Observation of a New D_s Meson Decaying to DK at a Mass of 2.86 GeV/c^2

PRL 97, 222001 (2006) PHYSICAL REVIEW LETTERS week ending 1 DECEMBER 2006

0031-9007/06/97(22)/222001(8) 222001-1 © 2006 The American Physical Society
We observe a new D_s meson with mass $(2856.6 \pm 1.5_{\text{stat}} \pm 5.0_{\text{syst}}) \text{MeV}/c^2$ and width $(48 \pm 7_{\text{stat}} \pm 10_{\text{syst}}) \text{MeV}/c^2$ decaying into $D^0 K^+$ and $D^+ K^0_S$. In the same mass distributions, we also observe a broad structure with mass $(2688 \pm 4_{\text{stat}} \pm 3_{\text{syst}}) \text{MeV}/c^2$ and width $(112 \pm 7_{\text{stat}} \pm 36_{\text{syst}}) \text{MeV}/c^2$. To obtain this result, we use 240 fb$^{-1}$ of data recorded by the BABAR detector at the PEP-II asymmetric-energy $e^+ e^-$ storage rings at the Stanford Linear Accelerator Center running at center-of-mass energies near 10.6 GeV.

DOI: 10.1103/PhysRevLett.97.222001 PACS numbers: 14.40.Lb, 12.40.Yx, 13.25.Ft

The spectrum of known $c \bar{s}$ states can be described economically as two s-wave states (D_s^+ and D_s^{*+}) with $J^P = 0^+ , 1^-$ and four p-wave states [$D_s^+(2317)^+, D_{s1}(2460)^+, D_{s1}(2536)^+$, and $D_{s2}(2573)^+$] with $J^P = 0^+, 1^+, 1^+, 2^+$, though the last two spin-parity assignments are not firmly established. Whether this picture is correct remains controversial because the states at 2317 and 2460 MeV/c2 [1] had been expected to lie at much higher masses [2].

We report here on a new $c \bar{s}$ state and a broad structure observed in the decay channels $D^0 K^+ S$ and $D^+ K^0_S$. This analysis is based on a 240 fb$^{-1}$ data sample recorded near the $Y(4S)$ resonance by the BABAR detector at the PEP-II asymmetric-energy $e^+ e^-$ storage rings.

The BABAR detector is described in detail elsewhere [3]. Charged particles are detected and their momenta measured by a combination of a cylindrical drift chamber (DCH) and a silicon vertex tracker (SVT), both operating within a 1.5 T solenoidal magnetic field. A ring-imaging Cherenkov detector (DIRC) is used for charged-particle identification. Photon energies are measured with a CsI electromagnetic calorimeter. We use information from the DIRC and energy-loss measurements in the SVT and DCH to identify charged kaon and pion candidates.

We observe three inclusive processes [4]:

$e^+ e^- \rightarrow D^0 K^+ X, \quad D^0 \rightarrow K^- \pi^+$,
$e^+ e^- \rightarrow D^0 K^+ X, \quad D^0 \rightarrow K^- \pi^+ \pi^0$,
$e^+ e^- \rightarrow D^+ K^0_S X, \quad D^+ \rightarrow K^- \pi^+ \pi^+, \quad K^0_S \rightarrow \pi^+ \pi^-$.

For channels (1) and (2), we perform a vertex fit for the $K^- \pi^+$ and require a χ^2 probability greater than 0.1%. For the π^0 in channel (2), we consider the photons that emanate from the $K^- \pi^+$ vertex, perform a fit with the π^0 mass constraint, and require a χ^2 probability greater than 1%. The combinatorial background is reduced by requiring the π^0 laboratory momentum to be greater than 350 MeV/c.

To purify the D^0 sample in channel (2), its quasi-two-body decays [5] $K^- \pi$ and $K \rho$ are used, allowing ranges of $\pm 50 \text{MeV}/c^2$ around the K^- mass for $K \pi$ and $\pm 100 \text{MeV}/c^2$ around the ρ mass for $\pi \pi$.

