Search for the charmed pentaquark candidate $\Omega_c(3100)^0$ in e^+e^- annihilations
at $\sqrt{s} = 10.58 \text{ GeV}$
SEARCH FOR THE CHARMED PENTAQUARK CANDIDATE...

PHYSICAL REVIEW D 73, 091101(R) (2006)

24 Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
25 Ecole Polytechnique, LLR, F-91128 Palaiseau, France
26 University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
27 Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
28 Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
29 Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
30 Harvard University, Cambridge, Massachusetts 02138, USA
31 Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
32 Imperial College London, London, SW7 2AZ, United Kingdom
33 University of Iowa, Iowa City, Iowa 52242, USA
34 Iowa State University, Ames, Iowa 50011-3160, USA
35 Johns Hopkins Univ. Dept. of Physics and Astronomy 3400 N. Charles Street Baltimore, Maryland 21218, USA
36 Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
37 Laboratoire de l’Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B.P. 34, F-91898 ORSAY Cedex, France
38 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
39 University of Liverpool, Liverpool L69 7ZE, United Kingdom
40 Queen Mary, University of London, E1 4NS, United Kingdom
41 University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
42 University of Louisville, Louisville, Kentucky 40292, USA
43 University of Manchester, Manchester M13 9PL, United Kingdom
44 University of Maryland, College Park, Maryland 20742, USA
45 University of Massachusetts, Amherst, Massachusetts 01003, USA
46 Massachusetts Institute of Technology, Laboratoire for Nuclear Science, Cambridge, Massachusetts 02139, USA
47 McGill University, Montréal, Québec, Canada H3A 2T8
48 Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
49 University of Mississippi, University, Mississippi 38677, USA
50 Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
51 Mount Holyoke College, South Hadley, Massachusetts 01075, USA
52 Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
53 NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
54 University of Notre Dame, Notre Dame, Indiana 46556, USA
55 Ohio State University, Columbus, Ohio 43210, USA
56 University of Oregon, Eugene, Oregon 97403, USA
57 Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
58 Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
59 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
60 Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
61 Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
62 Prairie View A&M University, Prairie View, Texas 77446, USA
63 Princeton University, Princeton, New Jersey 08544, USA
64 Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
65 Universität Rostock, D-18051 Rostock, Germany
66 Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
67 DSM/Dapnia, CEA/Saclay, F-91191 GIF-sur-Yvette, France
68 University of South Carolina, Columbia, South Carolina 29089, USA
69 Stanford Linear Accelerator Center, Stanford, California 94309, USA
70 Stanford University, Stanford, California 94305-4060, USA
71 State University of New York, Albany, New York 12222, USA
72 University of Tennessee, Knoxville, Tennessee 37996, USA
73 University of Texas at Austin, Austin, Texas 78712, USA
74 University of Texas at Dallas, Richardson, Texas 75083, USA
75 Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
76 Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
77 IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
78 University of Victoria, Victoria, British Columbia, Canada V8W 3P6

* Also at Laboratoire de Physique Corpusculaire, Clermont-Ferrand, France
† Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
‡ Also with Università della Basilicata, Potenza, Italy
We search for the charmed pentaquark candidate reported by the H1 collaboration, the \(\Theta_c(3100)^0 \), in \(e^+e^- \) interactions at a center-of-mass (c.m.) energy of 10.58 GeV, using 124 fb\(^{-1}\) of data recorded with the BABAR detector at the PEP-II \(e^+e^- \) facility at SLAC. We find no evidence for such a state in the same \(pD^*^- \) decay mode reported by H1, and we set limits on its production cross section times branching fraction into \(pD^*^- \) as a function of c.m. momentum. The corresponding limit on its total rate per \(e^+e^- \rightarrow q\bar{q} \) event, times branching fraction, is about 3 orders of magnitude lower than rates measured for the charmed \(\Lambda_c \) and \(\Sigma_c \) baryons in such events.

