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Abstract

The rotationally resolved magnetic dipole absorption spectrum of the oxygen A-band

b1Σ+
g (v=0)← X3Σ−

g (v=0) perturbed by collisions with helium was studied theoretically using

the impact approximation. To calculate the relaxation matrix, scattering calculations were per-

formed on a newly computed helium-oxygen (b1Σ+
g ) interaction potential as well as on a helium-

oxygen (X3Σ−
g ) interaction potential from the literature. The calculated integrated line cross sec-

tions and broadening coefficients are in good agreement with experimental results from the lit-

erature. Additionally, cavity ring-down experiments were performed in the wings of the spectral

lines for a quantitative study of line-mixing, i.e., the redistribution of rotational line intensities

by helium-oxygen collisions. It is shown that inclusion of line-mixing in the theory is required to

reproduce the experimentally determined absolute absorption strengths as a function of the density

of the helium gas.
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I. INTRODUCTION

The near-infrared (≈ 760 nm) A-band extinction of molecular oxygen (O2) is of increasing

atmospheric importance. It is used extensively for the calibration of satellite instruments

that help to determine atmospheric temperature and pressure [1, 2]. Due to its high molec-

ular symmetry and lack of an electric dipole moment, O2 is a poor absorber with only

weakly allowed transitions in the infrared. However, the high atmospheric concentration of

molecular oxygen (≈ 20%) and the long optical path lengths that can be obtained in the

Earth’s atmosphere lead to an almost saturated O2 infrared spectrum. As a consequence,

small variations in e.g. the Earth’s oxygen content become noticeable only by changes in the

low-intensity wings of the spectral lines.

The extinction of light by atmospheric oxygen in the A-band region is understood to

originate from (i) Rayleigh scattering, the elastic scattering of light on subwavelength par-

ticles (ii) collision induced absorption (CIA) [3–5], the absorption of light by a transient

electric dipole moment, and (iii) magnetic dipole absorption [6]. Much effort has been in-

vested to quantify the contribution of these mechanisms experimentally [7–9]. Figure 1

shows a construction of the pure oxygen A-band spectrum based on a sum of these dif-

ferent contributions. The strongest absorption features in the A-band region are due to

the electronic magnetic dipole transition from the ground state X3Σ−
g (v=0, J) to the ex-

cited state b1Σ+
g (v=0, J ′), in which the rotational quantum number J changes by either

∆J = J ′ − J = −1 (P branch) or ∆J = +1 (R branch) [6]. Although this transition vio-

lates the selection rules for magnetic dipole absorption [10] —the spin multiplicity 1Σ← 3Σ

and the reflection symmetry Σ+ ← Σ− are not conserved— spin-orbit coupling makes the

transition allowed [11]. We note that the latter does not occur for the electric dipole tran-

sition —forbidden due to the change in spin multiplicity and the conservation of parity

Σg ← Σg. An electric quadrupole transition is also not the cause of the radiation absorp-

tion, since O (∆J = −2) and S (∆J = +2) branches with almost equal intensity as the P

and R branches should then be visible in the experimental spectrum [10]. As can be seen in

Fig. 1, Rayleigh scattering and CIA contribute broad and relatively weak absorption features

in the A-band region. A minor, but not unimportant feature of the spectrum concerns the

regions between the peaks of the magnetic dipole absorption contribution. The absorption in

these regions is determined by the spectral wings, which are affected by line-mixing [12, 13],
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i.e., the redistribution of rotational spectral line intensities by collisions with another gas.

Although this effect is negligible on the scale of Fig. 1, it can serve as a useful probe in

experiments which are prevented by saturation effects in the regions of stronger absorption.

Moreover, line-mixing provides a sensitive test for quantitative theoretical models of oxygen

absorption spectroscopy.

To our knowledge, there is no first principles prediction in the literature of an electronic

magnetic dipole absorption spectrum of molecular oxygen influenced by collisions with a

foreign gas. In a broader perspective, there is no fully quantum mechanical treatment

available in the literature that treats an electronic transition of a molecule perturbed by

collisions. The reason could be the requirement for an accurate interaction potential of the

perturbing particle with the electronically excited state of the absorbing molecule.

These considerations motivated our choice to study, both theoretically and experimen-

tally, the collisional effects of helium (He) atoms on the A-band magnetic dipole absorption

spectrum of molecular oxygen. More explicitly, we focus on the spectral lines arising from

the b1Σ+
g (v=0)← X3Σ−

g (v=0) transition in 16O2, and we study the coupling between these

lines, i.e., the line-mixing, due to inelastic He-O2 collisions. Rayleigh scattering and CIA

are not taken into account in our theoretical model, and experimentally we also separate

these contributions from the spectrum. The impact approximation is used for the theo-

retical description of the dynamics of the molecular system. In this approximation, strong

collisions, which change the absorber’s wavefunction significantly, are assumed to be well

separated in time [14]. Quantum mechanical scattering calculations that capture the He-O2

collision dynamics, and thus ultimately determine the pressure-broadening and line-mixing

effects, are performed on interaction potentials for helium with the X and b state of molec-

ular oxygen. A new interaction potential for the b state was calculated for this work, and

for the X state a potential was taken from the literature [15]. The prediction of line-mixing

provides a sensitive test for our calculated results. To test the predictions, cavity ring-down

experiments were carried out to measure the absolute absorption intensities for this system

as a function of pressure, with a sensitivity of about 10−7 cm−1. We used the experimental

data for a quantitative comparison between theory and experiment regarding the shape of

the lines relatively far from the line center, where line-mixing is most pronounced. These

results show the importance of including line-mixing in the theory to describe the absorption

spectrum correctly.

3



In the following sections of this paper, we start with a review of the theory of the ro-

tationally resolved spectroscopy of the oxygen A-band. The expression for the absorption

spectrum in the impact approximation will be given. This is followed by the description

of the calculation of the interaction potential for the helium atom with the oxygen b state,

and the performed scattering calculations. Then the cavity ring-down experiments will be

described, including the processing of the data to remove the contribution of Rayleigh scat-

tering and CIA. In the results section, we first show the comparison between theoretical

and experimental integrated line cross sections and pressure broadening coefficients. These

quantities are relatively insensitive to the effects of line-mixing, and hence line-mixing is

neglected in these calculations. Next, we compare our theory with rigorous inclusion of

line-mixing effects to our measured cavity ring-down data for absolute absorption strengths

in the “valleys” between spectral lines. Finally, we compare our first principles predictions

with a successful semi-empirical model by Tonkov et al. [12, 13], which also accounts for line-

mixing, and find good quantitative agreement. Based on these comparisons, we conclude

that our full quantum mechanical framework leads to good quantitative agreement when

line-mixing effects are included.

II. THEORY

A. Rotational structure of the X3Σ−
g and b1Σ+

g states of O2

In this section we focus on the rotational and electronic structure of the X and b states.

We assume that both the X and b state are in the vibrational ground state (v=0), and

hence the vibrational part of the wavefunction will not be explicitly considered in the theory.

