Study of the $\tau^{-} \rightarrow 3h^{-}2h^{+}\nu_{\tau}$ decay

STUDY OF THE $\tau^- \rightarrow 3h^- 2\gamma^+ \nu_\tau$ DECAY

PHYSICAL REVIEW D 72, 072001 (2005)

25Ecole Polytechnique, LLR, F-91128 Palaiseau, France
26University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
27Università di Ferrara, Dipartimento di Fisica, Italy and INFN, I-44100 Ferrara, Italy
28Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
29Università di Genova, Dipartimento di Fisica, Italy and INFN, I-16146 Genova, Italy
30Harvard University, Cambridge, Massachusetts 02138, USA
31Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
32Imperial College London, London, SW7 2AZ, United Kingdom
33University of Iowa, Iowa City, Iowa 52242, USA
34Iowa State University, Ames, Iowa 50011-3160, USA
35Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France
36Lawrence Livermore National Laboratory, Livermore, California 94550, USA
37University of Liverpool, Liverpool L69 72E, United Kingdom
38Queen Mary, University of London, E1 4NS, United Kingdom
39University of London, Royal Holloway, United Kingdom and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
40University of Louisville, Louisville, Kentucky 40292, USA
41University of Manchester, Manchester M13 9PL, United Kingdom
42University of Maryland, College Park, Maryland 20742, USA
43University of Massachusetts, Amherst, Massachusetts 01003, USA
44Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
45McGill University, Montréal, Quebec, Canada H3A 2T8
46Università di Milano, Dipartimento di Fisica, Italy and INFN, I-20133 Milano, Italy
47University of Mississippi, University, Mississippi 38677, USA
48Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, Quebec, Canada H3C 3J7
49Mount Holyoke College, South Hadley, Massachusetts 01075, USA
50Università di Napoli Federico II, Dipartimento di Scienze Fisiche, Italy and INFN, I-80126, Napoli, Italy
51NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
52University of Notre Dame, Notre Dame, Indiana 46556, USA
53Ohio State University, Columbus, Ohio 43210, USA
54University of Oregon, Eugene, Oregon 97403, USA
55Università di Padova, Dipartimento di Fisica, Italy and INFN, I-35131 Padova, Italy
56Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
57University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
58Università di Perugia, Dipartimento di Fisica, Italy and INFN, I-06100 Perugia, Italy
59Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore, Italy and INFN, I-56127 Pisa, Italy
60Prairie View A&M University, Prairie View, Texas 77446, USA
61Princeton University, Princeton, New Jersey 08544, USA
62Università di Roma La Sapienza, Dipartimento di Fisica, Italy and INFN, I-00185 Roma, Italy
63Universitä Rostock, D-18051 Rostock, Germany
64Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
65DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
66University of South Carolina, Columbia, South Carolina 29208, USA
67Stanford Linear Accelerator Center, Stanford, California 94309, USA
68Stanford University, Stanford, California 94305-4060, USA
69State University of New York, Albany, New York 12222, USA
70University of Tennessee, Knoxville, Tennessee 37996, USA
71University of Texas at Austin, Austin, Texas 78712, USA
72University of Texas at Dallas, Richardson, Texas 75083, USA
73Università di Torino, Dipartimento di Fisica Sperimentale, Italy and INFN, I-10125 Torino, Italy
74Università di Trieste, Dipartimento di Fisica, Italy and INFN, I-34127 Trieste, Italy
75IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
76Vanderbilt University, Nashville, Tennessee 37235, USA
77University of Victoria, Victoria, British Columbia, Canada V8W 3P6
78Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
79University of Wisconsin, Madison, Wisconsin 53706, USA
80Yale University, New Haven, Connecticut 06511, USA

(Received 3 May 2005; published 7 October 2005)

*Also with Università della Basilicata, Potenza, Italy.
†Deceased
The branching fraction of the $\tau^- \rightarrow 3h^- 2h^+ \nu_{\tau}$ decay ($h = \pi, K$) is measured with the BABAR detector to be $(8.56 \pm 0.05 \pm 0.42) \times 10^{-4}$, where the first error is statistical and the second systematic. The observed structure of this decay is significantly different from the phase space prediction, with the ρ resonance playing a strong role. The decay $\tau^- \rightarrow f_1(1285)\pi^- \nu_{\tau}$, with the $f_1(1285)$ meson decaying to four charged pions, is observed and the branching fraction is measured to be $(3.9 \pm 0.7 \pm 0.5) \times 10^{-4}$.

DOI: 10.1103/PhysRevD.72.072001 PACS numbers: 13.35.Dx, 14.60.Fg
STUDY OF THE $\tau^- \rightarrow 3h^- 2h^+ \nu_\tau$, DECAY

tracks is consistent with originating from a photon conversion. The invariant mass of the five charged particles is required to be less than $1.8 \text{ GeV}/c^2$. All invariant masses shown are calculated assuming that the particles are pions.