We use all events accepted by our trigger, which is more than 99% efficient for both \(e^+e^- \rightarrow q\bar{q} \) and \(e^+e^- \rightarrow Y(4S) \) events. We use charged tracks reconstructed in the five-layer silicon vertex tracker (SVT) and the 40-layer drift chamber (DCH). The combined momentum resolution, \(\sigma(p_T) \), is given by \(\left[\sigma(p_T)/p_T \right]^2 = \left[0.0013p_T \right]^2 + 0.0045^2 \), where \(p_T \) is the momentum transverse to the beam axis measured in GeV/c. Particles are identified as pions, kaons, or protons with a combination of the energy-loss measured in the two tracking detectors and the Cherenkov angles measured in the detector of internally reflected Cherenkov radiation (DIRC).

We evaluate the \(\Theta_c(3100)^0 \) reconstruction efficiency and invariant mass resolution from two simulations. For production in \(e^+e^- \rightarrow c\bar{c} \) events, we use the JETSET [7] Monte Carlo generator with the mass and width of the \(\Sigma_c(2455)^0 \) baryon set to 3099 MeV/c\(^2\) and 1 MeV, respectively, and allow only the \(pD^*^- \) decay mode. We leave all other parameters unchanged, and a momentum spectrum similar to those of nonexotic charmed baryons is produced. The events have a total charm of \(\pm 2 \), but this has negligible effect on the number and distribution of additional particles in the event, which are the quantities of interest here. We also simulate \(Y(4S) \) decays in which one \(B \) decays generically in our standard framework [8] and the other decays into a state containing a \(\Sigma_c(2455)^0 \) with parameters adjusted in the same way. This gives a much softer momentum spectrum, cut off at the kinematic limit for \(B \) meson decays, and a different environment in terms of other particles in the event. We find that the efficiency and resolution depend primarily on the \(\Theta_c(3100)^0 \) momentum and polar angle in the laboratory frame, and negligibly on other aspects of the production process or event environment.

We use large control samples of particles identified in the data to correct small inaccuracies in the performance predicted by the GEANT-based [9] detector simulation.

We choose \(\Theta_c(3100)^0 \) candidate selection criteria designed for high efficiency and low bias against any pro-
duction mechanism. We use charged tracks reconstructed with at least 12 coordinates measured in the DCH, and select identified pions, kaons and protons. The identification criteria for pions and kaons are fairly loose, having efficiencies better than 99% and misidentification rates below 1% for momenta below 0.5 GeV/c where energy loss in the SVT and DCH provide good separation, and efficiencies of roughly 80% and misidentification rates below 10% for momenta above 0.8 GeV/c where the Cherenkov angles are measured well in the DIRC. The criteria for identified protons are tighter. For momenta below 1 GeV/c and above 1.5 GeV/c the efficiencies are better than 95% and 75%, and the misidentification rates are below 1% and 3%, respectively.

In each event we consider every combination of identified $pK^+\pi^-\pi^-$ and $pK^+\pi^-\pi^+\pi^-$ and perform a topological fit to each combination with the hypothesized decay chain $X \to pD^{*-} \to p\bar{D}^0\pi^- \to pK^+\pi^-\pi^+\pi^-\pi^-$. No mass constraints are used in the fit, but the decay products at each stage are required to originate at a single space point. The \bar{D}^0 has a finite flight distance, and we require the confidence level of the χ^2 for its decay vertex to exceed 10^{-4}.

We select candidates in which both the reconstructed \bar{D}^0 and D^{*-} masses are within 20 MeV/c² of the peak value, namely $1843.8 < m_{K^+\pi^-\pi^-} < 1883.8$ MeV/c² and $1989 < m_{K^+\pi^-\pi^-\pi^-} < 2029$ MeV/c². In Fig. 1(a) we show the distributions of the differences in reconstructed invariant mass $\Delta m = m_{K^+\pi^-\pi^-} - m_{K^+\pi^-\pi^-}$ and $m_{K^+\pi^-\pi^-\pi^-} - m_{K^+\pi^-\pi^-\pi^-}$ for these $X \to pK^+\pi^-\pi^-$ and $pK^+\pi^-\pi^-\pi^-\pi^-$ candidates, respectively. Clear signals for D^{*-} are visible in both cases, with peak positions and widths (~ 0.6 MeV/c²) consistent with expectations from our simulation. The widths (~ 6 MeV/c²) of the corresponding \bar{D}^0 and D^{*-} peaks (not shown) are underestimated by about 10% in the simulation. We require a mass difference within 2 MeV/c² of the peak value, $143.48 < \Delta m < 147.48$ MeV/c².

