Measurement of CP observables for the decays $B^\pm \rightarrow D^0 CP\nu^\pm$
Measurement of CP Observables for the...

*Physical Review D 72, 071103 (2005)

21 University of Colorado, Boulder, Colorado 80309, USA
22 Colorado State University, Fort Collins, Colorado 80523, USA
23 Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
24 Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
25 Ecole Polytechnique, LLR, F-91128 Palaiseau, France
26 University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
27 Dipartimento di Fisica and INFN, Università di Ferrara, I-44100 Ferrara, Italy
28 Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
29 Dipartimento di Fisica and INFN, Università di Genova, I-16146 Genova, Italy
30 Harvard University, Cambridge, Massachusetts 02138, USA
31 Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
32 Imperial College London, London, SW7 2AZ, United Kingdom
33 University of Iowa, Iowa City, Iowa 52242, USA
34 Iowa State University, Ames, Iowa 50011-3160, USA
35 Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France
36 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
37 University of Liverpool, Liverpool L69 72E, United Kingdom
38 Queen Mary, University of London, E1 4NS, United Kingdom
39 University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
40 University of Louisville, Louisville, Kentucky 40292, USA
41 University of Manchester, Manchester M13 9PL, United Kingdom
42 University of Maryland, College Park, Maryland 20742, USA
43 University of Massachusetts, Amherst, Massachusetts 01003, USA
44 Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
45 McGill University, Montréal, Quebec, Canada H3A 2T8
46 Dipartimento di Fisica and INFN, Università di Milano, I-20133 Milano, Italy
47 University of Mississippi, University, Mississippi 38677, USA
48 Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, Quebec, Canada H3C 3J7
49 Mount Holyoke College, South Hadley, Massachusetts 01075, USA
50 Dipartimento di Scienze Fisiche e INFN, Università di Napoli Federico II, I-80126, Napoli, Italy
51 NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
52 University of Notre Dame, Notre Dame, Indiana 46556, USA
53 Ohio State University, Columbus, Ohio 43210, USA
54 University of Oregon, Eugene, Oregon 97403, USA
55 Dipartimento di Fisica and INFN, Università di Padova, I-35131 Padova, Italy
56 Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
57 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
58 Dipartimento di Fisica and INFN, Università di Perugia, I-06100 Perugia, Italy
59 Dipartimento di Fisica, Università di Pisa, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
60 Prairie View A&M University, Prairie View, Texas 77446, USA
61 Princeton University, Princeton, New Jersey 08544, USA
62 Dipartimento di Fisica and INFN, Università di Roma La Sapienza, I-00185 Roma, Italy
63 Università Rostock, D-18051 Rostock, Germany
64 Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
65 DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
66 University of South Carolina, Columbia, South Carolina 29208, USA
67 Stanford Linear Accelerator Center, Stanford, California 94309, USA
68 Stanford University, Stanford, California 94305-4060, USA
69 State University of New York, Albany, New York 12222, USA
70 University of Tennessee, Knoxville, Tennessee 37996, USA
71 University of Texas at Austin, Austin, Texas 78712, USA
72 University of Texas at Dallas, Richardson, Texas 75083, USA
73 Dipartimento di Fisica Sperimentale and INFN, Università di Torino, I-10125 Torino, Italy
74 Dipartimento di Fisica and INFN, Università di Trieste, I-34127 Trieste, Italy
75 IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
76 Vanderbilt University, Nashville, Tennessee 37235, USA

*Also with Dipartimento di Fisica, Università di Perugia, Perugia, Italy.
† Also with Università della Basilicata, Potenza, Italy.
‡ Deceased.
The measurement of CP violation in B-meson decays offers a means to over-constrain the unitarity triangle. A theoretically clean determination of the angle \(\gamma = \arg(-V_{ud} V_{ub}^* / V_{cs} V_{cb}^*) \) is provided by the $B^- \to D^0 \bar{K}^*(892)^-$ decay channels in which the favored $b \to c\bar{s}u$ and suppressed $b \to c\bar{u}e^+\nu_e$ tree amplitudes interfere \cite{1,2}. Results on the $B^- \to D^{(*)+}K^-$ decays have been published by the BABAR \cite{3-5} and BELLE \cite{6,7} collaborations. In this paper, we present a study based on the interference between $B^- \to D^0 \bar{K}^*(892)^-$ and $B^- \to \bar{D}^0 K^{*-}$ when both D^0 and \bar{D}^0 decay to the same CP eigenstate (D_{CP}^0). Reference to a charge conjugate mode is implied throughout this paper unless otherwise stated.