The electronic ground state of molecular oxygen is an open shell state with term symbol

X3Σ−
g . The relatively weak coupling between nuclear rotation and electronic spin —see the

value of λNS in Table I— warrants the expansion of the ground state fine structure states

|FiJMJ ;X
3Σ−

g 〉 in a Hund’s case (b) basis

|FiJMJ ;X
3Σ−

g 〉 =
J+1
∑

N=J−1

aFi

N

∑

MN ,MS

√

2N + 1

4π
DN

MN ,0(α, β, 0)
∗

× |X3Σ−
g , S,MS〉〈NMNSMS|JMJ〉,

(1)
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where N and S are the rotational and spin angular momentum quantum numbers with

laboratory-axis projection quantum numbers MN and MS, respectively, J is the total an-

gular momentum arising from coupling of N and S, and MJ is its laboratory-axis projec-

tion. For the X3Σ−
g state we have S = 1. The two-angle normalized Wigner D-functions

√

(2N + 1)/4πDN
MN ,0(α, β, 0)

∗, which are nuclear rotation eigenfunctions, are coupled to

the electronic spin by the Clebsch-Gordan coefficient 〈NMNSMS|JMJ〉 and mixed by the

expansion coefficients aFi

N . Here α and β are azimuthal and zenith angles of the O2 axis,

respectively.

The fine structure label Fi has three possible values: F1, F2, and F3. According to the

convention used in [16] the expansion coefficients aFi

N in Eq. (1) are of the form

aF1
N=J−1 = aF3

N=J+1 =cosφ

aF2
N=J = 1 (2)

aF1
N=J+1 = − aF3

N=J−1 = sin φ

and they follow from diagonalization of the molecular Hamiltonian [17]. Equation (2) shows

that the F1 and F3 states are constructed from N = J − 1 and N = J + 1 rotational states.

The mixing-angle φ decreases if states of higher N are involved.

The X3Σ
−

g state of 16O2 has only odd values of N because the Pauli principle requires

the total wave function to be even under permutation of the identical bosonic nuclei. For

the nuclear wave function the permutation operator is equal to inversion and the parity of

the nuclear wave function is (−1)N . The permutation operator also acts on the electronic

wave function, because it rotates the frame over 180◦ around an axis perpendicular to the

diatomic axis. This rotation can be written as the product of an inversion of the electronic

coordinates and a reflection in a plane containing the diatomic axis. Since the ground state

is gerade the inversion is even, but for a Σ− state the reflection is odd. So for odd N the

total wave function is even under the permutation operator.

For the excited b1Σ+
g state of 16O2, which has S = 0, we can write

|N ′M ′
N ; b

1Σ+
g 〉 =

√

2N ′ + 1

4π
DN ′

M ′
N
,0(α, β, 0)

∗|b1Σ+
g 〉. (3)

Primes are used here to distinguish between the rotational quantum numbers of the b state

from those of the X state. Following a similar reasoning as above, it can be shown that N ′

has only even values.
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B. Magnetic transition dipole matrix elements

The rovibronic transitions between the states |FiJMJ ;X
3Σ−

g 〉 and |N ′M ′
N ; b

1Σ+
g 〉 (both

vibrational ground states) have magnetic dipole character although they do not obey the

usual selection rules [10], since the spin multiplicity 1Σ ← 3Σ and the reflection symme-

try Σ+ ← Σ− are not conserved. The mechanism responsible for the non-zero transition

probability is spin-orbit coupling [11]. Neither electric dipole nor quadrupole transitions

contribute to the spectrum as discussed in the introduction.

To explain the magnetic dipole transition mechanism we first expand the oxygen ground

state wave function from Eq. (1) in a Hund’s case (a) basis

|FiJMJ ;X
3Σ−

g 〉 =
J+1
∑

N=J−1

aFi

N

∑

Ω

√

2N + 1

4π
DJ

MJ ,Ω
(α, β, 0)∗

× |X3Σ−
g,Ω, S,Ω〉〈N0SΩ|JΩ〉 ,

(4)

for which we used

|X3Σ−
g , SMS〉 =

∑

Ω

|X3Σ−
g , SΩ〉DS

MS ,Ω
(α, β, 0)∗ , (5)

and the standard expression for a product of two Wigner D-functions [18]. The quantum

number Ω is the projection of the total angular momentum J on the molecular axis, which

equals the spin projection for a Σ state.

The electronic magnetic dipole operator is given by

µ̂ =
∑

i

µB

h̄
(l̂i + geŝi) ≡

µB

h̄
(L̂+ geŜ) , (6)

with l̂i and ŝi being the orbital and spin angular momentum vector operators of electron

i, µB the Bohr magneton, ge ≈ 2.0 the electron g-factor, and h̄ Planck’s reduced constant.

Absorption intensities are directly proportional to the square of the space-fixed (SF) transi-

tion dipole moments, which in turn are related to the body-fixed (BF) dipole operator via

the transformation

µ̂SF
m =

∑

k

µ̂BF
k D1

m,k(α, β, 0)
∗ . (7)

The spherical components µ̂m and µ̂k of the SF and BF dipole moment operators are related

to the Cartesian components as

µ̂0 = µ̂z

µ̂±1 = ∓ (µ̂x ± iµ̂y) /
√
2.
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The combination of Eqs. (3), (4), and (7) leads to an expression for the transition dipole

matrix elements

〈FiJMJ ;X
3Σ−

g |µ̂SF
m |N ′M ′

N ; b
1Σ+

g 〉 =

(−1)J−MJ

√
2J + 1





J 1 N ′

−MJ m M ′
N



 〈FiJ ;X
3Σ−

g ||µ||N ′; b1Σ+
g 〉,

(8)

where the factor in large brackets denotes a Wigner three-j symbol and the Wigner-Eckart

theorem reduced matrix element is given by

〈FiJ ;X
3Σ−

g ||µ||N ′; b1Σ+
g 〉 =

∑

N,Ω

aFi

N

∗
(−1)N−J−1

√

(2N + 1)(2N ′ + 1)

×





J 1 N ′

−Ω Ω 0









N 1 J

0 Ω −Ω



 〈X3Σ−
g,Ω|µ̂BF

Ω |b1Σ+
g 〉 .

(9)

The integrated line cross sections [19] that can be compared to experimental results can be

written as

IFi,J,N ′ =
8π3ν̃Fi,J,N ′

(4πε0)3hc3Z
e
−hcν̃

(X)
Fi,J

β̄
(2J + 1)|〈Fi, J ;X

3Σ−
g ||µ||N ′; b1Σ+

g 〉|2 . (10)

Here IFi,J,N ′ is in unit length per molecule, ν̃Fi,J,N ′ is the wavenumber of the transition, h

Planck’s constant, c the speed of light, ε0 the vacuum permittivity constant, Z the partition

sum of molecular oxygen [20], hcν̃
(X)
Fi,J

the energy of state |FiJ ;X
3Σ−

g 〉, and β̄ = 1/kBT , with

kB the Boltzmann constant, and T the absolute temperature.

