Search for doubly charmed baryons Ξ_{cc}^+ and Ξ_{cc}^{++} in BABAR

SEARCH FOR DOUBLY CHARMED BARYONS Ξ_{cc}^+ AND Ξ_{cc}^{++} IN BABAR

PHYSICAL REVIEW D 74, 011103(R) (2006)

26 University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
27 Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
28 Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
29 Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
30 Harvard University, Cambridge, Massachusetts 02138, USA
31 Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
32 Imperial College London, London, SW7 2AZ, United Kingdom
33 University of Iowa, Iowa City, Iowa 52242, USA
34 Iowa State University, Ames, Iowa 50011-3160, USA
35 Johns Hopkins University, Baltimore, Maryland 21218, USA
36 Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
37 Laboratoire de l’Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B.P. 34, F-91898 ORSAY Cedex, France
38 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
39 University of Liverpool, Liverpool L69 7ZE, United Kingdom
40 Queen Mary, University of London, E1 4NS, United Kingdom
41 University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
42 University of Louisville, Louisville, Kentucky 40292, USA
43 University of Manchester, Manchester M13 9PL, United Kingdom
44 University of Maryland, College Park, Maryland 20742, USA
45 University of Massachusetts, Amherst, Massachusetts 01003, USA
46 Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
47 McGill University, Montréal, Québec, Canada H3A 2T8
48 Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
49 University of Mississippi, University, Mississippi 38677, USA
50 Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
51 Mount Holyoke College, South Hadley, Massachusetts 01075, USA
52 Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
53 NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
54 University of Notre Dame, Notre Dame, Indiana 46556, USA
55 Ohio State University, Columbus, Ohio 43210, USA
56 University of Oregon, Eugene, Oregon 97403, USA
57 Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
58 Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
59 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
60 Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
61 Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
62 Prairie View A&M University, Prairie View, Texas 77446, USA
63 Princeton University, Princeton, New Jersey 08544, USA
64 Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
65 Universität Rostock, D-18051 Rostock, Germany
66 Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
67 DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
68 University of South Carolina, Columbia, South Carolina 29208, USA
69 Stanford Linear Accelerator Center, Stanford, California 94309, USA
70 Stanford University, Stanford, California 94305-4060, USA
71 State University of New York, Albany, New York 12222, USA
72 University of Tennessee, Knoxville, Tennessee 37996, USA
73 University of Texas at Austin, Austin, Texas 78712, USA
74 University of Texas at Dallas, Richardson, Texas 75083, USA
75 Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
76 Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
77 IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
78 University of Victoria, Victoria, British Columbia, Canada V8W 3P6
79 Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
80 University of Wisconsin, Madison, Wisconsin 53706, USA

* Also at Laboratoire de Physique Corpusculaire, Clermont-Ferrand, France
† Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
‡ Also with Università della Basilicata, Potenza, Italy
I. INTRODUCTION AND OVERVIEW

The lowest-mass doubly charmed baryons are predicted to be the members of an isospin doublet \((\Xi_{cc}^+ = ccd\) and \(\Xi_{cc}^{++} = ccu\) [1]) with \(J^P = \frac{3}{2}^+\) and \(L = 0\). There are many theoretical predictions for the \(\Xi_{cc}^+\) and \(\Xi_{cc}^{++}\) masses and lifetimes [2–11]. The predicted masses lie in a range of approximately 3.5 to 3.8 GeV/c\(^2\) [3–8]. The mass difference between the \(\Xi_{cc}^+\) and \(\Xi_{cc}^{++}\) is predicted to be on the order of 1 MeV/c\(^2\) [9]. The \(\Xi_{cc}^+\) and \(\Xi_{cc}^{++}\) lifetimes are expected to be between about 0.1 and 0.2 ps, and 0.5 and 1.5 ps, respectively [10,11]. Theoretical estimates for branching fractions relevant to this paper are \(B(\Xi_{cc}^+ \rightarrow \Lambda_{cc}^+ K^+ \pi^-) = 0.03\), \(B(\Xi_{cc}^{++} \rightarrow \Xi_{cc}^{++} \pi^-) = 0.05\), \(B(\Xi_{cc}^{++} \rightarrow \Lambda_{cc}^+ K^+ \pi^-) = 0.05\), and \(B(\Xi_{cc}^{++} \rightarrow \Xi_{cc}^{++} \pi^-) = 0.05\) [12].