It is also required that there be no π^0 candidates in the signal hemisphere. A π^0 candidate consists of two clusters in the electromagnetic calorimeter that are not associated with any track. Each cluster is required to have an energy of at least 0.050 GeV and the two clusters have a combined invariant mass between 0.115 and $0.150 \text{ GeV}/c^2$. In addition, any remaining clusters with energy greater than 0.5 GeV that are not associated to a track are considered a π^0 candidate.

A total of $20,920$ and $13,929$ events are selected when an electron or muon, respectively, are identified in the tag hemisphere.

The selection efficiency is defined as the number of events with a $\tau^- \rightarrow 3h^- 2h^+ \nu_\tau$ decay in signal hemisphere and a tau lepton decay in the tag hemisphere divided by the number of τ pair events with a $\tau^- \rightarrow 3h^- 2h^+ \nu_\tau$. The branching fraction of the τ leptonic decay mode is incorporated into the selection efficiency. The efficiencies are $(4.71 \pm 0.05)\%$ and $(3.03 \pm 0.04)\%$ in the electron and muon samples, respectively. The efficiencies are obtained from the Monte Carlo simulation and the quoted uncertainty is the Monte Carlo statistical error.

The background in the selected sample comes from other τ decays and multihadronic events. The background percentages in the electron and the muon tag samples estimated from the Monte Carlo simulation are $(20.6 \pm 2.0)\%$ and $(21.7 \pm 2.1)\%$, respectively. The errors are the combined statistical and systematic uncertainties. The sources of background in the electron tag sample can be broken down into the following categories: $\tau^- \rightarrow 3h^- 2h^+ \pi^0 \nu_\tau$ decays (7.2%), τ decays with one or three tracks and at least one π^0 (6.3%), τ decays with a K^0_S (4.9%), multihadronic events (1.8%, primarily π^0 events), and a residual amount from other τ decays (0.5%). Background from Bhabha scattering and two-photon production is negligible. The relative uncertainties range between 15% and 20% for each background and reflect the statistical precision of the data and Monte Carlo samples used to evaluate the backgrounds. The backgrounds in the muon tag sample are very similar.

In order to validate our Monte Carlo simulation for the background contamination we use experimental data samples where the particular background is enhanced. The uncertainty on the $\tau^- \rightarrow 3h^- 2h^+ \pi^0 \nu_\tau$ background is estimated to be 20% by comparing the number of π^0 mesons reconstructed in five charged track sample in the data and Monte Carlo simulation. The background from $\tau^- \rightarrow h^- \pi^0 \nu_\tau$ and $\tau^- \rightarrow h^- h^+ h^+ \pi^0 \nu_\tau$ arises when one or both of the photons from the decay of a π^0 converts to an $e^+ e^-$ pair or from a $\pi^0 \rightarrow e^+ e^- \gamma$ decay. The uncertainty on this background is estimated to be 15% from the number of conversions and number of tracks identified as electrons.

Background can also arise from $\tau^- \rightarrow \pi^- K^0_S K^0_S \nu_\tau$ and $\tau^- \rightarrow h^- h^+ h^+ K^0_S \nu_\tau$ decays, both of which have been observed by other experiments [7]. The background from these decays is determined by fitting the mass distribution of $\pi^- \pi^-$ pairs to obtain an estimate of the number of K^0_S mesons. The background estimation uses the Monte Carlo prediction for the $\tau^- \rightarrow \pi^- K^0_S K^0_S \nu_\tau$ decay modes. The $\tau^- \rightarrow h^- h^- h^+ K^0_S \nu_\tau$ decay mode is not simulated and the background is assumed to be the excess of K^0_S mesons in the data over the Monte Carlo prediction. The uncertainty in the background from τ decays with K^0_S mesons was found to be approximately 20% and includes contributions from the statistical uncertainties of the fits to the mass distribution of $\pi^- \pi^-$ pairs and the branching ratios of the background decay modes. In addition, checks were made to ensure that the K^0_S background was from τ decays and not multihadronic events.

The background from multihadronic events was estimated from the number of events for which the reconstructed mass of the five tracks is above the τ mass, and also from the number of events with more than one electromagnetic cluster in the tag hemisphere. The uncertainty in the multihadronic background is estimated to be 20%.

The branching fraction is defined as $B = N_{sel}(1-f_{bkgd})/(2N\epsilon)$ where N_{sel} is the number of selected events, N is the number of tau pair events determined from the cross section and luminosity, f_{bkgd} is the fraction of background, and ϵ is the efficiency for selecting $\tau^- \rightarrow 3h^- 2h^+ \nu_\tau$ and lepton events.