For channel (3), we fit two pions with the same charge and a kaon of the opposite charge to a common vertex to form the D^+ candidate and require a χ^2 probability greater than 0.1%. We obtain the K^0_S sample with a fit that constraints the mass and require a χ^2 probability greater than 2%. K_s^0 candidates are retained only if their decay lengths are greater than 0.5 cm.

For all three channels, the D candidate is combined with an identified K, requiring a vertex fit χ^2 probability greater than 0.1% and constraining the vertex to be in the $e^+ e^-$ luminous region. To reduce combinatorial background from the continuum ($e^+ e^- \rightarrow q \bar{q}, \quad q = u, d, s, c$) and B-meson decays, each DK candidate must have a momentum p^* in the $e^+ e^-$ center-of-mass frame greater than 3.5 GeV/c.

Figures 1(a)–1(c) show the $K^- \pi^+$, $K^- \pi^+ \pi^0$, and $K^- \pi^+ \pi^+ \pi^0$ invariant-mass distributions, respectively. All distributions show pronounced peaks at the D mass, with

![FIG. 1 (color online). (a) $K^- \pi^+$, (b) $K^- \pi^+ \pi^0$, and (c) $K^- \pi^+ \pi^+ \pi^0$ mass distributions for all candidate events to channels (1)–(3), respectively. The shaded regions indicate the definition of signal and sidebands regions.](image-url)
signal yields of about 950,000, 790,000, and 430,000 events, respectively. Fits using a polynomial and a single Gaussian give $\sigma = 7.6, 12.6,$ and 6.0 MeV/c2, respectively, for the three widths. We define the signal region by $\pm 2\sigma$ from the fitted D mass and establish sidebands at $(-6\sigma, -4\sigma)$ and $(4\sigma, 6\sigma)$. In the signal regions, the signal-to-background ratios are 4.1, 1.2, and 2.2, respectively.

Selecting events in the D signal regions, Fig. 2 shows the $D^0 K^*$ invariant-mass distributions for channels (1) and (2) and the $D^* K_S^0$ invariant-mass distribution for channel (3). To improve mass resolution, the nominal D mass and the reconstructed 3-momentum are used to calculate the D energy for channels (1) and (3). Since channel (2) has a poorer D^0 resolution, each $K^- \pi^+ \pi^0$ candidate is kinematically fit with a D^0 mass constraint, and we require a χ^2 probability greater than 0.1%.

We find that the fraction of events having more than one DK combination per event is 0.9% for channels (1) and (3) and 3.4% for channel (2). In the rest of the Letter, we use the term reflection to describe enhancements produced by two- or three-body decays of narrow resonances where one of the decay products is missed.

The three mass spectra in Fig. 2 present similar features. (i) A single bin peak at 2.4 GeV/c2 due to a reflection from the decays of the $D_{s1}(2536)^+$ to $D^{*0} K^+$ or $D^{*+} K_S^0$, in which the π^0 or γ from the D^* decay is missed. This state, if $J^{PC} = 1^{--}$, cannot decay to DK. (ii) A prominent narrow signal due to the $D_{s0}(2527)^+$. (iii) A broad structure peaking at a mass of approximately 2.7 GeV/c2. (iv) An enhancement around 2.86 GeV/c2. This can be seen better in the expanded views shown in the insets in Fig. 2.

In the following, we examine different background sources: combinatorial, possible reflections from D^* decays, and particle misidentification.

Backgrounds come both from events in which the candidate D meson is correctly identified and from events in which it is not. The first case can be studied combining a reconstructed D meson with a kaon from another D meson in the same event, using data with fully reconstructed $D\bar{D}$ pairs or Monte Carlo simulations. No signal near 2.7 or 2.86 GeV/c2 is seen in the DK mass plots for these events. The second case can be studied using the D mass sidebands. The shaded regions in Fig. 2 show the DK mass spectra for events in the D sideband regions normalized to the estimated background in the signal region. No prominent structure is visible in the sideband mass spectra.