About 55,000 $D^{*-} \to K^+\pi^-\pi^-$ decays and 73,000 $D^{*-} \to K^+\pi^-\pi^-\pi^+\pi^-$ decays are present in the selected data over respective backgrounds of 4000 and 62,000 random combinations. No event in either the data or simulation has more than one surviving pD^{*-} candidate. Without the proton requirement, over 75,000 D^{*-} are seen. Figure 1(b) shows the distribution of the D^{*-} momentum, p^*, in the c.m. frame for the selected data. A characteristic two-peak structure is evident, in which the peak at lower p^* values is due to D^{*-} from decays of B hadrons from $Y(4S)$ decays, and the peak at higher p^* values is due to $e^+e^-\to c\bar{c}$ events. For purposes of illustration, we show the spectra measured [10] from these two sources on Fig. 1(b), scaled by our integrated luminosity, average efficiency and fraction of events with a proton. The shape is modified by the selection criteria; in particular, the proton requirement shifts the edge at the highest p^* values. The background is verified by sideband studies to be concentrated at lower p^* values; it is clear that we are sensitive to $\Theta_c(3100)^0$ production from both of these sources.

We evaluate the $\Theta_c(3100)^0$ reconstruction efficiency for each search mode from the simulation, as a function of p^*. High-mass particles at low p^* are boosted forward in our laboratory frame, so that the probability of losing at least one track outside the acceptance is large, and the efficiencies are low, about 10% and 5% for the $K^+\pi^-$ and $K^+\pi^-\pi^-\pi^-$ modes, respectively. The efficiencies rise with increasing p^* to respective maximum values of 30% and 22% at the kinematic limit. The invariant mass requirements introduce negligible signal loss. The relative systematic uncertainties on the tracking and particle identification efficiencies total 6–8%; at low and high p^* values, there is a contribution of similar size from the statistics of the simulation.

We calculate the $\Theta_c(3100)^0$ candidate invariant mass as $m_{pD^*} \equiv m_{pK^+\pi^-\pi^-} - m_{K^+\pi^-\pi^-\pi^-} + m_{p\pi^-}$, where $m_{\pi^-} = 1019$ MeV/c² is the known D^{*-} mass [11]. We take the resolution on this quantity from the simulation, as it is insensitive to the simulated $D^{(*)}$ mass resolution and previous studies involving protons combined with \bar{K}_S^0 [5] showed the proton contribution to be well simulated. We describe the resolution by a sum of two Gaussian functions with a common center. The width of the core (tail) Gaussian averages 2.5(20) MeV/c², almost independent of p^*, and the wider Gaussian contributes between 20% of the total at low p^* and 10% at high p^*. The overall resolution, defined as the FWHM of the resolution function divided by 2.355, averages 2.8 and 3.0 MeV/c² for the $K^+\pi^-$ and $K^+\pi^-\pi^-\pi^-$ decay modes, respectively, with a small dependence on p^*.

We show m_{pD^*} distributions for the $\Theta_c(3100)^0$ candidates in the data in Fig. 2 for the two \bar{D}^0 decay modes. They show no narrow structure; in particular, they are...
We perform maximum likelihood fits at several fixed $\Theta_c(3100)^0$ mass values in the range 3087–3111 MeV/c2. In every case we find good fit quality and a signal amplitude consistent with zero. We consider systematic effects in the fitting procedure by varying the signal and background functions and fit range; changes in the signal yield are negligible compared with the statistical uncertainties. The dependence on the assumed mass value is also small compared with the statistical error in each case. Fixing the mass to the reported value of 3099 MeV/c2, we obtain the event yields shown in Fig. 3. There is no positive trend in the data, and the roughly symmetric scatter of the points about zero indicates little momentum-dependent bias in the background function.