Several predictions have been made for the production cross sections of doubly charmed baryons in \(e^+e^-\) annihilations [13–15]; the predictions range from 1 to 250 fb for an \(e^+e^-\) center-of-mass (CM) energy near 10.58 GeV, and translate into \(O(10^2–10^3)\) doubly charmed baryons produced in the \(BABAR\) data set of 232 fb\(^{-1}\) analyzed here. Measured cross sections for double-\(c\bar{c}\) production in Belle [16] and \(BABAR\) [17] are an order of magnitude larger than nonrelativistic QCD predictions. Calculations for \(cc\ c\bar{c}\) and \(cc\ c\bar{c}\) cross sections are very similar; therefore, the predicted cross sections for doubly charmed baryons may also have been underestimated.

The \(SELEX\) collaboration, which uses the Fermilab 600 GeV/c charged hyperon beam, has published evidence for the \(\Xi_{cc}^+\) baryon in the \(\Lambda_{cc}^+ K^+ \pi^-\) and \(pD^+K^-\) decay modes with a mass of \((3518.7 \pm 1.7)\) MeV/c\(^2\) [18,19]. The \(\Xi_{cc}^+\) baryon, detected in the decay mode \(\Lambda_{cc}^+ K^+ \pi^-\), with a mass of 3460 MeV/c\(^2\), was reported by \(SELEX\) at ICHEP 2002 [20]. The \(\Xi_{cc}^+ – \Xi_{cc}^{++}\) mass difference of 60 MeV/c\(^2\) is not consistent with theoretical expectations. \(SELEX\) sets an upper limit (at 90% confidence level) of 33 fs on the lifetime of the \(\Xi_{cc}^+\) baryon, in conflict with theoretical predictions. The photoproduction experiment \(FOCUS\) does not observe any \(\Xi_{cc}\) states [21] although they observe 19,500 \(\Lambda_{cc}^+\) baryons, compared to 1650 for \(SELEX\).

In this paper, we describe a search for the production of \(\Xi_{cc}\) baryons in a data sample corresponding to an integrated luminosity of 232 fb\(^{-1}\) recorded with the \(BABAR\) detector at the PEP-II asymmetric-energy \(e^+e^-\) storage ring at the Stanford Linear Accelerator Center. We search for \(\Xi_{cc}\) baryons in the final states \(\Lambda_{cc}^+ K^- \pi^+\) and \(\Xi_{cc}^{0}\) \(\pi^+\), and \(\Xi_{cc}^{++}\) baryons in the final states \(\Lambda_{cc}^+ K^- \pi^+\) and \(\Xi_{cc}^{0}\) \(\pi^+\) \(\pi^+\). We find no evidence for the production of doubly charmed baryons.
signals. During this process the search regions were hidden to minimize potential experimenter bias.

Charm hadrons carry a significant fraction of the initial energy of the charm quark, whereas random combinations of charged particles in an event form lower-energy candidates. To take advantage of this difference, we select \(\Xi_{cc} \) candidates for which the \(p^\ast \) of the \(\Xi_{cc} \) is above a minimum value. For \(\Xi_{cc} \) decay modes containing a \(\Lambda_c^+ \), the optimal requirement is \(p^\ast > 2.3 \text{ GeV}/c \). Because the background levels for events containing a \(\Xi_{cc} \) candidate are lower, we apply the less stringent requirement \(p^\ast > 2.0 \text{ GeV}/c \). To facilitate comparisons with theoretical predictions, we repeat the searches with no requirement on \(p^\ast \).

We conduct searches for \(\Xi_{cc} \) near the masses of the states observed by SELEX and over wider ranges that include many of the theoretically predicted masses. We use MC techniques to account for the width of the search region in the statistical interpretation of the results.

II. SEARCH FOR DECAYS TO \(\Lambda_c^+ K^- \pi^+ (\pi^+) \)

In the searches for \(\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+ \) and \(\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \), we reconstruct the \(\Lambda_c^+ \) baryon in its decay to \(p K^- \pi^+ \). Pion, kaon and proton candidates are identified using the SVT, DCH and DIRC. The \(\chi^2 \) probability for the \(\Lambda_c^+ \) daughter particles and for the \(\Xi_{cc} \) daughter particles to each come from a common vertex is required to be above 1%. The number of reconstructed \(\Lambda_c^+ \) signal events is approximately 600,000.