We examined the possibility that the features at 2.7 and 2.86 GeV/c2 could be a reflection from D^* or other higher mass resonances. Candidate DK pairs where the D is a D^*-decay product are identified by forming $D\pi$ and $D\gamma$ combinations and requiring the invariant-mass difference between one of those combinations and the D to be within $\pm 2\sigma$ of the known $D^* - D$ mass difference. No signal near 2.7 or 2.86 GeV/c2 is seen in the DK mass plots for these events. Events belonging to these possible reflections (except for the $D^{*0} \rightarrow D^{0}\gamma$ events, which could not be isolated cleanly) have been removed from the mass distributions shown in Fig. 2 (corresponding to $\approx 8\%$ of the final sample).

We use a Monte Carlo simulation to investigate the possibility that the 2.7 or 2.86 GeV/c2 signals could be due to reflections from other charmed states. This simula-

![FIG. 2 (color online). The DK invariant-mass distributions for (a) $D^{0}_{K^-\pi^+}\pi^0$, (b) $D^{0}_{K^-\pi^+}\pi^0$, and (c) $D^{+}_{K^-\pi^+}\pi^0$. The shaded histograms are for the D-mass sideband regions. The dotted histogram in (a) is from $e^+e^- \rightarrow c\bar{c}$ Monte Carlo simulations incorporating previously known D_s states with an arbitrary normalization. The insets show an expanded view of the 2.86 GeV/c2 region. The solid curves are the fitted background threshold functions from the three separate fits described in the text.](image-url)
tion includes $e^+e^- \rightarrow c\bar{c}$ events and all known charmed states and decays. The Monte Carlo events were generated using a detailed detector simulation and subjected to the same reconstruction and event-selection procedure as was used for the data. The $D^0 K^+$ effective mass distribution for these Monte Carlo events is shown (dotted line) in Fig. 2(a) for channel (1). The normalization is arbitrary. No peak is found in the 2.7 and 2.86 GeV/c2 $D^0 K^+$ signal regions. We note that the simulation underestimates the size of the $D_s^+(2536)^+$ reflection and the $D_s^0(2573)^+$ signal relative to the background. No such discrepancy is found in the study of the $D^0 \pi^+$ final state; therefore, we attribute this effect to a poor knowledge of the strange-charmed meson cross sections.

We checked the possibility that the structures at 2.7 and 2.86 GeV/c2 are due to misidentifying pions as kaons by assigning the kaon mass to the pion in $D^0 K^+$ data events. We observe no structure near 2.7 or 2.86 GeV/c2 in the resulting $D^0 K^+$ invariant-mass distribution. Monte Carlo simulations and tests using the data show that these structures also do not originate from protons misidentified as kaons from high mass charmed baryon decays.

Wrong sign $D^0 K^-$ mass distributions for channels (1) and (2) have also been examined, and we find no signal in either mass spectrum.

A more detailed study in channel (1) of the 2.7 GeV/c2 structure shows a broad structure in this mass region for events from the D^0 sidebands in which the D^0 candidate has a very low p^* ($p^* < 3$ GeV/c). This is not seen in channels (2) and (3), however. We conclude that the assignment of the 2.7 GeV/c2 structure to a reflection remains inconclusive.

By comparing the reconstructed mass distributions for the DK system with those generated with Monte Carlo simulations, we obtain the mass resolutions. The resolutions are similar in the three channels, increasing linearly from 1.7 MeV/c2 at a mass of 2.5 GeV/c2 to 3.5 MeV/c2 at a mass of 2.86 GeV/c2.