The final step is the calculation of the body-fixed electronic matrix element

〈X3Σ−
g,Ω|µ̂BF

Ω |b1Σ+
g 〉, which is extensively treated in Refs. 21 and 11. The contribution from

the orbital angular momentum term L̂ in the magnetic dipole operator, Eq. (6), is about

60 times smaller than that of the spin term geŜ [11], so we only describe the evaluation of

the latter. The magnetic dipole transition borrows its main intensity from the admixture

of the |X3Σ−
g 〉 ground state component with Ω = 0 directly into the b state, with a mixing

coefficient

C =
〈3Σ−

g,Ω=0|ĤSO|b1Σ+
g 〉

Eb − EX

, (11)

where EX and Eb are the energies of the ground and excited b state, respectively, and ĤSO

is the spin-orbit operator responsible for the mixing. The only resulting non-zero matrix

elements for Ω = ±1 are given by

〈X3Σ
−

g,±1|µ̂BF
±1 |b1Σ+

g 〉 =
geµB

h̄
〈X3Σ−

g,±1|
∓(Ŝx ± iŜy)√

2
|X3Σ−

g,0〉C = ∓geµBC. (12)
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Note that Ŝx± iŜy are ladder operators which, for a Σ state, act directly on the Ω projection

quantum numbers.

The mixing coefficient C in Eq. (11), including averaging over the O2 vibrational co-

ordinate r but without considering the rotations that we treat in the present paper, was

calculated ab initio by Minaev et al. [11]. Also the much smaller contribution from the

L̂ term in the magnetic dipole operator of Eq. (6) was calculated. Different values for the

total transition moment geµBC are given in Ref. 11. The value of 0.0268µB was obtained

by Klotz et al. [21] from an ab initio calculation of the numerator in Eq. (11) at the ground

state equilibrium O-O distance re = 2.28 a0 and the experimental value of the excitation

energy Eb − EX in the denominator. The value of 0.0241µB is the best value of Ref. 11

obtained from a full ab initio calculation of both the numerator and the denominator of the

expression in Eq. (11) as a function of the O-O distance r and averaging over the vibra-

tional ground states of the electronic ground and b states. Computation of the excitation

energies in the denominator from empirical RKR (Rydberg-Klein-Rees) potentials for the

ground and b states instead of using the ab initio values yields practically the same value

geµBC = 0.0268µB as that obtained somewhat fortuitously by Klotz et al.. This is consid-

ered as the best value, so we used it in our calculations of the integrated line cross sections.

Minaev et al. also report measured radiative life times, some of which are close to the life

time that corresponds to this best value of the transition moment.

C. Spectrum in the impact approximation

The rotationally resolved A-band magnetic dipole absorption spectrum concerns tran-

sitions of the type |N ′; b1Σ+
g 〉 ← |Fi, J ;X

3Σ−
g 〉, both in the vibrational ground state. In

the impact approximation it is assumed that strong collisions, which change the absorber’s

wavefunction significantly, are well separated in time [14]. This approximation is combined

with the assumption that the internal states of the perturbing particles are not affected by

their interactions, and that the absorbers experience isotropic gas surroundings. Collisional

effects on the spectrum are described in terms of binary collisions of absorber and perturber.

Note that the influence of the motion of the center of mass of this binary collision complex

on the absorption of light is neglected, therefore the theory does not predict the Doppler or

Dicke effect. In the impact approximation, the collision dynamics is captured by elastic and
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inelastic scattering amplitudes. This leads to the expression for the magnetic dipole absorp-

tion spectrum in unit length squared per molecule at the spectral position with wavenumber

ν̃ [19, 22–25]

F (ν̃) =
1

π

8π3ν̃

(4πε0)3hc3
Im

[

∑

F ′
i ,J

′,N ′;Fi,J,N

〈F ′
i , J

′; 3Σ−
g ||µ||N ′; 1Σ+

g 〉∗

[

A−1
]

F ′
i ,J

′,N ′;Fi,J,N
PFi,J〈Fi, J ;

3Σ−
g ||µ||N ; 1Σ+

g 〉
]

.

(13)

Here Im[. . .] means the imaginary part of the expression in the brackets, see Eq. (10) for

further explanation of the constants. The set of quantum numbers Fi, J , N identifies a

single spectral line by the initial and final states of the transition |N ; b1Σ+
g 〉 ← |Fi, J ;X

3Σ−
g 〉.

Primes are here used to distinguish between different spectral lines, rather than different

molecular states. Inelastic collisions may couple the initial (X) state Fi, J of one spectral

line to the initial state F ′
i , J

′ of another line, and the same holds for the final (b) states N

and N ′. The corresponding off-diagonal elements of the matrix A describe line-mixing. The

populations in the ground state are given by

PFi,J ≡
(2J + 1)

Z
e
−hcν̃

(X)
Fi,J

β̄
, (14)

with ground state energies hcν̃
(X)
Fi,J

, obtained from diagonalization of the molecular Hamilto-

nian [17] with spectroscopic constants given in Table I.

The elements of matrix A in Eq. (13) are given by

AF ′
i ,J

′,N ′;Fi,J,N(ν̃) =
[

ν̃ − ν̃Fi,J,N

]

δJ,J ′δFi,F ′
i
δN,N ′ − in

2πc

〈

vσF ′
i ,J

′,N ′;Fi,J,N

〉

, (15)

with i the imaginary number, n the number density (particles per unit volume) of the per-

turbers, c the speed of light, ν̃Fi,J,N transition wavenumbers, and in〈vσF ′
i ,J

′,N ′;Fi,J,N〉/2πc the
relaxation matrix elements [22, 26] describing the response of the gas in thermal equilibrium.

The latter quantity includes a thermal average over collision energies Ec according to

〈

vσF ′
i ,J

′,N ′;Fi,J,N

〉

=

(

8kBT

µπ

)1/2 (
1

kBT

)2
∞
∫

0

Ec[σ
+
F ′
i ,J

′,N ′;Fi,J,N
(Ec) + σ−

F ′
i ,J

′,N ′;Fi,J,N
(Ec)] e

−Ecβ̄dEc ,

(16)

in unit volume per unit time, with v denoting the thermal velocity. The cross sections are
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given by

σ±
F ′
i ,J

′,N ′;Fi,J,N
(Ec) =

π

2µEc

∑

J
(b)
tot ,J

(X)
tot ,l′

±
,l
±

(−1)J−J ′

√

2J ′ + 1

2J + 1

× (2J
(b)
tot + 1)(2J

(X)
tot + 1)







J 1 N

J
(b)
tot l± J

(X)
tot













J ′ 1 N ′

J
(b)
tot l′± J

(X)
tot







×
[

δFi,F ′
i
δJ,J ′δN,N ′δl

±
,l′
±
− S

J
(b)
tot

∗

N ′,l′
±
;N,l

±

(Ec)S
J
(X)
tot

F ′
i ,J

′,l′
±
;Fi,J,l±

(Ec)

]

.

(17)

Here µ is the reduced mass of the perturber-absorber complex, l+ and l− are even and odd

partial wave quantum numbers, and J
(X)
tot and J

(b)
tot are the total angular momentum quan-

tum numbers of the collisional complexes with the X and b electronic states of oxygen. The

expressions in curly brackets are six-j symbols. Note that the phase factor (−1)l±−l′
± is omit-

ted [25], since it is equal to 1. The scattering matrix elements S ...
...(Ec) contain the dynamical

information of the binary collisions and are found by solving the coupled-channels equa-

tions [17] on a single potential (for either the He-O2(X
3Σ−

g ) or the He-O2(b
1Σ+

g ) complex).