The distribution of the mass difference \(\Delta M(\Xi_{cc} - \Lambda_c^+) \) is shown in Fig. 1 for candidates with \(M(\Lambda_c^+) \) between 2281 and 2291 MeV/c\(^2 \) (\(\pm 0.8\sigma \)), and also for \(M(\Lambda_c^+) \) sidebands (2256 < \(M(\Lambda_c^+) \) < 2281 MeV/c\(^2 \) and 2291 < \(M(\Lambda_c^+) \) < 2316 MeV/c\(^2 \)). To search for a signal in data and to estimate the efficiency, we perform two-dimensional fits to \(M(\Lambda_c^+) \) and \(\Delta M(\Xi_{cc} - \Lambda_c^+) \). The range of \(M(\Lambda_c^+) \) used in all fits is 2256 to 2316 MeV/c\(^2 \). We search for \(\Xi_{cc} \) states with masses between 3390 and 3600 MeV/c\(^2 \) (\(\Delta M(\Xi_{cc} - \Lambda_c^+) \) between 1100 and 1310 MeV/c\(^2 \)). The mass-difference sidebands in data are between 890 and 1100 MeV/c\(^2 \), and 1310 and 1520 MeV/c\(^2 \).

Approximately half of all background \(\Xi_{cc} \) candidates are due to true \(\Lambda_c^+ \) particles combined with random pion and kaon candidates from the rest of the event. This background is fit with a Gaussian shape in \(M(\Lambda_c^+) \) and a linear shape in \(\Delta M(\Xi_{cc} - \Lambda_c^+) \). Another significant background contribution is from false \(\Lambda_c^+ \) candidates. This source of background is fit with the product of a linear function in \(M(\Lambda_c^+) \) and a linear function in \(\Delta M(\Xi_{cc} - \Lambda_c^+) \).

MC simulations show that \(\Xi_{cc} \) signals peak in three different ways in the \(M(\Lambda_c^+) \) versus \(\Delta M(\Xi_{cc} - \Lambda_c^+) \) plane. In most cases, the \(\Xi_{cc} \) is reconstructed correctly and the measured values of both \(M(\Lambda_c^+) \) and \(\Delta M(\Xi_{cc} - \Lambda_c^+) \) lie close to the generated values; such candidates are fit with the product of two Gaussian distributions, one in each variable. The MC signal resolution for \(\Delta M(\Xi_{cc} - \Lambda_c^+) \) is 3.5 MeV/c\(^2 \) and 3.0 MeV/c\(^2 \) for \(\Xi_{cc} \) and \(\Xi_{cc}^{++} \), respectively. When \(\Xi_{cc} \) candidates are reconstructed from the correct tracks but the kaon and/or pion from the \(\Lambda_c^+ \) decay is swapped with the kaon and/or pion from the \(\Xi_{cc} \) decay,
TABLE I. Efficiencies determined from $e^+e^- \rightarrow \Xi_c^0X$ simulations. With the p^* criterion applied, the efficiency is calculated for Ξ_c^0 baryons generated with p^* above 2.3 GeV/c for the Λ_c^+ modes and 2.0 GeV/c for the Ξ_c^+ modes. The first error is statistical; the second is systematic.

<table>
<thead>
<tr>
<th>p^* Criterion</th>
<th>Particle</th>
<th>Λ_c^+ Mode Eff. (%)</th>
<th>Ξ_c^+ Mode Eff. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Ξ_c^+</td>
<td>4.2 \pm 0.1 \pm 0.2</td>
<td>6.1 \pm 0.1 \pm 0.6</td>
</tr>
<tr>
<td>Yes</td>
<td>Ξ_c^+</td>
<td>10.4 \pm 0.1 \pm 0.5</td>
<td>9.3 \pm 0.1 \pm 0.7</td>
</tr>
<tr>
<td>No</td>
<td>Ξ_c^+</td>
<td>3.6 \pm 0.1 \pm 0.2</td>
<td>5.9 \pm 0.1 \pm 0.5</td>
</tr>
<tr>
<td>No</td>
<td>Ξ_c^+</td>
<td>9.7 \pm 0.1 \pm 0.5</td>
<td>9.0 \pm 0.1 \pm 0.7</td>
</tr>
</tbody>
</table>

The reconstruction has the correct $M(\Xi_c^+)$ but an incorrect $M(\Lambda_c^+)$ for these events. These events are fit in both MC simulations and data with a Gaussian function in $M(\Xi_c^+ - \Lambda_c^+)$ and $M(\Xi_c^0)$ and are included as part of the signal. When the Λ_c^+ is correctly reconstructed but is combined with an incorrect pion and/or kaon to form the Ξ_c^+, the reconstruction has the correct $M(\Lambda_c^+)$ but an incorrect $M(\Xi_c^+ - \Lambda_c^+)$. Such events are not distinguishable from Λ_c^+ combinatoric background.