In each p^* range we divide the sum of the two signal yields by the sum of the two products of reconstruction efficiency and $D^0 \to K^+ \pi^- \pi^+$ or $D^0 \to K^+ \pi^- \pi^+ \pi^-$ branching fraction, the $D_s^- \to D^0 \pi^- \pi^+$ branching fraction, the integrated luminosity, and the p^* range. This gives the product of the unknown $\Theta_c(3100)^0 \to pD^{**}$ branching fraction, B, and the differential production cross section, $d\sigma/dp^*$. The resulting values of $B \cdot d\sigma/dp^*$ for $\Gamma = 1$ MeV and $\Gamma = 28$ MeV are shown in Fig. 4. We derive an upper limit on the value in each p^* range under the assumption that it cannot be negative: a Gaussian function centered at the measured value with RMS equal to the total uncertainty is integrated from zero to infinity, and the point at which the integral reaches 95% of this total is taken as the limit. These 95% confidence level (CL) upper limits are also shown in Fig. 4.

We integrate $B \cdot d\sigma/dp^*$ over the full p^* range from 0–4.5 GeV/c, taking into account the correlation in the systematic uncertainty, to derive a total production cross section times branching fraction, $B \cdot \sigma$, for each of the two assumed Γ values, and calculate corresponding upper limits. These limits are model independent; any postulated production spectrum can be folded with the measured differential cross section to obtain a smaller limit. We calculate corresponding limits on the number of smooth in the region near 3100 MeV/c2, shown in the inset, where the bin size is two-thirds of the resolution. Corresponding distributions for sidebands in the D^0 and D^{**} masses and the mass differences show overall structure similar to that in the signal region. We consider several variations of the selection criteria that might enhance a pentaquark signal, but in no case do we observe one. To enhance our sensitivity to any production mechanism that gives a p^* spectrum different from that of the background, we divide the data into nine p^* ranges of width 500 MeV/c covering values from 0 to 4.5 GeV/c. The background is lower at high p^*, so we are more sensitive to mechanisms that produce harder spectra. There is no evidence of a pentaquark signal in any p^* range.

We quantify this null result by fitting a signal-plus-background function to the m_{pD^*} distribution in each p^* range. We use a p-wave Breit-Wigner lineshape convolved with the resolution function described above. The RMS width of the reported $\Theta_c(3100)^0$ signal is 12 MeV/c2 and consistent with the H1 detector resolution [3]. Our mass resolution is considerably better, so we must consider a range of possible natural widths Γ of the $\Theta_c(3100)^0$. We quote results for two assumed widths, $\Gamma = 1$ MeV, corresponding to a very narrow state, and $\Gamma = 28$ MeV, corresponding to the width observed by H1, which we take as an upper limit. For the background we use the function $f(m) = 0$ for $m < m_0$ and $f(m) = \sqrt{1 - (m_0/m)^2} \exp[a(1 - (m_0/m)^2)]/m$ for $m > m_0$, where $m_0 = m_p + m_{D^*} = 2948$ MeV/c2 is the threshold value and a is a free parameter. We fit over the range from threshold to 3300 MeV/c2, except in the lowest p^* range for the $K^+ \pi^- \pi^+ \pi^-$ mode. Here the acceptance drops sharply near threshold and the fit range is restricted to the region above 3000 MeV/c2.

FIG. 2. Invariant mass distributions for $\Theta_c(3100)^0$ candidates in the data in the (black) $K^+ \pi^-$ and (gray) $K^+ \pi^- \pi^+ \pi^-$ decay modes, over a wide mass range and (inset) in the region near 3100 MeV/c2.
These central values and limits are given in Table I.

\[\Theta_c(3100)^0 \] produced per \(q\bar{q} \) (\(q = u\bar{d}, s\bar{c} \)) event and per \(c\bar{c} \) event by dividing by the respective cross sections for these types of events; we also calculate a limit per \(Y(4S) \) decay by integrating \(B \cdot \sigma / dp^* \) over the range \(p^* < 2 \text{ GeV}/c \) (the kinematic limit for \(B \) meson decays is 1.8 \text{ GeV}/c) and dividing by our effective cross section for \(e^+ e^- \rightarrow Y(4S) \). These central values and limits are given in Table I.

