8.7</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>12.8</td>
<td>3.5</td>
<td>4.0</td>
</tr>
<tr>
<td>B(10−4)</td>
<td>5.8±1.0±0.5</td>
<td>5.8±1.2±0.7</td>
<td>8.7±1.5±0.9</td>
</tr>
</tbody>
</table>

To determine the efficiency for each sample of B − → D 0 K *− events from samples of simulated signal events, we apply small corrections determined from data to the efficiency calculation to account for the overestimation of the tracking and particle-identification performance, and for the π 0 and K 0 S reconstruction efficiencies in the Monte Carlo simulation. The product of these efficiency corrections is about 0.9.

To quantify the ability of the simulation to model the variables used in the event selection, we use a sample of

more than one B − candidate (5−17%, depending on the D 0 mode), we choose the best candidate on the basis of the χ 2 formed from the differences of the measured and true B −, D 0, and K 0 S masses, scaled by the mass resolutions. Studies of simulated signal events have determined that the algorithm does not introduce a bias and chooses the correct B − candidate in approximately 80% of the events with multiple candidates.

Finally, we identify B-meson decays kinematically using two nearly independent variables: the energy-substituted B mass mES = (s/2 + p 0 · p B)/E 0 − p B 2, where the subscripts 0 and B refer to the e + e − system and the B candidate respectively, s is the square of the center-of-mass energy, and energies (E) and momentum vectors (p) are computed in the laboratory frame; and ΔE = E B − Δs/2, where E B is the B candidate energy in the center-of-mass frame. We select B − candidates with |ΔE|<25 MeV, which corresponds to approximately ±2.2σ (where the resolution σ is found to be independent of the D 0 decay mode). In addition, the signal events are expected to have values of mES close to the B − mass.

We determine the signal yield of B − → D 0 K *− events by performing an unbinned maximum likelihood fit to the mES distribution of the selected candidates for the signal region in ΔE. The signal distribution is parametrized as a Gaussian function and the combinatorial background as a threshold function [11]. All parameters except the end point of the threshold function are unconstrained in the fit.

The signal yield determined from the fit potentially includes backgrounds from other B ¯ B events that also peak in mES. To investigate this, we have studied a simulated sample of generic B ¯ B decays and also high statistics simulated samples of other B → D(*)K(*) decays. The simulation indicates no enhancement in the signal region from this background. Therefore, we assume that the peaking background is negligible and the uncertainty in its determination from the studies of various simulated event samples is included as a systematic error. We have also verified that use of the B − mass and error in the χ 2 calculation for the choice of the best B − candidate does not affect the smooth shape of the background in mES.

Figure 1 shows the mES distribution for the three different D 0 decay modes with the fit function superimposed. A clear signal is seen in all cases. The signal yield is detailed in Table I. We observe a total of 161 ± 17 B − → D 0 K *− events. We have studied the cos θ H distribution for the selected candidates and determined that the data are consistent with pure B − → D 0 K *− decay.

We determine the selection efficiency for each sample of B − → D 0 K *− events from samples of simulated signal events. We apply small corrections determined from data to the efficiency calculation to account for the overestimation of the tracking and particle-identification performance, and for the π 0 and K 0 S reconstruction efficiencies in the Monte Carlo simulation. The product of these efficiency corrections is about 0.9.

To quantify the ability of the simulation to model the variables used in the event selection, we use a sample of
\(B^- \rightarrow D^0 K^{*-} \) selection. We include the statistical precision of these corrections in the systematic error of the branching fraction. The obtained correction factors vary from about 0.95 for the \(K^- \pi^+\) and \(K^- \pi^+ \pi^- \pi^+\) decays to 0.85 for the \(K^- \pi^+ \pi^0\) decay. The largest correction factor comes from the modeling of the \(D^0\) mass distribution. Figure 2 shows the background subtracted \(D^0\) mass distributions from data compared with the simulated distributions for the \(B^- \rightarrow D^0 \pi^-\) sample. Small differences in the mean and width of the reconstructed \(D^0\) candidates are evident for all three \(D^0\) modes.

We determine the branching fraction separately for each of the \(D^0\) decay modes from

\[
\mathcal{B}(B^- \rightarrow D^0 K^{*-}) = \frac{N}{\epsilon \cdot N_{\bar{B}B} \cdot \mathcal{B}_{D^0} \cdot \mathcal{B}_{K^{*-}} \cdot \mathcal{B}_{\pi^0} \cdot \mathcal{B}_{\pi^0}}
\]

for a signal yield of \(N\) events and a sample containing \(N_{\bar{B}B}\) pairs of \(B\) mesons. The selection efficiencies \(\epsilon\) after all corrections are reported in Table I. \(\mathcal{B}_{D^0}, \mathcal{B}_{K^{*-}}, \mathcal{B}_{\pi^0},\) and \(\mathcal{B}_{\pi^0}\), the branching fractions for the \(D^0, K^{*-}, K^0_S,\) and \(\pi^0\), respectively, to the relevant final states, are obtained from Ref. [7] \((\mathcal{B}_{\pi^0}\) in the equation is only relevant for the \(K^- \pi^+ \pi^0\) mode). We assume that the \(Y(4S)\) decays to pairs of \(B^+ B^-\) and \(B^0 \bar{B}^0\) mesons with equal probability and we do not include any additional uncertainty due to this assumption.