Each shape parameter describing the signal is constrained in the fit to lie within a range determined from the Monte Carlo simulation, allowing for possible inaccuracies in the simulation. The integral of the signal function is allowed to be negative. Efficiencies for the reconstruction of Ξ_c^0 baryons decaying to $\Lambda_c^+ K^- \pi^+$ and $\Lambda_c^+ K^- \pi^+ \pi^+$ are calculated from the signal yields from fits to the MC simulated samples. These efficiencies are listed in Table I. The systematic uncertainties are due to inaccuracies in the simulation of tracking reconstruction (0.8% per track, added linearly) and particle identification (1.0% per kaon, 1.0% per pion, and 4.0% per proton). When setting upper limits on production cross sections, additional systematic uncertainties arise due to the uncertainties on the integrated luminosity (1.0%) and $\sigma(e^+e^- \rightarrow \Lambda_c^+X)B(\Lambda_c^+ \rightarrow pK^-\pi^+)$ (4.7%).

We conduct searches for a signal within 10 MeV/c^2-wide regions around the Ξ_c^+ and Ξ_c^{++} masses reported by SELEX, and within the 210 MeV/c^2-wide region described earlier. The wide search region is divided into 21 sequential 10 MeV/c^2 search subregions. For each subregion, we perform a two-dimensional fit over a 100 MeV/c^2-wide range in mass difference centered on the subregion, constraining the mean of the Gaussian signal function to lie within that subregion.

The significance of any potential signal is determined through the use of parametrized MC simulations. Samples of pairs of variables ($M(\Lambda_c^+)$, $\Delta M(\Xi_c^+ - \Lambda_c^+)$) are generated according to the background shapes measured in data, with no signal contribution. The distributions of $M(\Lambda_c^+)$ versus $\Delta M(\Xi_c^+ - \Lambda_c^+)$ from these simulations are then searched in the same manner as in data. A significance measure N/σ_N, where N is the fitted number of signal candidates and σ_N is the uncertainty on this number, is determined for each fit. In order to statistically combine the results of the 21 fits into one search, only the largest of the 21 significance measures is used. The significance measure from data is compared to the distribution of significance measures from the MC simulations that represent those data. This comparison gives the probability of measuring this particular value of N/σ_N or higher in data under the hypothesis that no Ξ_c^+ are produced.

None of the Λ_c^+ decay mode searches finds evidence for Ξ_c^+. The most statistically significant signal is for a Ξ_c^+ baryon with $\Delta M(\Xi_c^+ - \Lambda_c^+)$ between 1250 MeV/c^2 and 1260 MeV/c^2, when candidates are required to have $p^*>2.3$ GeV/c. With a significance measure of $N/\sigma_N=66/24$, we find that there is an 8% probability that background alone could produce this signal. This corresponds to a significance of 1.4σ, which does not constitute evidence for the Ξ_c^+ baryon.

Using efficiencies (e) listed in Table I and integrated luminosity (L) of (232 ± 2) fb$^{-1}$, we extract values for the upper limit on the production cross section times branching fraction (S) directly from negative-log-likelihood functions. A conversion factor $F=Le$ and its uncertainty σ_F are incorporated in a Gaussian extension to the likelihood function (L) so that all systematic uncertainties are included in the results. L takes the form

TABLE II. The 95%-confidence-level upper limits on measured rates for the production of Ξ_c^0 baryons with and without a p^* requirement of 2.3 GeV/c for Λ_c^+ modes and 2.0 GeV/c for the Ξ_c^+ modes. The columns labeled $N^{(*)}$ give the upper limits on the number of signal $\Xi_c^{(*)0}$ baryons. $\sigma^{(*)}$ denotes the production cross section $\sigma(e^+e^- \rightarrow \Xi_c^{(*)0}X)$; σ in the denominator indicates that the cross section has been normalized to $\sigma(e^+e^- \rightarrow \Lambda_c^+X)B(\Lambda_c^+ \rightarrow pK^-\pi^+)$.