S matrix elements for both potentials should be calculated at exactly the same collision

energy Ec. The relation between the total energy Etot of the scattering calculation and the

collision energy is given by

Etot = Ec + Etarget , (18)

with Etarget the initial-state energy for either He-O2(X
3Σ−

g ) ground-state or He-O2(b
1Σ+

g )

excited-state collisions.

Note that the incoming l and outgoing l′ partial waves are the same for both oxygen

states, this is a consequence of the assumption that the absorbing molecule is in an isotropic

gas [22, 23]. Solutions of the coupled-channels equations for our problem have a well defined

parity of (−1)N+l+1 for the ground state and (−1)N+l for the b state, which allows a separate

scattering calculation for odd and even parity. Consequently, this is also possible for Eq.

(17). This is the reason for the distinction between even l+ and odd l− partial wave quantum

numbers.

In conclusion, the spectrum that follows from Eq. (13) obtains a non-Lorentzian shape

if spectral lines are coupled to each other by inelastic collisions, represented by non-zero

off-diagonal relaxation matrix elements [Eqs. (15) and (16)]. If, however, spectral lines are
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not coupled to each other, Eq. (13) becomes a sum of Lorentzian line shapes

F (ν̃) =
1

π

8π3ν̃

(4πε0)3hc3

∑

Fi,J,N

|〈Fi, J ;
3Σ−

g ||µ||N ; 1Σ+
g 〉|2PFi,J

(ν̃ − ν̃Fi,J,N + ndFi,J,N)
2 + (nwFi,J,N)

2
. (19)

The half width at half height wFi,J,N and shift dFi,J,N per unit density of the perturbers of

these lines are equal to the real and imaginary parts of 〈vσFi,J,N ;Fi,J,N〉/2πc in Eq. (15).

III. HE-O2(b
1Σ+

g ) INTERACTION POTENTIAL

In order to perform the scattering calculations which describe the collision dynamics,

we require accurate interaction potentials for the He-O2 complex. For the He-O2(X
3Σ−

g )

system, such a potential is available from the literature [15]. This ground state potential was

calculated with the partially spin-restricted open-shell single and double excitation coupled

cluster method [29] with perturbative triples [30] [RCCSD(T)]. For the He-O2(b
1Σ+

g ) system,

however, we have constructed a new potential based on high-level ab initio calculations, as

described below.

A. Ab initio methods

The He-O2(b
1Σ+

g ) potential was calculated using the MOLPRO [31] package. The coordinate

system used for the He-O2 system is defined by the vector R that connects the center of mass

of the oxygen molecule to the helium atom; R is the length of this vector and θ is the angle

between this vector and the O2 bond axis r. The O-O distance r is fixed. The basis set used

consists of an augmented correlation consistent triple zeta (aug-cc-pVTZ) basis [32–34] on

the He and O atoms, and an additional set of (3s3p2d1f ) bond functions defined by Tao and

Pan [35]. For each He-O2 geometry these bond functions are centered on the intersection of

the vector R and the ellipse that is chosen such that it passes through the midpoint of R

in the T-shaped geometry and through the midpoint of the smallest O-He distance in the

linear geometry, see Ref. 15. We apply a correction for the basis set superposition error with

the Boys and Bernardi counterpoise procedure [36].

The RCCSD(T) method used previously for the ground state potential [15] cannot be

used for the b state, since two states of A′ symmetry (point group Cs) are involved that
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correlate with the 1Σ+
g and 1∆g states of the free oxygen molecule. To obtain an interaction

potential of approximately the RCCSD(T) quality, a correction was devised as follows.

We used the complete active space self consistent field [37, 38] (CASSCF) program to

distinguish the 4 lowest states of oxygen: X3Σ−
g , a

1∆g(A
′ and A′′ symmetry), and b1Σ+

g .

All core orbitals were used in the active space to avoid problems with the convergence of

the calculation at small He-O2 distances. The resulting orbitals of a CASSCF calculation

were used as the starting orbital guess for each subsequent geometry, starting at large He-

O2 distance. The canonical orbitals corresponding to the He-O2(a
1∆g) and He-O2(b

1Σ+
g )

complexes with A′ symmetry were used as input for a state-averaged complete active space

second order perturbation theory [39] (CASPT2) calculation. For every grid point the energy

corresponding to the state with the highest reference energy was used for the He-O2(b
1Σ+

g )

potential. To obtain a potential of approximately RCCSD(T) quality, the difference in

energy between the CASPT2 and RCCSD(T) calculations for He-O2(X
3Σ−

g ) was subtracted

from the CASPT2 He-O2(b
1Σ+

g ) potential at each geometry.

B. Ab initio grid

The interaction energy was calculated for 532 geometries. A rotational constant of

B0=1.3912 cm−1 [28] was used to fix the O2 vibrational coordinate r to a value of

r0=2.326 a0. The radial grid was spaced with steps of 0.2 a0 from 2.9 a0 to 8.1 a0 and

extended logarithmically with Ri+1/Ri=1.1 from 8.5 a0 to 20.05 a0, with one extra point

at 25 a0. The angular grid was confined to the range of 0◦ to 90◦, and consisted of 14

Gauss-Legendre quadrature points.

C. The fit of the potential

The interaction potential V (R, θ) was first expanded in Legendre polynomials of even

order,

V (R, θ) =

12
∑

l=0,2,...

Cl(R)Pl(cos θ) . (20)

The radial coefficients were obtained via a Gauss-Legendre quadrature

Cl(R) =
14
∑

i=1

(2l + 1)wiV (R, θi)Pl(cos θi) , (21)
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with 0 ≤ θi ≤ π
2
and wi the quadrature points and their corresponding weights. After

performing the 14-point quadrature of Eq. (21), the ab initio points could be reproduced

via Eq. (20) with relative errors on the order of 0.1% in the repulsive wall at small R and

0.01% and less near the potential well and at larger R.

To obtain a fit of the radial coefficients Cl(R), the fit function was split in a long range

part C
(lr)
l (R) and short range part C

(sr)
l (R)

Cl(R) = C
(sr)
l (R) + C

(lr)
l (R) . (22)

The long range part is given by

C
(lr)
l (R) = −cnlfn(ζR)

R−n
, (23)

where n = l + 4, except for l = 0 for which n = 6. These are the leading terms in the

multipole expansion [40]. The fn’s are Tang-Toennies damping functions [41]

fn(x) = 1− e−x
n

∑

k=0

xk

k!
. (24)

To obtain a reliable fit of the cnl coefficients in Eq. (23), we set the damping functions to 1

and performed a weighted least squares fit of Cl(R) for R ≥ 10 a0. The weighting function

was set to Rn with n in accordance with Eq. (23). The first three coefficients are given in

Table II. We then chose ζ = 2.0 a−1
0 for C

(lr)
l (R) in Eq. (23) and obtained C

(sr)
l (R) in Eq. (22),

by subtraction of C
(lr)
l (R) from the ab initio points. For the short range part, the reproducing

kernel Hilbert space (RKHS) method with the reproducing kernel for distance-like variables

was used [42, 43]. The RKHS parameter m was set to the leading term parameter n minus

1 and the RKHS smoothness parameter was set to 2.