In the following discussion, we label as $D_{sJ}(2860)^+$ the structure in the 2.86 GeV/c2 mass region and as $X(2690)^+$ the structure observed in the 2.7 GeV/c2 mass region. We fit to the three DK mass spectra shown in Fig. 2 from 2.42 to 3.1 GeV/c2 [excluding the $D_{sJ}(2536)^+$ reflection] using a binned χ^2 minimization. The background for the three DK mass distributions is described by a threshold function:

$$m = m_{th} = m_D + m_K$$

A fit to the Monte Carlo distribution shown in Fig. 2(a) using this background expression and one spin-2 relativistic Breit-Wigner line shape for the $D_{sJ}(2573)^+$ gives a good fit with 32% χ^2 probability. In the fit to the data, the $D_{sJ}(2573)^+$ and $D_{sJ}(2860)^+$ peaks are described with relativistic Breit-Wigner line shapes where spin 2 is assumed for the $D_{sJ}(2573)^+$ and spin 0 is used for the $D_{sJ}(2860)^+$. We find that the $D_{sJ}(2860)^+$ parameters are insensitive to the choice of the spin. The best description of the $X(2690)^+$ structure is obtained using a Gaussian distribution. The results from the fits are summarized in Table I. Table II summarizes the χ^2 probabilities, the number of $D_{sJ}(2860)^+$ events (with statistical and systematic errors), and the $D_{sJ}(2860)^+$ statistical significances from the three separate fits to the total DK mass spectra in Fig. 2.

TABLE I. Results from the fits to the total DK mass spectra in Fig. 2. Quantities are in units of MeV/c2. Errors are statistical only. Simultaneous fits of the three mass spectra are labeled with DK_A and DK_B.

<table>
<thead>
<tr>
<th>Fit</th>
<th>$m(D_{sJ}(2573)^+)$</th>
<th>$\Gamma(D_{sJ}(2573)^+)$</th>
<th>$m(X(2690)^+)$</th>
<th>$\sigma(X(2690)^+)$</th>
<th>$m(D_{sJ}(2860)^+)$</th>
<th>$\Gamma(D_{sJ}(2860)^+)$</th>
<th>χ^2/NDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{sJ}(2573)^+$</td>
<td>2572.4 ± 0.4</td>
<td>27.6 ± 0.5</td>
<td>2687 ± 4</td>
<td>41 ± 5</td>
<td>2855.4 ± 2.0</td>
<td>37 ± 8</td>
<td>26/20</td>
</tr>
<tr>
<td>$D_{sJ}(2573)^+$</td>
<td>2572.3 ± 0.5</td>
<td>28.4 ± 0.9</td>
<td>2682 ± 5</td>
<td>52 ± 5</td>
<td>2860.8 ± 4.0</td>
<td>52 ± 14</td>
<td>33/20</td>
</tr>
<tr>
<td>$D_{sJ}(2573)^+$</td>
<td>2572.6 ± 0.9</td>
<td>21.9 ± 1.1</td>
<td>2684 ± 7</td>
<td>50 ± 7</td>
<td>2856.6 ± 8.0</td>
<td>81 ± 25</td>
<td>26/21</td>
</tr>
<tr>
<td>DK_A</td>
<td>2572.3 ± 0.3</td>
<td>27.1 ± 0.6</td>
<td>2684 ± 3</td>
<td>48 ± 2</td>
<td>2856.6 ± 1.5</td>
<td>47 ± 7</td>
<td>100/72</td>
</tr>
<tr>
<td>DK_B</td>
<td>2572.3 ± 0.3</td>
<td>27.0 ± 0.5</td>
<td>2688 ± 4</td>
<td>112 ± 7</td>
<td>2857.6 ± 1.9</td>
<td>38 ± 7</td>
<td>112/72</td>
</tr>
</tbody>
</table>

TABLE II. χ^2 probabilities, $D_{sJ}(2860)^+$ event yields, and statistical significances from the three separate fits to the total DK mass spectra in Fig. 2.

<table>
<thead>
<tr>
<th>Channel</th>
<th>χ^2 probability (%)</th>
<th>$D_{sJ}(2860)^+$ events</th>
<th>Statistical significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{sJ}(2573)^+$</td>
<td>17</td>
<td>886 ± 134 ± 49</td>
<td>6.2σ</td>
</tr>
<tr>
<td>$D_{sJ}(2573)^+$</td>
<td>3</td>
<td>1146 ± 157 ± 78</td>
<td>6.5σ</td>
</tr>
<tr>
<td>$D_{sJ}(2573)^+$</td>
<td>21</td>
<td>371 ± 84 ± 53</td>
<td>3.7σ</td>
</tr>
<tr>
<td>DK_A</td>
<td>1.6</td>
<td>2717 ± 262 ± 190</td>
<td>8.4σ</td>
</tr>
<tr>
<td>DK_B</td>
<td>0.2</td>
<td>2161 ± 238 ± 151</td>
<td>7.7σ</td>
</tr>
</tbody>
</table>
tical significances from the three separate fits to the DK mass spectra.