We have identified several sources of systematic uncertainty as significant, as shown in Table II. The number of \(B \bar{B}\) pairs in the data sample is known with an uncertainty of 1.1%. The uncertainties in the \(D^0\) branching fractions are taken from Ref. [7]. We determine the systematic errors arising from uncertainties in track, \(K^0_S\) and \(\pi^0\) reconstruction and in kaon identification from studies of high statistics data control samples. The uncertainty in the track reconstruction efficiency is determined to be 0.8% per track originating from the interaction region. There is an additional uncertainty of 3% arising from the knowledge of the \(K^0_S\) reconstruction efficiency. The charged kaon identification leads to a systematic uncertainty of 2%, and the \(\pi^0\) reconstruction to a systematic uncertainty of 5%. The systematic error from the knowledge of the peaking background is taken from the studies of various simulated data samples described above. An additional uncertainty from the knowledge of the \(K^{*-}\) line shape has been determined to be 3%. Finally, we include the errors on the correction factors determined from the \(B^- \rightarrow D^0 \pi^-\) sample. We have studied the uncertainty in the parameterization of the background and of the signal by repeating the \(m_{ES}\) fits with different combinations of parameters of the functional form fixed to values obtained either from simulation or from studies of sideband regions in \(\Delta E\). We conclude that the systematic uncertainty from this source is negligible.

The resulting \(B\) branching fractions corresponding to three different \(D^0\) decay modes are listed in Table I. The \(\chi^2\) of the three measurements is 2.7, giving a probability of 26% that they are consistent. We determine the weighted average of the three measurements, \(\mathcal{B}(B^- \rightarrow D^0 K^{*-}) = (6.3 \pm 0.7 \pm 0.5) \times 10^{-4}\), taking into account the correlations between the systematic uncertainties. The result of this analysis is in good agreement with a previous measurement by CLEO.

Table II. Systematic uncertainty estimates for each of the three \(D^0\) decay samples.

<table>
<thead>
<tr>
<th>Source</th>
<th>(K^- \pi^+)</th>
<th>(K^- \pi^+ \pi^0)</th>
<th>(K^- \pi^+ \pi^- \pi^+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of (B \bar{B}) events</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Simulation statistics</td>
<td>5.6</td>
<td>6.5</td>
<td>6.0</td>
</tr>
<tr>
<td>(D^0) branching fraction</td>
<td>2.4</td>
<td>6.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Tracking efficiency</td>
<td>2.4</td>
<td>2.4</td>
<td>4.0</td>
</tr>
<tr>
<td>(K^0_S) efficiency</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Particle identification</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>(\pi^0) efficiency</td>
<td>-</td>
<td>5.0</td>
<td>-</td>
</tr>
<tr>
<td>Peaking background</td>
<td>2.3</td>
<td>1.4</td>
<td>3.1</td>
</tr>
<tr>
<td>(K^{*-}) line shape</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Data/simulation differences</td>
<td>1.4</td>
<td>2.4</td>
<td>2.1</td>
</tr>
<tr>
<td>Total</td>
<td>8.6</td>
<td>11.9</td>
<td>10.3</td>
</tr>
</tbody>
</table>
In summary, we have studied the decay $B^+ \rightarrow D^0 K^{*+}$, where the D^0 was detected through its decays to $K^- \pi^+$, $K^- \pi^- \pi^+$, and $K^- \pi^- \pi^- \pi^+$ and the K^{*+} through its decay to $K^0 \pi^+$. We have measured the branching fraction $\mathcal{B}(B^+ \rightarrow D^0 K^{*+}) = (6.3 \pm 0.7 \pm 0.5) \times 10^{-4}$. This is in good agreement with the previous measurement of this branching fraction, and significantly improves on its precision. In the future, with larger data samples, this decay will be studied with the D^0 reconstructed in CP eigenstates. Eventually it is hoped that decays of the form $B \rightarrow D^{(*)} K^{(*)}$ can provide important constraints on the angle γ of the unitarity triangle.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by U.S. DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

[4] Charge conjugate decays are implied throughout this paper.
[6] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Meth-