We follow \cite{2,8} and define:

\[
\mathcal{R}_{CP} = \frac{\Gamma(B^- \to D^0_{CP} K^{*-}) + \Gamma(B^+ \to \bar{D}^0_{CP} K^{*-})}{\Gamma(B^- \to D^0_{CP} K^{*-}) + \Gamma(B^+ \to \bar{D}^0_{CP} K^{*-})},
\]

\[
\mathcal{A}_{CP} = \frac{\Gamma(B^- \to D^0_{CP} K^{*-}) - \Gamma(B^+ \to \bar{D}^0_{CP} K^{*-})}{\Gamma(B^- \to D^0_{CP} K^{*-}) + \Gamma(B^+ \to \bar{D}^0_{CP} K^{*-})}.
\]

Both \mathcal{A}_{CP} and \mathcal{R}_{CP} carry CP-violating information. Neglecting $D^0\bar{D}^0$ mixing, they can be expressed as follows:

\[
\mathcal{R}_{CP} = 1 \pm 2r_B \cos \delta \cos \gamma + r_B^2,
\]

\[
\mathcal{A}_{CP} = \frac{\pm 2r_B \sin \delta \sin \gamma}{\mathcal{R}_{CP}},
\]

where δ is the CP-conserving strong phase difference between the $B^- \to D^0 K^{*-}$ (suppressed) and $B^- \to D^0 K^{*-}$ (favored) amplitudes, $r_B \approx 0.1-0.3$ \cite{8} is the magnitude of their ratio, and γ is the CP-violating weak phase difference. A value close to 60° is favored for γ when one combines all measurements related to the unitarity triangle \cite{9}. It is useful to introduce also new variables,

\[
x^\pm = r_B \cos(\delta \pm \gamma),
\]

which are better behaved (more Gaussian) in the region where r_B is small.

To search for $B^- \to D^0_{CP} K^{*-}$ decays we use data collected with the BABAR detector at the PEP-II B Factory in 1999–2004. We study $B^+ \to D^0 K^*(892)^+$ decays where $K^{*-} \to K_\pi^0 \pi^-$ and $D^0 \to K^- \pi^+$, $K^- \pi^+ \pi^0$, $K^- \pi^+ \pi^- \pi^0$ (non-CP final states); $K^+ K^-$, $\pi^+ \pi^-$ (CP+ eigenstates); $K^0_{S/0} \pi^0$, $K^0_{S/0} \phi$, and $K^0_{S/0} \omega$ (CP− eigenstates). We measure four observables that are sensitive to the angle γ of the CKM unitarity triangle; the partial-rate charge asymmetries \mathcal{A}_{CP} and the ratios of the B-decay branching fraction in CP^+ and non-CP decays \mathcal{R}_{CP}:

\[
\mathcal{R}_{CP} = \frac{-0.08 \pm 0.19_{(stat)} \pm 0.08_{(syst)}}{0.26 \pm 0.40_{(stat)} \pm 0.12_{(syst)}}, \quad \mathcal{R}_{CP} = 1.96 \pm 0.40_{(stat)} \pm 0.11_{(syst)}.
\]

Finally, since the $B^- \to D^0 K^{*-}$ branching fraction is $\frac{78}{0.0025}$ (known value \cite{11}), we determine \mathcal{R}_{CP} and \mathcal{A}_{CP} to be $0.65 \pm 0.26_{(stat)} \pm 0.08_{(syst)}$.

DOI: 10.1103/PhysRevD.72.071103

PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh
greater than 200 MeV and an invariant mass between 115 and 150 MeV/c^2. A mass-constrained fit is applied to the selected \(\pi^0 \) candidates. Composite particles included in the \(CP^- \) modes are vertex constrained. Candidate \(\phi (\omega) \) mesons are constructed from \(K^+ K^- (\pi^+ \pi^- \pi^0) \) particle combinations with the invariant mass required to be within 12 (20) MeV/c^2 or 2 standard deviations of the known values [11]. Two further requirements are made on the \(\omega \) candidates. The magnitude of the cosine of the helicity angle between the \(D^0 \) momentum in the rest frame of the \(\omega \) and the normal to the plane containing all three decay pions must be greater than 0.25. The Dalitz angle [12], defined as the angle between the momentum of one daughter pion in the \(\omega \) rest frame and the direction of one of the other two pions in the rest frame of the two pions, must have a cosine with a magnitude less than 0.9.