After the RKHS fitting, reconstruction of V (R, θ) via Eqs. (20) and (22) reproduced the

ab initio points with a relative error on the order of 0.01% or better for R larger than 4 a0.

This was also the case for 35 randomly chosen geometries not used for the fit. In the region

of 2.9 < R < 4.0 a0 the largest relative error is 0.49%. The fit of the ab initio potential

behaves unphysically for R < 2.9 a0 (interaction energies ≥ 0.05 Eh ≈11,000 cm−1). Figure

2 presents contour plots of the newly computed interaction potential for the b state and the

potential for the ground state for a comparison. The b state potential in Fig. 2(a) is slightly

more anisotropic than the ground state potential of Fig. 2(b). The global minimum for the

excited state potential is at the T-shaped geometry at R = 5.9 a0 with dissociation energy
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De = 152.2µEh, and for the ground state De = 127.1µEh at R = 6.0 a0. The local minimum

for the excited state at the linear geometry has a well depth of 123.7µEh at R = 6.9 a0, and

for the ground state 116.7µEh at R = 6.9 a0.

IV. SCATTERING CALCULATIONS

In order to obtain the S matrix elements needed for Eq. (17) we solved the coupled-

channels equations using the renormalized Numerov method [44], with matrix elements in a

Hund’s case (b) basis as provided in Ref. 17. All scattering code was written inMatlab [45].

The equations were integrated per parity, see section IIC, and per Jtot. The solutions were

then matched to asymptotic boundary conditions in a basis of channel eigenfunctions. The

same code was used for the scattering calculations of helium with both the oxygen b and X

state.

To test our scattering code we calculated the inelastic cross sections reported in Ref. 16

for the ground state potential as a function of collision energy. After correction of a small

mistake in the code used in Ref. 16 we obtained good agreement for all cross sections.

Both ground and b state S matrix elements were calculated at the same collision energy

Ec, Eq. (18). A full scattering calculation was thus required per target state, initial or final

state of the transition, per collision energy. The total energy [Eq. (18)] determined the basis

set size used for the scattering calculations. For the ground state we used the same settings

as in [16]: N ≤ 9 for total energies up to 30 cm−1, N ≤ 11 for total energies up to 50 cm−1,

N ≤ 13 for total energies up to 100 cm−1, N ≤ 15 for total energies up to 200 cm−1, N ≤ 17

for total energies up to 300 cm−1, N ≤ 21 for total energies up to 500 cm−1, N ≤ 23 for total

energies up to 750 cm−1, N ≤ 27 for total energies up to 1000 cm−1, and N ≤ 29 for total

energies up to 2500 cm−1. For the b state we used N ≤ 12 for total energies up to 30 cm−1,

N ≤ 14 for total energies up to 50 cm−1, N ≤ 16 for total energies up to 100 cm−1, N ≤ 18

for total energies up to 200 cm−1, N ≤ 22 for total energies up to 300 cm−1, N ≤ 24 for

total energies up to 500 cm−1, N ≤ 26 for total energies up to 750 cm−1, N ≤ 30 for total

energies up to 1000 cm−1, and N ≤ 32 for total energies up to 2500 cm−1.

The step size for the propagation was set to 10 steps per de Broglie wavelength and

the maximum propagation radius was set to 20 a0 for collision energies ≤600 cm−1, 18 a0

for ≤1600 cm−1, and 16 a0 for >1600 cm−1. The propagation radii were determined by
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visual inspection of the convergence of the diagonal S matrix elements as a function of the

propagation radius for a range in Jtot’s and a selection of total energies. This criterion is used

since S matrix elements for both potentials should be of the same quality. The convergence

criterion was a change of less than 10−4 in the absolute value of the complex number and of

less than 3 degrees for its phase. The highest target state incorporated in the calculations

of the spectrum are for the oxygen ground state J = 16, and for the b state N = 16.

The convergence criterion for Jtot during the scattering calculations, was that the average

absolute value of the transition matrix elements should be smaller than 10−4 for two values of

Jtot separated by a preset step size. The convergence criterion is sensitive to the magnitude

of the S matrix elements. Since a product of S matrix elements from both potentials is

required in Eq. (17), this criterion is a direct measure for the significance of the contribution

from the S matrix element to the cross section. The Jtot step size for the ground state

scattering was set to 5 and for the b state to 6 starting from Jtot = 0. Typical maximum

values of Jtot were 20 for scattering energies on the order of 10 cm−1, and 150 for scattering

energies above 1600 cm−1, depending on the target state. After determining the maximum

Jtot we performed the calculations for the values of Jtot that were skipped in first instance.

The spectrum [Eq. (13] requires a thermal average over collision energies as given in Eq.

(16). For this averaging a grid of collision energies was used that started at 1 in steps of 0.5

up to 50 cm−1, from 50 in steps of 5 to 200 cm−1, from 200 in steps of 25 to 1000 cm−1, and

from 1000 in steps of 100 to 1900 cm−1. This grid was used for a trapezoidal integration to

obtain the thermally averaged relaxation matrix elements. The total number of scattering

calculations was nearly 12,000.

V. CAVITY RING-DOWN EXPERIMENTS

A. The experimental setup

Cavity ring-down experiments were carried out on two O2-helium mixtures (14.65% and

1% O2). The experiments on the 1% mixture were performed on the setup used in [46]

and illustrated in Fig. 3. For the 14.65% the experiments were carried out on the setup

used in [6]. The main difference between these setups is the pulsed laser source, which is a

diode laser (Toptica DL100 with a power of about 50mW and a wavelength 770±20 nm) in
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the first case and a dye (pyridine-2) laser (Scanmate from Lambda Physik, Ft. Lauterdale,

FL) pumped with a Nd:YAG (neodymium:yttrium aluminium garnet) in the second. The

former has an effective bandwidth of 0.016 cm−1 and the latter 0.07 cm−1. In the remainder

of this section, the cavity ring-down experiments will be discussed for the diode laser setup

illustrated in Fig. 3, with the understanding that it is essentially the same as the dye laser

setup.

An optical cavity was constructed inside a pressure cell using two mirrors with a reflec-

tivity above 99.99% (Research electro optics) that are separated by approximately 350mm,

resulting in an effective absorption path length of 3.5 km. The mirrors have a radius of

curvature of 1000mm. Each measurement commenced with emptying our pressure cell to

a pressure of a few millibar using a membrane pump (Pfeifer Vacuum MVP 055-3). Subse-

quently, we slowly filled the pressure cell with a mixture of 14.65% O2 (Linde gas, 99.9999%

purity) and 85.35% He (Linde gas, 99.999% purity) using two flow controllers (Bronkhorst

High-Tech). For the 1% mixture an in-house premixed bottle containing 1.00±0.01% O2 in

helium was used. During measurements, the wavelength is kept fixed at a position where

the contribution of spectral lines of the molecular oxygen isotopologues is expected to be

negligible. We continuously measured the pressure inside the cell with a diaphragm pressure

detector (Pfeiffer Vacuum D-35614), accuracy 0.3%. We detected the light leaking out of the

cavity with an avalanche photodiode (APD, Licel GmbH LP-1A series). When the intensity

behind the cavity reaches a threshold of approximately 40% of the maximum possible in-

tensity in the cavity, the laser was disabled within 1µs for a period of approximately 200µs

by a home-built electronic switch. We simultaneously recorded the ring-down signal, the

pressure, and the laser current with an oscilloscope (HP infinium). All experiments where

performed at a temperature of 293± 1K.