The fits give consistent values for the parameters of the three structures. We notice a smaller width of the $D_s(2573)^+$ in the $D_{sJ}^0 K^{*0}$ channel which we attribute to the uncertainty in the description of the background. We compute also the ratios of the yields of $D_{sJ}(2860)^+$ with respect to $D_{sJ}(2573)^+$, finding agreement, within statistical errors, between the three channels.

The presence of resonant structures can be visually enhanced by subtracting the fitted background threshold function from the data. Figure 3 shows the background-subtracted $D_{sJ}^0 K^{*0}$, $D_{sJ}^0 K^{*0}$, and $D_{sJ}^{++} K^{*0}$ invariant-mass distributions in the $2.86 \text{ GeV}/c^2$ mass region. Figure 3(d) shows the sum of the three mass spectra.

We also fit to the three distributions simultaneously. The parameters from this fit are labeled DK_A in Table I. If we remove the $D_{sJ}(2860)^+$, the χ^2 increases by 108 units while the number of degrees of freedom increases by 5.

As a systematic test, we repeated the fits varying the lower p^* cut on the DK system from 3.50 to 3.75 and to 4.00 GeV/c. We also restricted the fit to the $D_{sJ}(2860)^+$ only and replaced the threshold function which represents the background with a polynomial. Fits have also been performed without removing the events associated to D^* reflections and modifying the spin of $D_{sJ}(2573)^+$. The systematic uncertainties take into account the variation of the resonance parameters among the three different final states and the resonance parametrizations. The uncertainty on the mass scale is estimated to be of the order of 1 MeV/c^2.

We obtain the mass and width of $D_{sJ}(2573)^+$:

$$m(D_{sJ}(2573)^+) = (2572.2 \pm 0.3 \pm 1.0) \text{ MeV}/c^2,$$

$$\Gamma(D_{sJ}(2573)^+) = (27.1 \pm 0.6 \pm 5.6) \text{ MeV}/c^2,$$

where the first errors are statistical and the second systematic. For the new state, we find

$$m(D_{sJ}(2860)^+) = (2856.6 \pm 1.5 \pm 5.0) \text{ MeV}/c^2,$$

$$\Gamma(D_{sJ}(2860)^+) = (47 \pm 7 \pm 10) \text{ MeV}/c^2.$$

Since the assignment of the $X(2690)^+$ as a reflection is inconclusive, the three mass spectra have also been fit including the $X(2690)^+$ as an additional resonance (Breit-Wigner, rather than Gaussian, shape). This gives the fit DK_B shown in Table I. The resulting resonance parameters are

$$m(X(2690)^+) = (2688 \pm 4 \pm 3) \text{ MeV}/c^2,$$

$$\Gamma(X(2690)^+) = (112 \pm 7 \pm 36) \text{ MeV}/c^2.$$

In summary, in 240 fb^{-1} of data collected by the BABAR experiment, we observe a new D_s^+ state in the inclusive DK mass distribution near $2.86 \text{ GeV}/c^2$ in three independent channels. The decay to two pseudoscalar mesons implies a natural spin-parity for this state: $J^P = 0^+$, 1^\pm, ... It has been suggested that this new state could be a radial excitation of $D_{sJ}^0 (2317)$ [6], although other possibilities cannot be ruled out. In the same mass distributions, we also observe a broad enhancement around $2.69 \text{ GeV}/c^2$ which it is not possible to associate with any known reflection or background.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.
Also at Laboratoire de Physique Corpusculaire, Clermont-Ferrand, France.
†Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
‡Also with Università della Basilicata, Potenza, Italy.