Except for the \(K^0 \pi^0 \) final state, all \(D^0 \) candidates are mass and vertex constrained. We select \(D^0 \) candidates with an invariant mass differing from the known mass [11] by less than 12 MeV/c^2 for all channels except \(K^0 \pi^0 \) (30 MeV/c^2) and \(K^0 \omega \) (20 MeV/c^2). These limits are about twice the corresponding rms mass resolutions.

To suppress the background due to \(e^+ e^- \to q\bar{q} \) reactions, we require \(|\cos \theta_R| \leq 0.9 \), where \(\theta_R \) is defined as the angle between the \(B \) candidate momentum in the \(Y(4S) \) rest frame and the beam axis. In \(q\bar{q} \) background events the \(\cos \theta_R \) distribution is uniform, while for \(B \) mesons it follows a \(\sin^2 \theta_R \) distribution. We also use global event shape variables to distinguish between \(q\bar{q} \) continuum events, which have a two-jet-like topology in the \(Y(4S) \) rest frame, and \(B\bar{B} \) events, which are more spherical. We require \(|\cos \theta_T| \leq 0.9 \) where \(\theta_T \) is the angle between the thrust axes of the \(B \) candidate and that of the rest of the event. We construct a linear discriminant [13] from \(\cos \theta_T \) and Legendre monomials [14] describing the energy flow in the rest of the event.

We identify \(B \) candidates using two nearly independent kinematic variables: the beam-energy-substituted mass

\[
m_{ES} = \sqrt{\left(s/2 + p_B \cdot p_B\right)^2/E_B^2 - p_B^2}
\]

and the energy difference

\[
\Delta E = E_B - \sqrt{s}/2,
\]

where \(E \) and \(p \) are energy and momentum, the subscripts \(B \) and \(E \) refer to the \(e^+ e^- \) beam system and the \(B \) candidate respectively; \(s \) is the square of the center-of-mass (CM) energy and the asterisk labels the CM frame. For signal modes, the \(m_{ES} \) distributions are all described by the same Gaussian function \(G \) centered at the \(B \) mass with a 2.6 MeV/c^2 resolution (for \(D^0 \to K^0 \pi^0 \) the peak is slightly wider, 2.7 MeV/c^2). The \(\Delta E \) distributions are centered on zero for signal with a resolution of 11 to 13 MeV for all channels except \(K^0 \pi^0 \) for which the resolution is asymmetric and about 30 MeV. We define a signal region through the requirement \(|\Delta E| < 50 (25) \) MeV for \(K^0 \pi^0 \) (all other modes).

A background for \(B^- \to D^0(\pi^+ \pi^-)K^- (K^0 \pi^0) \) is the decay \(B^- \to D^0(K^0 \pi^+ \pi^-) \pi^- \) which contains the same final state as the signal but has a branching fraction 600 times larger. We therefore explicitly veto any selected \(B \) candidate containing a \(K^0 \pi^+ \pi^- \) combination within 25 MeV/c^2 of the \(D^0 \) mass. No background remains.

In those events where we find more than one acceptable \(B \) candidate (less than 25% of selected events depending on the \(D^0 \) mode), we choose that with the smallest \(\chi^2 \) formed from the differences of the measured and true \(D^0 \) and \(K^- \) masses scaled by the mass spread which includes the resolution and, for the \(K^- \), the natural width. Simulations show that no bias is introduced by this choice and the correct candidate is picked at least 82% of the time.

According to simulation of signal events, the total reconstruction efficiencies are 13.1% and 14.2% for the \(CP^+ \) modes \(D^0 \to K^+ K^- \) and \(\pi^+ \pi^- \); 5.5%, 10.0%, and 2.4% for the \(CP^- \) modes \(D^0 \to K^0 \pi^0, K^0 \phi, \) and \(K^0 \omega \); 13.3%, 4.3%, and 8.2% for the non-\(CP \) modes \(D^0 \to K^- \pi^+, K^- \pi^+ \pi^0, \) and \(K^- \pi^+ \pi^- \).