B. Data processing

1. Removal of CIA and Rayleigh scattering

The ring-down signals as a function of time t and threshold laser intensity I0(ν̃) were

fitted by an exponent of the form [6]

I(t) = I0(ν̃) e
− t

τ(ν̃) , (25)
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with τ(ν̃) the characteristic ring-down time given by

τ(ν̃) =
d

c

1

|ln(R)|+ κ(ν̃)d
. (26)

Here d is the cavity length, c the speed of light, R the reflectivity of the mirrors and κ(ν̃) the

extinction coefficient. As already mentioned in the introduction, the extinction coefficient

is understood to consist of contributions from: Rayleigh scattering [47], collision induced

absorption (CIA) [3], and magnetic dipole absorption, that are summed as [6]

κ(ν̃) = σ(ν̃)nO2 + c(ν̃)n2
O2

+ α(ν̃). (27)

Here nO2 is the number density of molecular oxygen in amagat, and the terms with σ(ν̃) and

c(ν̃) are due to Rayleigh scattering and CIA, respectively. The magnitude of the He and

O2 Rayleigh scattering coefficients σ(ν̃) is well known. Due to the low atomic polarizability

of helium, its Rayleigh scattering is negligible. Also the CIA due to helium-oxygen colli-

sions can be neglected, based on yet unpublished data measured with our cavity ring-down

setup. Therefore, the magnetic dipole absorption α(ν̃) could be obtained from Eq. (27) by

subtracting only the Rayleigh scattering and CIA contributions for oxygen. For the index of

refraction of O2 and the King correction factor (molecular anisotropy) [48] we used the paper

by Bates [49]. The O2–O2 CIA contribution was obtained from the data by Tran et al. [8].

Their data was interpolated using a cubic spline, and has been validated by independent

measurements within our group [6, 9]. The uncertainty in this contribution is about 10%,

however it contributes little to the absorption strength as Fig. 1 shows and does not cause

a systematic error. The coefficients σ(ν̃) and c(ν̃) used in Eq. (27) are given in Table IV.

The observed absorption, which scales with the square of the pressure, is dominated by

the magnetic dipole transition, and the observed line width is mainly due to the effects of

O2-He collisions. This will be illustrated in Sec. VIB, where we directly compare the data

extracted from the measurements with calculated pressure broadening coefficients, and in

Sec. VIC, where it will be shown that collisional line broadening is by far the strongest

effect.

2. Refining the 14.65% O2 data

As will be shown in the results section, the bandwidth of the dye laser used to perform

the measurements on the 14.65% O2-helium mixture is broad enough to excite multiple
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cavity modes. This leads to multiple pressure dependent absorption curves with similar

curvature, but with different offsets at zero pressure due to the wavelength dependence of

the mirror reflectivity. Using the assumption that thermal fluctuations in the setup are the

cause of the scatter in the data belonging to a single curve, we attempted to separate the

data points belonging to curves with different offsets. This is in order to make the curvature

more pronounced for a comparison with the theoretical predictions that should reproduce

the curvature.

To this end, the pressure dependent data sets were filtered keeping in mind that the

resulting data set should reveal a normally distributed scatter. The focus was on obtaining

the absorption curve with the lowest offset, so that the filter could be kept simple. A 20-

point-window was moved over the data point-by-point while each time collecting a number

of points with the lowest absorption. The number of points was chosen per data set such

that the residuals between the filtered data set and a low order polynomial fit through this

data resembles a normal distribution. A 2σ standard deviation was subsequently determined

from these residuals, and used to remove the scarce outliers on the low absorption side. The

final step was to set the offset to zero for the filtered data set by subtraction of the zero-order

term in the fitted polynomial.

VI. RESULTS AND DISCUSSION

In this section our theoretical results are compared to experimental results taken from

the literature and from measurements performed on our cavity ring-down setup. First we

present integrated line cross sections and pressure broadening coefficients, both quantities

that are relatively insensitive to the effects of line-mixing, hence line-mixing is neglected in

the calculations. Then the effect of the line-mixing mechanism is studied by the prediction

of pressure-dependent absolute absorption strengths in the “valleys” between spectral lines.

As will be shown, the difference between including and neglecting the line-mixing becomes

most pronounced in these regions. When the line-mixing is neglected, the spectrum is a sum

of Lorentzian line shapes according to Eq. (19). The results of the calculations are compared

to the cavity ring-down data.

For the discussion we designate the spectral lines of transition type |N ′M ′
N ; b

1Σ+
g 〉

← |FiJMJ ;X
3Σ−

g 〉 (section IIB) by ∆N∆J(N). Here N is the nuclear rotation quantum
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number in Eq. (2), depending on the choice for Fi as the initial state of the magnetic dipole

transition. Furthermore, ∆N ≡ N ′ − N and ∆J ≡ N ′ − J , with ∆X=−1, 0, 1 denoted by

P , Q, R, respectively. Hence designations such as PQ(3) or RR(3).

A. Integrated line cross sections

Table III shows a comparison between our integrated line cross sections calculated with

Eq. (10), and experimentally determined cross sections [50] for the P branch (P is related to

∆N). These integrated cross sections test the magnetic dipole transition matrix elements

for molecular oxygen, excluding any collisional effects. The experiments were performed in

a pressure range from 1.4 to 4.6 kPa (≈ 0.013 to 0.045 atm) on a 2% oxygen mixture with

nitrogen. The partition sum Z = 215.77 (at a temperature of 296K) and the transition

wavenumbers ν̃Fi,J,N of Eq. (10) were taken from the literature [20, 51] based on data from

the Hitran database. Relative differences with respect to the experimental values are given,

and show an agreement to within 1%. This confirms that the value of 0.0268µB from Ref. 11

that we used for the electronic magnetic dipole transition moment is indeed accurate.

B. Pressure broadening and shifting coefficients

The first test for collisional effects is the prediction of helium-O2 broadening and shifting

coefficients of the spectral lines in the A-band spectrum. These coefficients represent the

linear dependence of the line widths and shifts on the, in this case, helium density. The

broadening coefficients have been determined experimentally, and are reported in the lit-

erature [52]. The line shift coefficients, however, were too small to determine accurately.

The effect of line-mixing on the line widths is expected to be negligible, since there is no

significant overlap between spectral lines at the relatively low pressures for which the exper-

iments were carried out (0.26 atm O2 partial pressure and a range of 0.13 to 0.52 atm helium

pressure). If line-mixing is neglected the spectrum becomes a sum of Lorentz lines as given

in Eq. (19). Using Eqs. (15) and (16) the pressure broadening and shifting coefficients can

be defined. We define the coefficients γk for the k-th spectral line in units of cm−1 atm−1

for comparison with the experiment (k corresponds to a set of quantum numbers N ′, Fi, J
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of the transition)

γk ≡
1

2πc

1

p0

T0

T
NL〈vσk;k〉 . (28)

Here p0=1atm, T0=273.15K, NL is Loschmidt’s number (2.6867774·1025 particles m−3 for

an ideal gas at 0◦C and 1 atm), and 〈vσk;k〉 is 〈vσFi,J,N ;Fi,J,N〉 of Eq. (16). The real and

imaginary part of γk represent the broadening and shifting coefficients of spectral line k.