<table>
<thead>
<tr>
<th></th>
<th>Upper Limits for $\Xi_c^0 \rightarrow \Lambda_c^+ K^- \pi^+ (\pi^0)$</th>
<th>Upper Limits for $\Xi_c^0 \rightarrow \Xi_c^+ \pi^+ (\pi^0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N^+</td>
<td>$\sigma^+ B$</td>
<td>$(\sigma^+ / \sigma) B$</td>
</tr>
<tr>
<td>Wide Mass Range</td>
<td>328 \pm 14.5 fb 13.3×10^{-4}</td>
<td>199</td>
</tr>
<tr>
<td>Wide Mass Range, p^* Req.</td>
<td>106 \pm 4.4 fb 5.6×10^{-4}</td>
<td>54</td>
</tr>
<tr>
<td>SELEX Mass</td>
<td>169 \pm 7.5 fb 6.9×10^{-4}</td>
<td>91</td>
</tr>
<tr>
<td>SELEX Mass, p^* Req.</td>
<td>53 \pm 2.2 fb 2.7×10^{-4}</td>
<td>31</td>
</tr>
</tbody>
</table>
where N is the total number of fitted events; $S f = n_i$ and n_b are the fitted number of signal and background events, respectively; f is the fitted conversion factor from S to n_i; \bar{a} are shape parameters; and P is the probability function for the data point \bar{x}_i. The value of S for which $-\ln L$ is 1.35 units above the minimum value for which S is positive is interpreted as the 95\% confidence-level upper limit. These limits are listed in Table II.

To facilitate comparison with the production rate of Λ^+_c and to take advantage of the cancellation of the uncertainties in these efficiencies, other sources include vertex quality (6\%), and mass and mass-difference resolutions (1\%); the values in parentheses are the relative uncertainties in these efficiencies. Other sources include uncertainties in the total luminosity (1.0\%) and in the branching fractions for $\Lambda \rightarrow p \pi^-$ (0.8\%) and $\Xi^- \rightarrow \Lambda \pi^-$ (0.03\%).

To search for a signal in the 400 MeV/c^2-wide search region, we fit the mass-difference distribution with two Gaussian functions, with common means and fixed widths, to represent the signal, and a first-order polynomial for the background. The values of the Gaussian widths are determined from the MC simulation; the root-mean-squared widths are also listed in Table II. The p^* criterion that is applied to the Ξ_{cc}^0 candidates is also applied to the Λ^+_c candidates in the normalization mode.

III. SEARCH FOR DECAYS TO $\Xi_{cc}^0 \pi^+ (\pi^+)$

In the search for $\Xi_{cc}^+ \rightarrow \Xi_{cc}^0 \pi^+$ and $\Xi_{cc}^{++} \rightarrow \Xi_{cc}^0 \pi^+ \pi^+$ decays, the Ξ_{cc}^0 is detected in the decay chain $\Xi_{cc}^0 \rightarrow \Xi^- \pi^+$, $\Xi^- \rightarrow \Lambda \pi^-$, $\Lambda \rightarrow p \pi^-$. We search for Ξ_{cc}^0 states with masses between 3370 and 3770 MeV/c^2 ($\Delta M(\Xi_{cc}^0 - \Xi_{cc}^0)$) between 900 and 1300 MeV/c^2). The mass-difference sidebands in data are $800 < \Delta M(\Xi_{cc}^0 - \Xi_{cc}^0) < 900$ MeV/c^2 and $1300 < \Delta M(\Xi_{cc}^0 - \Xi_{cc}^0) < 1400$ MeV/c^2.

For Λ and Ξ^- candidates, we require a minimum signed three-dimensional flight distance of $+2.0$ cm and $+0.5$ cm, respectively, where the flight distance is the projection of the vector from the primary vertex to the decay point, onto the momentum vector of the candidate. Λ candidates are required to be within ± 3.6 MeV/c^2 ($\pm 3\sigma$) of the world average mass [26]. Ξ^- candidates are required to be within ± 5.4 MeV/c^2 ($\pm 3\sigma$) of the world average mass difference $\Delta M(\Xi^- - \Lambda)$, and Ξ_{cc}^0 candidates are required to be within ± 14 MeV/c^2 ($\pm 2\sigma$) of the world average mass difference $\Delta M(\Xi_{cc}^0 - \Xi^-)$ [26]. For all candidate baryons, we require the vertex fit to have a χ^2 probability greater than 0.01\%. The number of reconstructed Ξ_{cc}^0 signal events is approximately 11700. Figure 2 shows the distributions of mass difference for all Ξ_{cc}^0 candidates that satisfy these criteria, with no p^* requirement and with $p^* > 2.0$ GeV/c. The reconstruction efficiencies are given in Table I.