To study \(B\bar{B} \) backgrounds we look in sideband regions away from the signal region in \(\Delta E \) and \(m_{ES} \). We define a \(\Delta E \) sideband in the interval \(-100 \leq \Delta E \leq -60 \) and \(60 \leq \Delta E \leq 200 \) MeV for all modes except \(D^0 \to K^0 \pi^0 \) for which the inside limit is \(\pm 95 \) rather than 60 MeV. The sideband region in \(m_{ES} \) is defined by requiring that this quantity differs from the \(D^0 \) mass peak by more than 4 standard deviations. It provides sensitivity to doubly-peaking background sources which mimic signal both in \(\Delta E \) and \(m_{ES} \). This pollution comes from either charmed or charmless \(B \)-meson decays that do not contain a true \(D^0 \).

As many of the possible contributions to this background are not well known, we attempt to measure its size by including the \(m_{\rho} \) sideband in the fit described below.

An unbinned extended maximum likelihood fit to \(m_{ES} \) distributions in the range \(5.2 \leq m_{ES} \leq 5.3 \) GeV/c^2 is used to determine yields and \(CP \)-violating quantities \(\mathcal{A}_{CP} \) and \(R_{CP} \). We use the same Gaussian function \(G \) to describe the signal shape for all modes considered. The combinatorial background in the \(m_{ES} \) distribution is modeled with a threshold function [15] \(\mathcal{A} \). Its shape is governed by one parameter \(\xi \) that is left free in the fit. We fit simultaneously \(m_{ES} \) distributions of nine samples: the non-\(CP, CP^+, \) and \(CP^- \) samples for (i) the signal region, (ii) the \(m_{\rho} \) sideband, and (iii) the \(\Delta E \) sideband. We fit three probability density functions (PDF) weighted by the unknown event yields. For the \(\Delta E \) sideband, we use \(\mathcal{A} \). For the \(m_{\rho} \) sideband (sb) we use \(a \cdot \mathcal{A} + b \cdot \mathcal{G} \), where \(\mathcal{G} \) accounts for the doubly-peaking \(B \) decays. For the signal region PDF, we use \(a \cdot \mathcal{A} + b \cdot \mathcal{G} \cdot c \cdot \mathcal{G} \), where \(b = N_{peak} \) is scaled from \(b \) according to the ratio of the \(m_{\rho} \) signal window to sideband widths and \(c \) is the number of \(B \) events \(D^0 \to D^0 K^- \) signal events. The non-\(CP \) mode sample, with relatively high statistics, helps constrain the PDF shapes for the low statistics \(CP \) mode distributions. The \(\Delta E \) sideband sample helps define the \(\mathcal{A} \) background shape.

Since the values of \(\xi \) obtained for each data sample were found to be consistent with each other, albeit with large
statistical uncertainties, we have constrained ξ to have the same value for all data samples in the fit. The simulation shows that the use of the same Gaussian parameters for all signal modes introduces only negligible systematic corrections. We assume that the B decays found in the m_{cp} sideband have the same final states as the signal and we fit the same Gaussian to the doubly-peaking B background.

The doubly-peaking B background is assumed to not violate CP and is therefore split equally between the B^- and B^+ subsamples. This assumption is considered further when we discuss the systematic uncertainties. The fit results are shown graphically in Fig. 1 and numerically in Table I.

The statistical significance of the CP^+ and CP^- yields are 6.8 and 2.7 standard deviations, respectively. The yields for each individual mode are $23.1 \pm 5.1 \ (K^+K^-)$, $17.4 \pm 5.0 \ (\pi^+\pi^-)$, $10.9 \pm 4.1 \ (K^0_S\pi^0)$, $3.1 \pm 3.2 \ (K^0_S\phi)$, and $3.8 \pm 2.7 \ (K^0_S\omega)$.

Although most systematic errors cancel for A_{CP}, an asymmetry inherent to the detector or data processing may exist. After performing the analysis on a high statistics $B^+ \rightarrow D^0\pi^-$ sample (not applying the K^+ selection), the final sample shows an asymmetry of -0.019 ± 0.008. We assign a systematic uncertainty of ± 0.027. The second substantial systematic effect is a possible CP asymmetry in the peaking background. Although there is no physics reason that requires the peaking background to be asymmetric, it cannot be excluded. We note that if there were an asymmetry A_{peak}, a systematic error on A_{CP} would be given by $A_{\text{peak}} \times \frac{b}{c}$, where b is the contribution of the peaking background and c the signal yield. Assuming conservatively $|A_{\text{peak}}| \leq 0.5$, we obtain systematic errors of ± 0.06 and ± 0.10 on A_{CP^+} and A_{CP^-}, respectively.