Figure 4 shows that the calculated broadening coefficients follow a smooth line and cap-

ture the trend and magnitude of the experimentally determined coefficients. The apparent

structure in the experimental points of Fig. 4 is not reproduced, but it is not obvious that

this structure is significant. One argument in favor of our calculated trend, is that the mea-

sured oxygen self-broadening coefficients, indicated with the open black dots, display the

same trend (by an overall factor of almost 4/3). The reported uncertainties for these coeffi-

cients [53] are on the order 10−4 cm−1 atm−1 and are not visualized. These self-broadening

coefficients will be used for the calculation of the absolute absorption strengths in section

VIC.

The pressure shifts that follow from the imaginary part of Eq. (28) are shown in Fig. 5. All

shift coefficients have the same sign, and are indeed smaller than what could experimentally

be determined by the spectrometer used by [52]. It should be noted that the present theory

does not exactly satisfy detailed balance. This is known to affect the imaginary part of the

relaxation matrix in particular [54, 55].

C. Pressure-dependent absorption strengths

The results shown so far, prove that the strong absorption features of the calculated

and experimental spectrum are in good agreement. The next step is to study the weak

features of the spectrum, that are most sensitive to the effects of line-mixing. A comparison

between theory and experiment will put the line-mixing incorporated in the current theory

to the test. One tests the formalism, the interaction helium-O2 interaction potentials, and

especially the off-diagonal elements in the relaxation matrix.

For this comparison one should look at the spectrum to find out where line-mixing be-

comes most apparent. Hereto, we calculated a part of the A-band spectrum using Eq. (13).

The transition wavenumbers ν̃Fi,J,N for the spectrum, required in Eq. (10), were taken from

the literature [20, 51] and are taken from the Hitran database. Since the collisional effects
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on the experimental spectrum are not solely from the helium-O2 collisions, but also from

O2-O2 collisions, the relaxation matrix elements in Eq. (15) should be amended to include

O2 self-broadening and shifting. The corrected matrix elements, proportional to the helium

density nHe in amagat, are

n
〈

vσHe−O2,O2−O2

k′;k

〉

≡ 2πcp0
T

T0
nHe(γ

He−O2

k′,k +
xO2

1− xO2

γO2−O2

k δk′,k) (29)

with

γHe−O2

k′,k ≡ 1

2πc

1

p0

T0

T
NL〈vσk′;k〉 , (30)

with 〈vσk′;k〉 the ab initio helium-O2 matrix elements of Eqs. (15) and (16) including off-

diagonal elements. The real part of γO2−O2

k is the experimentally determined oxygen self-

broadening coefficient (shown in Fig. 4) and the imaginary part the shift for the k-th spectral

line taken from the literature [53]. These coefficients only contribute to the relaxation matrix

diagonal, which is indicated by the Kronecker delta δk′,k. The xO2 is the fraction of oxygen

in the gas mixture used in the experiment. The calculated spectrum is shown as the black

line in Fig. 6(a). This figure provides the cross sections of oxygen molecules surrounded by

helium at a pressure of 5 atm to accentuate the collisional effects. The fraction xO2 was set

to zero so only the collisional effects of helium are visible.

In Fig. 6 we demonstrate the effect of line-mixing by also plotting the ratio of this

spectrum divided by the spectrum without line-mixing, Eq. (19), as a solid gray line. The

ratios 1.0 and 0.7 are indicated as dashed horizontal gray lines. One observes that the

effect of line-mixing is strongest in between the lines. Clearly, the strongest effect is found

near 13122 cm−1 in between the P branch (ν̃ < 13120 cm−1) and the R branch (ν̃ >13128

cm−1), where line-mixing reduces the absorption cross section. In other minima line-mixing

increases the absorption cross section.

Figure 6(a) contains five arrows indicating the spectral positions where the pressure-

dependent cavity ring-down measurements were performed. Each arrow is labeled by a letter

corresponding to a panel below. The fraction of oxygen in the gas mixture is indicated in

the upper left corner of each panel. Each gray dot in the figure corresponds to one measured

ring-down curve. As was discussed in section V, each ring-down curve is fitted to obtain the

extinction coefficient κ(ν̃) at a given pressure. There are between 1000 and 3000 points per

panel.
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The contributions of CIA and Rayleigh scattering were subtracted from the measured

pressure dependent curves, as described in section VB1. The values of the coefficients used

for Eq. (27) are given in Table IV. What remains after these corrections is the magnetic

dipole absorption strength α(ν̃). The experimental data in Fig. 6 is shown as a function

of the helium density nHe. The panels displaying the data for the 14.65% O2 mixture

contain dark gray data points that indicate what part of the gray data points belong to one

cavity mode, as was discussed in section VB2. Figure 6(b) provides an example where two

absorption curves are visible with different offsets but similar curvature.

Each panel contains a solid line with the absolute predictions of the absorption strength

including line-mixing. To link the spectrum F (ν̃) to the absorption strength we used the

relation

α(ν̃) = xO2

T0

T

p

p0
NLF (ν̃) , (31)

where the pressure p is directly measured in the cavity ring-down experiment. Note that

Eq. (29) is used in Eq. (13) to compute F (ν̃). The dashed line ignores the line-mixing, the

off-diagonal elements of the relaxation matrix, and corresponds to a spectrum built as a sum

of Lorentzian line shapes. We also compare our data to a semi-empirical model developed

by Tonkov et al. [12, 13], shown as a dash-dotted line in Fig. 6. This model is based on

the “strong collision” approximation, in which it is assumed that the probability to find the

active molecule in specific final J states after a collision is given by the thermal distribution

function and does not depend on its initial J value. Then, the only parameters needed to

construct the effect of line-mixing due to the off-diagonal terms in the relaxation matrix of

Eq. (15) are related to the diagonal elements of this matrix: the (measured) line frequencies

and relative intensities and the collision frequency. The latter can be derived from the

observed line broadening parameters. The Tonkov model was developed for vibrational

transitions; in Refs. 56, 57 it was applied to electronic transitions. It is empirical but highly

predictive.

It can be seen that our ab initio results in which line-mixing effects are included are in

good quantitative agreement with the experimental data for all wavelengths considered. This

demonstrates the validity of our quantum mechanical framework. In a number of cases the

difference between the present purely ab initio and the empirical model is very small. Figure

6(c) is taken in the minimum of the spectrum of Fig. 6(a), where the effect of line-mixing is

largest. Here the experiment agrees with the two models that include line-mixing, while the
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neglect of line mixing leads to a 30% deviation. The difference between our first principles

calculation and the empirical model is not sufficiently large to allow an experimental test.

The fact that we find such good agreement with the empirical data puts the Tonkov model

on a more solid footing.