The branching fraction of the $\tau^- \rightarrow 3h^- 2h^+ \nu_\tau$ decay is found to be $(8.53 \pm 0.06 \pm 0.42) \times 10^{-4}$ and $(8.73 \pm 0.07 \pm 0.48) \times 10^{-4}$ for the data selected by the electron and muon tags, respectively. The first uncertainty is the statistical error and the second systematic. The average branching fraction is $(8.56 \pm 0.05 \pm 0.42) \times 10^{-4}$ where the correlation between the systematic errors in the electron and muon tag results is taken into account. Our value of the branching fraction is in good agreement with the Particle Data Group fit value of $(8.2 \pm 0.6) \times 10^{-4}$ [7].

The systematic error includes contributions from the efficiency for reconstructing the six tracks in the event (3.1%), the background in the sample (2.4%), the luminosity and $\tau^- \tau^+$ cross section (2.3%), the π^0 finding algorithm (2.0%), and the lepton identification in the tag hemisphere (1.0% for electrons and 2.5% for muons).

The error on the efficiency for reconstructing a track is estimated to be 1.2% for tracks with $p_T < 0.3 \text{ GeV}/c$ and 0.5% for tracks with $p_T > 0.3 \text{ GeV}/c$. The errors were obtained from comparison of efficiencies of the standalone track reconstruction in the silicon vertex tracker and the drift chamber, and confirmed by an independent analysis of τ decays into three charged particles and a neutrino. Variation of selection cuts such as the minimum transverse
momentum of the track, the number of tracks with hits in the silicon vertex tracker, and the sum of the d_{xy} of the five tracks resulted in a negligible change in the branching fraction.

Variation of the selection criteria produced consistent results for the branching fraction. In addition, the selection efficiency was found to have no dependence on the reconstructed mass of the five tracks.

In Fig. 1, the distribution of the invariant mass of the five charged particles in the signal hemisphere is presented. The discrepancy between Tauola, which uses a phase space distribution for $\tau^+ \rightarrow 3\pi^+ 2\pi^0 \nu_\tau$ [6], and the data is believed to be due to resonant contributions in the $\tau^+ \rightarrow 3\pi^- 2\pi^+ \nu_\tau$ decay mode. There are three allowed isospin states for this decay mode (see Ref. [9]) and two of these isospin states have particles with quantum numbers of the ρ meson. Figure 2 shows the mass of $h^+ h^- \pi^+$ pair combinations where the shoulder at 0.77 GeV/c^2 suggests a strong contribution from the ρ resonance.

No attempt was made to extract the fraction of ρ mesons as no model for resonant structure of the $\tau^+ \rightarrow 3h^- 2h^+ \nu_\tau$ decay exists. Such a model would need to include the three allowed isospin states and the admixture of the isospin states could be extracted from this data sample as it was done for $\tau^+ \rightarrow h^- h^+ h^+ \nu_\tau$ [10].

The data sample can also be used to study the $\tau^+ \rightarrow f_1(1285)\pi^- \nu_\tau$ decay, where the $f_1(1285)$ decays into a $2\pi^- 2\pi^+$ final state. In Fig. 3, the invariant mass of the $2h^+ 2h^-$ particle system is plotted for data. The fit to the data uses a second-order polynomial distribution for the background and a Breit-Wigner for the peak region. The Breit-Wigner is convoluted with a Gaussian distribution with a standard deviation corresponding to the expected mass resolution. The background distribution was determined by fitting the region between 1.1 and 1.4 GeV/c^2 excluding the $f_1(1285)$ peak (1.25-1.31 GeV/c^2).

A total of $1369 \pm 232 \tau^+ \rightarrow f_1(1285)\pi^- \nu_\tau$ decays are obtained from the fit. The fraction of $\tau^+ \rightarrow f_1(1285)\pi^- \nu_\tau$ decays found in the $\tau^+ \rightarrow 3h^- 2h^+ \nu_\tau$ sample is measured to be $(0.050 \pm 0.008 \pm 0.005)$ and the branching fraction of the $\tau^+ \rightarrow f_1(1285)\pi^- \nu_\tau$ decay is calculated to be $(3.9 \pm 0.7 \pm 0.5) \times 10^{-4}$. The branching fraction for the $f_1(1285) \rightarrow 2\pi^- 2\pi^+$ decay used to calculate the $\tau^+ \rightarrow f_1(1285)\pi^- \nu_\tau$ branching fraction is taken from the Particle Data Group [7]. The first errors are the statistical

![FIG. 1](color online). Invariant mass of the five charged particles in the signal hemisphere after all other selection criteria (except the mass requirement) are applied. The points are the data and the histogram is the Monte Carlo simulation for both the electron and muon tag samples. The unshaded and two shaded histograms are the signal, tau, and multihadronic background events, respectively. The arrow indicates the selection requirement applied to the samples. The Monte Carlo sample is normalized to the luminosity of the data sample.