Since R_{CP} is a ratio of rates of processes with different final states of the D^0, we must consider the uncertainties affecting the selection algorithms for the different D channels. This results in small correction factors which account for the difference between the actual detector response and the simulation model. The main effects stem from the approximate modeling of the tracking efficiency (1.2% per track), the K^0_S reconstruction efficiency for CP^- modes of the D^0 (2.0% per K^0_S), the π^0 reconstruction efficiency for the $K^0_S\pi^0$ channel (3%) and the efficiency and misidentification probabilities from the particle identification (2% per track). A substantial effect is the uncertainty on the measured branching fractions [11]. Altogether, we obtain systematic uncertainties equal to ± 0.11 and ± 0.055 for R_{CP^+} and R_{CP^-}, respectively.

Another systematic correction is applied to the CP^- measurements which arises from a possible CP^+ background for the $K^0_S\phi$ and $K^0_S\omega$ channels. In this case, the observed quantities, $A_{CP^-}^{\text{obs}}$ and $R_{CP^-}^{\text{obs}}$, are corrected:

$$A_{CP^-} = (1 + \epsilon)A_{CP^-}^{\text{obs}} - \epsilon A_{CP^+};$$

$$R_{CP^-} = \frac{R_{CP^-}^{\text{obs}}}{(1 + \epsilon)}.$$
where ϵ is the ratio of CP^+ background to CP^- signal. There is little information on this CP^+ background. An investigation in BABAR of the $D^0 \rightarrow K^- K^0_S$ Dalitz plot indicates that the dominant background for $D^0 \rightarrow K^0_S \phi$ comes from the decay $\alpha_0(980) \rightarrow K^+ K^-$, at the level of $(25 \pm 1\%)$ the size of the ϕK^0_S signal. We have no information for the ωK^0_S channel and assume $(30 \pm 30\%)$. Adding the most frequent $K^0_S \pi^0$ mode which does not suffer such a CP^+ pollution, we estimate $\epsilon = (13 \pm 7\%)$. The systematic error associated with this correction is ± 0.01 and ± 0.04 for \mathcal{A}_{CP^-} and \mathcal{R}_{CP^-}, respectively.

To account for the nonresonant $K^0_S \pi^-$ pairs under the K^{*-}, we vary by 2π all the strong phases in a conservative model which incorporates S-wave $K \pi$ pairs in both $b \rightarrow c\bar{u}d$ and $b \rightarrow u\bar{c}d$ amplitudes. This background induces systematic variations of ± 0.051 for \mathcal{A}_{CP^\pm} and ± 0.035 for \mathcal{R}_{CP^\pm}. We add the systematic uncertainties in quadrature and quote the final results:

$$\mathcal{A}_{CP^+} = -0.08 \pm 0.19(\text{stat}) \pm 0.08(\text{syst}),$$
$$\mathcal{A}_{CP^-} = -0.26 \pm 0.40(\text{stat}) \pm 0.12(\text{syst}),$$
$$\mathcal{R}_{CP^+} = 1.96 \pm 0.40(\text{stat}) \pm 0.11(\text{syst}),$$
$$\mathcal{R}_{CP^-} = 0.65 \pm 0.26(\text{stat}) \pm 0.08(\text{syst}).$$

These results also can be expressed in terms of x^\pm defined in Equation (3):

$$x^+ = 0.32 \pm 0.18(\text{stat}) \pm 0.07(\text{syst}),$$
$$x^- = 0.33 \pm 0.16(\text{stat}) \pm 0.06(\text{syst}),$$

where the CP^+ pollution systematic effects increase x^+ and x^- by 0.022 ± 0.012 and 0.019 ± 0.010, respectively. From Eq. (1) we find $r_B^2 = 0.30 \pm 0.25$.

In summary, we have studied the decays of charged B mesons to a $K^*(892)^-$ and a D^0, where the latter is seen in final states of even and odd CP. We express the results with \mathcal{R}_{CP}, \mathcal{A}_{CP}, and x^\pm. These quantities can be combined with other $D^{(*)}K^{(*)}$ measurements to estimate r_B more precisely and improve our understanding of the angle γ.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

[15] The function is $\mathcal{A}(m_{ES}) \approx m_{ES}\sqrt{1 - x^2} \exp[-\xi(1 - x^2)]$, where $x = 2m_{ES}/\sqrt{s}$ and ξ is a fit parameter; H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 185, 218 (1987); 241, 278 (1990).