In summary, we perform a search in \(e^+ e^- \) annihilations at \(\sqrt{s} = 10.58 \text{ GeV} \) for the pentaquark candidate state \(\Theta_c(3100)^0 \) reported by the H1 collaboration. We use the same decay mode as H1, \(\Theta_c(3100)^0 \rightarrow pD^{*-} \), and find no evidence for the production of this state in a sample of over 125 000 \(pD^{*-} \) combinations. The components of this sample from \(c\)-quark fragmentation and \(B^0/\bar{B}^0 + B^\pm \) decays are both at least 100 times larger than the sample used by H1, implying that neither hard charm quarks nor \(B \) mesons produced in deep inelastic scattering can be the source of the H1 signal. We set upper limits on the product of the inclusive \(\Theta_c(3100)^0 \) production cross section times branching fraction to this mode for two assumptions as to its natural width, which are valid for any state in the vicinity of 3100 \text{ MeV}/c^2. It would be interesting to compare these limits with the rate expected for an ordinary charmed baryon of mass \(\sim 3100 \text{ MeV}/c^2 \). However rates have been measured for only two charmed baryons, the \(\Lambda_c^+(2285) \) \cite{10,11} and \(\Sigma_c(2455) \) \cite{11}, with precision that does not allow a meaningful estimate of the mass dependence. The mass dependence observed \cite{11} for non-charmed baryons in \(e^+ e^- \) annihilations would predict a rate for a 3100 \text{ MeV}/c^2 baryon about 1000 times smaller than that of the \(\Lambda_c^+(2285) \). Our limits for a narrow state in both \(e^+ e^- \rightarrow c\bar{c} \) and \(Y(4S) \) events are roughly 1000 and 500 times below the measured \(\Lambda_c^+(2285) \) and \(\Sigma_c(2455) \) rates, respectively. As a result the existence of an ordinary charmed baryon with this mass and decay mode cannot be excluded.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), Marie Curie EIF (European Union), the A.P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.

\[\text{Table I. Total production cross section of the } \Theta_c(3100)^0 \text{ pentaquark candidate times its branching fraction to } pD^{*-}B \cdot \sigma, \text{ in } e^+ e^- \text{ annihilations at } \sqrt{s} = 10.58 \text{ GeV}, \text{ for two assumed values of the natural width. The corresponding 95\% CL upper limits on } B \cdot \sigma \text{ and on } B \text{ times the yields per } e^+ e^- \rightarrow q\bar{q} \text{ event, } e^+ e^- \rightarrow c\bar{c} \text{ event, and } Y(4S) \text{ decay.} \]

\[\begin{array}{c|c|c|c|c|c} \hline \hline \Gamma & 1 \text{ MeV} & 28 \text{ MeV} \\
\hline B \cdot \sigma (\text{fb}) & 40 \pm 44 & 102 \pm 111 \\
\hline \hline & \text{UL} & \text{UL} \\
\hline B \times \text{yield} \times 10^{-5} & \text{per} & \text{per} & \text{per} & \text{per} & \text{per} \\
e^+ e^- \rightarrow q\bar{q} \text{ event} & <3.4 & <8.8 & <3.4 & <8.8 & <8.8 \\
e^+ e^- \rightarrow c\bar{c} \text{ event} & <8.5 & <22 & <8.5 & <22 & <22 \\
Y(4S) \text{ decay} & <12 & <37 & <12 & <37 & <37 \\
\hline \end{array} \]

\[\text{FIG. 4. Product of the } \Theta_c(3100)^0 \text{ differential production cross section and its branching fraction to } pD^{*-} \text{ (symbols) and corresponding 95\% CL upper limits (lines), assuming natural widths of } \Gamma = 1 \text{ MeV} \text{ (solid)} \text{ and } \Gamma = 28 \text{ MeV} \text{ (open/dashed), as functions of c.m. momentum.} \]

\[\text{The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), Marie Curie EIF (European Union), the A.P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.} \]