![FIG. 2](Reconstructed mass of $h^+ h^-$ pairs in the five tracks in the signal hemisphere. The data are shown as points with error bars. The unshaded and shaded histograms are the signal and background predicted by the Monte Carlo simulation. The peak at 0.5 GeV/c^2 is due to K_S^0 mesons that are not rejected by the selection. There are six entries per event.

![FIG. 3](Reconstructed mass of the $2h^+ 2h^-$ combinations in the signal hemisphere. The solid line is a fit to the data using a second-order polynomial distribution (dashed line) for the background and a Breit-Wigner convoluted by a Gaussian for the peak region. The data are shown as points with error bars. There are three entries per event.)
STUDY OF THE \(\tau^- \to 3h^- 2h^+ \nu_\tau \) DECAY

uncertainties obtained from the fit and the second errors are
the systematic uncertainties. The systematic uncertainties
include a contribution from the fit (10%) estimated by
studying the results of fits using different mass bins, back-
ground functions, and detector resolutions. The systematic
error on the branching fraction also includes the uncer-
tainty on the branching fractions of the \(\tau^- \to 3h^- 2h^+ \nu_\tau \)
(5%) and the \(f_1(1285) \to 2\pi^- 2\pi^+ \) decay modes (6%).

Checks confirmed that the \(f_1(1285) \) signal did not arise
from multihadronic events. This was done by relaxing the
selection criteria in a way which increased the multihad-
ronic background and confirming that the \(f_1(1285) \) signal
did not increase. In addition, the observation of the \(\tau^- \to f_1(1285)\pi^- \nu_\tau \) decay was confirmed by looking at a data
sample with a hadron tag.

Our value of the \(\tau^- \to f_1(1285)\pi^- \nu_\tau \) branching fraction
is in agreement with the result obtained by the CLEO
Collaboration, \((5.8 \pm 2.3) \times 10^{-4} \), obtained using the
\(f_1(1285) \to \eta\pi\pi \) decay mode [11]. It is also consistent
with a theoretical prediction of \(2.91 \times 10^{-4} \) [12].

In summary, the BABAR Collaboration has measured the
\(\tau^- \to 3h^- 2h^+ \nu_\tau \) branching fraction, \(B(\tau^- \to 3h^- 2h^+ \nu_\tau) = (8.56 \pm 0.05 \pm 0.42) \times 10^{-4} \). The mass of the five charged hadron system is not well described by a
phase space model. The invariant mass distribution of \(h^- h^+ \) pairs shows that the \(\rho \) meson is produced in the
\(\tau^- \to 3h^- 2h^+ \nu_\tau \) decay. The decay \(\tau^- \to f_1(1285)\pi^- \nu_\tau \),
is confirmed in the \(f_1(1285) \to 2\pi^- 2\pi^+ \) channel and the
branching fraction measured is \(B(\tau^- \to f_1(1285)\pi^- \nu_\tau) =
(3.9 \pm 0.7 \pm 0.5) \times 10^{-4} \).

We are grateful for the extraordinary contributions of
our PEP-II colleagues in achieving the excellent luminos-
ity and machine conditions that have made this work
possible. The success of this project also relies critically
on the expertise and dedication of the computing organi-
izations that support BABAR. The collaborating institutions
wish to thank SLAC for its support and the kind hospitality
extended to them. This work is supported by the US
Department of Energy and National Science Foundation,
the Natural Sciences and Engineering Research Council
(Canada), Institute of High Energy Physics (China), the
Commissariat à l’Energie Atomique and Institut National
de Physique Nucléaire et de Physique des Particules
(France), the Bundesministerium für Bildung und
Forschung and Deutsche Forschungsgemeinschaft
(Germany), the Istituto Nazionale di Fisica Nucleare
(Italy), the Foundation for Fundamental Research on
Matter (The Netherlands), the Research Council of
Norway, the Ministry of Science and Technology of the
Russian Federation, and the Particle Physics and
Astronomy Research Council (United Kingdom).

Individuals have received support from CONACyT
(Mexico), the A.P. Sloan Foundation, the Research
Corporation, and the Alexander von Humboldt
Foundation.

[1] Charge conjugation is assumed throughout this paper. In
addition, a five charged particle state is not considered a
\(\tau^- \to 3h^- 2h^+ \nu_\tau \) decay if it was the result of a \(K_S^0 \) decay.
Modern Physics, Vol. 160 (Springer-Verlag, New York,
2000).