VII. CONCLUSIONS

The pressure broadening of the rotationally resolved oxygen A-band spectrum by helium

was studied theoretically. To our knowledge this is the first time pressure broadening of

an electronic transition of a molecule is treated with a fully quantum mechanical descrip-

tion. A new interaction potential for helium–O2(b
1Σ+

g ) was computed. This potential and

a helium–O2(X
3Σ−

g ) potential taken from the literature were required for the scattering

calculations to calculate line broadening in the impact approximation. Regarding the spec-

troscopy of molecular oxygen, accurate integrated line cross sections for 13 spectral lines in

the P branch were obtained. The line broadening coefficients predicted by the impact ap-

proximation treatment are in good agreement with experimental values from the literature.

From cavity ring-down experiments absolute absorption strengths were obtained between

several spectral lines, with a sensitivity of about 10−7 cm−1. The experimental results are in

quantitative agreement with those of the calculations. In particular in the region between

the P and R branch it is proven that neglect of the off-diagonal elements in the relaxation

matrix responsible for line-mixing, would lead to a 30% mismatch with the experimentally

determined absorption strengths. Additionally it was shown that the ab initio calculated

line-mixing is in quantitative agreement with the empirical Tonkov model.

To put the present work in a more general perspective, let us reiterate that collisional

effects on line shapes are small but relevant. Especially for our Earth’s atmosphere an ab

initio treatment of both line mixing and CIA due to collisions with oxygen and nitrogen

is of enormous value, as it will allow predictions of the effects of the large differences in

temperatures and other atmospheric conditions. This theoretical and experimental study of

the O2-He system constitutes the first successful step. Both line broadening and line mixing

are well described, even though these effects are small and near the limit of what can be

measured by the most sensitive techniques available to date. For O2-N2 and O2-O2 collisions

the effects are expected to be substantially larger. The success of the Tonkov model, which
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uses measured line broadening coefficients to predict line mixing, stresses the common origin

of both processes: atom-molecule collisions. It will be interesting to see whether also in more

complex collision systems the results of the Tonkov model will still be similar to ab initio

predictions. This treatment of line mixing is part of an ambitious project which aims at

theoretically predicting CIA in electronic transitions. Such predictions do not exist yet,

while experiments show that in this case collisions between oxygen and between oxygen and

other molecules have very different and ill understood effects. It was found, for example,

that CIA spectra due to oxygen-oxygen collisions are much stronger than for oxygen-nitrogen

collisions and also have a very different shape as a function of wavelength. Moreover, the

relative effect of collisions with oxygen and nitrogen is very different for excitation to the

a1∆g state than for excitation to the b1Σ+
g state.
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TABLE I: Spectroscopic constants of O2 in cm−1 used in this work. B0 and D0 are the rotational

and distortion constant of the vibrational ground state, and λSS and λNS the spin-spin and spin-

rotation coupling constants.

constant X3Σ−
g [27] b1Σ+

g [28]

B0 1.437675 1.391247

D0 4.790·10−6 5.375·10−6

λSS 1.984751 –

λNS −8.425·10−3 –
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TABLE II: Fitted leading term coefficients of Eq. (23) in Eh/a
n
0 .

l n cn,l

0 6 10.26

2 6 2.44

4 8 −3.19
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TABLE III: Comparison of experimental [50] and calculated [Eq. (10], T = 296 K) integrated line

cross section in units of 10−24 cm molecule−1. Numbers in parentheses are 1σ standard deviations

in the unit of the last digit. The relative difference with respect to the experimental values is given

as a percentage.

line PQ(3) PP (3) PQ(5) PP (5) PQ(7) PP (7) PQ(9)

[50] 3.901(8) 5.738(8) 5.974(9) 7.557(9) 7.098(9) 8.423(10) 7.256(8)

calculated 3.887 5.717 5.966 7.558 7.093 8.400 7.263

rel. diff. % −0.35 −0.37 −0.13 0.01 −0.07 −0.27 0.10

line PP (9) PQ(11) PP (11) PQ(13) PP (13) PQ(15)

[50] 8.262(8) 6.667(7) 7.437(7) 5.608(5) 6.113(5) 4.338(4)

calculated 8.276 6.661 7.402 5.575 6.088 4.303

rel. diff. % 0.17 −0.09 −0.47 −0.59 −0.40 −0.81
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TABLE IV: Coefficients c(ν̃) and σ(ν̃) used in Eq. (27) to subtract the contributions of CIA

and Rayleigh scattering, respectively, from the measured pressure dependent extinction κ(ν̃) at

wavenumber ν̃.

ν̃ c(ν̃) σ(ν̃)

cm−1 10−7cm−1amagat−2 10−8cm−1amagat−1

13081.30 1.90 2.87

13103.13 1.79 2.89

13112.48 1.76 2.89

13122.48 2.00 2.90

13125.92 1.98 2.91
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FIG. 1: Construction of the extinction coefficient κ(ν̃) as a function of wavenumber ν̃ for molecular

oxygen gas (black) at a density of 1 amagat in the A-band region from the summed contributions

of: Rayleigh scattering (green), magnetic dipole absorption (red), and CIA (blue). The dashes in

the region of the R branch indicate that the CIA is not determined here. This figure was reprinted

with permission from J. Chem. Phys. 133, 114305 (2010) [6]. Copyright 2010 American Institute

of Physics.
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FIG. 2: The two potential surfaces, in µEh, used in the scattering calculations, with the O–O

distance r indicated in the titles. The molecular axis of the oxygen molecule is parallel to the XHe

axis. (a) The computed He-O2(b1Σ+
g ) interaction potential, unphysical region indicated in gray.

(b) The He-O2(X3Σ−
g ) interaction potential from [15].
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FIG. 3: The cavity ring-down setup used for the determination of pressure dependent extinction.

Light from the DL100 laser diode is coupled into the optical ring-down cavity, and is partly used

for the determination of the wavelength. The light leaking out of the cavity is detected using an

avalanche photo diode. When the detected signal reaches a threshold, the switch controller switches

the laser off and provides a trigger for the oscilloscope. The oscilloscope captures the exponentially

decaying signal detected by the avalanche photo diode as well as the pressure measured by the

pressure sensor.
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FIG. 4: Comparison between experimentally determined line broadening coefficients for helium-

O2 [52] (solid black dots with 1σ error bars), and theory (the real part of Eq. 28) (black line), with

T = 298 K for the P and R branches of the spectrum. The open black dots are experimentally

determined oxygen self-broadening coefficients [53]. These are used in the calculations of the ab-

sorption strengths in section VI C. Uncertainties for these coefficients [53] are on the order 10−4

cm−1 atm−1 and are not visualized.
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FIG. 5: Calculated pressure shift coefficients, the imaginary part of Eq. (28) at T = 298 K. Coeffi-

cients for the P and R branch are indicated in gray open dots and black solid squares, respectively.



FIG. 6: (a) The calculated absorption spectrum (blue), including line-mixing [Eq. (13)], on a

logarithmic intensity scale at T=293 K and a partial helium pressure of 5 atm. The solid gray

line represents the division of this spectrum by the spectrum without line-mixing [Eq. (19)]. The

dashed gray lines indicate the ratios of 1.0 and 0.7. The arrows indicate the spectral position for

the experimental data in the corresponding panel. (b–f) Measured magnetic dipole absorption

strength α(ν̃) (gray points) as a function of helium density nHe. Dark gray points indicate data

belonging to one cavity-mode. Other lines are line-mixing (solid blue), no line-mixing (dashed red)

and the Tonkov model (dash-dotted black).