Systematic uncertainties arise mainly from possible inaccuracies in the simulation of track reconstruction and particle identification (5\% for Ξ_{cc}^+ and 6\% for Ξ_{cc}^{++}), vertex quality (6\%), and mass and mass-difference resolutions (1\%); the values in parentheses are the relative uncertainties in these efficiencies. Other sources include uncertainties in the total luminosity (1.0\%) and in the branching fractions for $\Lambda \rightarrow p \pi^-$ (0.8\%) and $\Xi^- \rightarrow \Lambda \pi^-$ (0.03\%).

![FIG. 2. Distributions of the mass difference $\Delta M(\Xi_{cc}^0 - \Xi_{cc}^0)$ for (a,b) Ξ_{cc}^+ and (c,d) Ξ_{cc}^{++} candidates with (a,c) no p^* requirement and (b,d) $p^* > 2.0$ GeV/c. Data points with error bars correspond to Ξ_{cc}^0 candidates reconstructed using Ξ_{cc}^0 candidates near the Ξ_{cc}^0 mass, 2457 < $\Delta M(\Xi_{cc}^0)$ < 2485 MeV/c^2; the shaded histograms correspond to $M(\Xi_{cc}^0)$ sidebands (2451 < $M(\Xi_{cc}^0)$ < 2457 MeV/c^2 and 2487 < $M(\Xi_{cc}^0)$ < 2501 MeV/c^2) scaled to represent the expected amount of non-Ξ_{cc}^0 background in the $M(\Xi_{cc}^0)$ signal region.]

011103-7
deviation for $\Delta M(\Xi_{cc}^- - \Xi_{cc}^0)$ is 5.5 MeV/c2 and for $\Delta M(\Xi_{cc}^- + \Xi_{cc}^0)$ it is 4.2 MeV/c2. We conduct 50 fits with the mean of the Gaussian signal function constrained to lie in 50 10-MeV/c2 ranges, each of which overlaps neighboring ranges by 2 MeV/c2. Using a MC approach, we calculate the upper limit on the number of signal events using the statistically most significant of the 50 fits. To do this, we generate N signal events according to the Gaussian signal function and background events according to a first-order polynomial, where the number of background events is determined from the mass-difference sidebands. We fit the resulting MC distribution as described above for data, and record the number of signal events S for the statistically most significant fit. We repeat this process 10,000 times, varying N by the fractional systematic uncertainty on efficiency. We then find the value F for which only 5% of the trials have $S < F$. We repeat the above process starting with different values of N to find the value of N for which F is the number of signal events found in the most significant fit in data. This value of N is the 95% CL upper limit on the number of events, shown in Table II for both Ξ_{cc}^- and Ξ_{cc}^+, with and without p^+ requirements. We also present in Table II the limits obtained when we explicitly search for the states observed by SELEX. For comparison, the measured rate for the singly charmed Ξ_c baryon in $BABAR$ is $\sigma(e^+ e^- \rightarrow \Xi_{cc}^0)B(\Xi_{cc}^0 \rightarrow \Xi^- K^{+} \pi^+)$ = $(388 \pm 39 \pm 41)$ fb [27].

[1] Throughout this paper, whenever a particle or decay mode is given, the charge conjugate is also implied.
[14] V. V. Braguta, V. V. Kiselev, and A. E. Chalov, Phys. At.

V. SUMMARY

In conclusion, we have searched for doubly charmed baryons in $e^+ e^-$ annihilations at or near a center-of-mass energy of 10.58 GeV. We do not observe any significant signals for the Ξ_{cc}^- baryon in the decay modes $\Lambda_{cc}^0 K^- \pi^+$ and $\Xi_{cc}^0 \pi^+$, or for the Ξ_{cc}^0 baryon in the decay modes $\Lambda_{cc}^+ K^- \pi^+ \pi^+$ and $\Xi_{cc}^0 \pi^- \pi^+$.

ACKNOWLEDGMENTS

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $BABAR$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACYT (Mexico), Marie Curie EIF (European Union), the A.P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.