Measurements of the branching fraction and time-dependent CP asymmetries of $B^0 \to J/\psi \pi^0$ decays
MEASUREMENTS OF THE BRANCHING FRACTION AND ...

RAPID COMMUNICATIONS

011101-3
We present measurements of the branching fraction and time-dependent CP asymmetries in $B^0 \rightarrow J/\psi \pi^0$ decays based on $(231.8 \pm 2.6) \times 10^6 \ Y(4S) \rightarrow BB$ decays collected with the BABAR detector at the SLAC PEP-II asymmetric-energy B factory. We obtain a branching fraction $B(B^0 \rightarrow J/\psi \pi^0) = (1.94 \pm 0.22\text{(stat)} \pm 0.17\text{(syst)}) \times 10^{-5}$. We also measure the CP asymmetry parameters $C = -0.21 \pm 0.26\text{(stat)} \pm 0.06\text{(syst)}$ and $S = -0.68 \pm 0.30\text{(stat)} \pm 0.04\text{(syst)}$.

DOI: 10.1103/PhysRevD.74.011101 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh

Charge conjugation-parity (CP) violation in the B meson system has been established by the BABAR [1] and Belle [2] collaborations. The standard model (SM) of electroweak interactions describes CP violation as a consequence of a complex phase in the three-generation Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [3]. Measurements of CP asymmetries in the proper-time distribution of neutral B decays to CP eigenstates containing a charmonium and K^0 meson provide a precise measurement of $\sin 2\beta$ [4], where β is $\arg[-V_{cb}^\ast V_{cb}/V_{ub}V_{ub}^\ast]$ and the V_{ij} are CKM matrix elements.

The decay $B^0 \rightarrow J/\psi \pi^0$ is a CP-even Cabibbo-suppressed $b \rightarrow c \bar{c} d$ transition whose tree amplitude has the same weak phase as the $b \rightarrow c \bar{c} s$ modes e.g. the CP-odd decay $B^0 \rightarrow J/\psi K_S^0$. The $b \rightarrow c \bar{c} d$ penguin amplitude has a different weak phase than the tree amplitude. The tree and penguin amplitudes expected to dominate this decay are shown in Fig. 1.

If there is a significant penguin amplitude in $B^0 \rightarrow J/\psi \pi^0$, then one will measure values of the CP asymmetry coefficients S and C that are different from $-\sin 2\beta$ and 0, respectively [5]. The coefficient S denotes the interference between mixing and decay, and the direct CP asymmetry coefficient C are defined as

\begin{equation}
S = \frac{2 Im \lambda}{1 + |\lambda|^2} \quad \text{and} \quad C = \frac{1 - |\lambda|^2}{1 + |\lambda|^2},
\end{equation}

where λ is a complex parameter that depends on both the $B^0 - \bar{B}^0$ oscillation amplitude and the amplitudes describing B^0 and \bar{B}^0 decays to the $J/\psi \pi^0$ final state. An additional motivation for measuring S and C from $B^0 \rightarrow J/\psi \pi^0$ is that they can provide a model-independent constraint on the penguin dilution within $B^0 \rightarrow J/\psi K_S^0$ [6].

In this publication, we present an update of previous BABAR branching fraction and time-dependent CP violating asymmetry measurements of the decay $B^0 \rightarrow J/\psi \pi^0$ [7,8], which had been performed using 20.7 fb^{-1} and 81.1 fb^{-1} of integrated luminosity, respectively. Belle has also studied this mode and has published a branching fraction and later a time-dependent CP-violating asymmetry result using 29.4 fb^{-1} and 140.0 fb^{-1} of integrated luminosity, respectively [9,10].

The data used in this analysis were collected with the BABAR detector at the PEP-II asymmetric $e^+ e^-$ storage ring. This represents a total integrated luminosity of 210.6 fb^{-1} collected on or just below the $Y(4S)$ resonance (on-peak), corresponding to a sample of 231.8 ± 2.6 million BB pairs. An additional 21.6 fb^{-1} of data, collected at approximately 40 MeV below the $Y(4S)$ resonance, is used to study background from $e^+ e^- \rightarrow q\bar{q}(q = u, d, s, c)$ continuum events.

The BABAR detector is described in detail elsewhere [11]. Surrounding the interaction point is a 5 layer doublesided silicon vertex tracker (SVT) which measures the impact parameters of charged particle tracks in both the plane transverse to, and along the beam direction. A 40 layer drift chamber (DCH) surrounds the SVT and provides measurements of the transverse momenta for charged particles. Both the SVT and the DCH operate in the magnetic field of a 1.5 T solenoid. Charged hadron identification is achieved through measurements of particle energy loss (dE/dx) in the tracking system and the Čerenkov angle obtained from a detector of internally reflected Čerenkov light (DIRC). This is surrounded by a segmented CsI(Tl) electromagnetic calorimeter (EMC) which is used to pro-
We reconstruct $B^0 \rightarrow J/\psi \pi^0$ decays in $B\bar{B}$ candidate events from combinations of $J/\psi \rightarrow \ell^+\ell^-(\ell = e, \mu)$ and $\pi^0 \rightarrow \gamma\gamma$ candidates. A detailed description of the charged particle reconstruction and identification can be found elsewhere [7]. For the $J/\psi \rightarrow e^+e^-(J/\psi \rightarrow \mu^+\mu^-)$ channel, the invariant mass of the lepton pair is required to be between 3.06 and 3.12 GeV/c^2 (3.07 and 3.13 GeV/c^2). Each lepton candidate must also be consistent with the electron (muon) hypothesis. We form $\pi^0 \rightarrow \gamma\gamma$ candidates from clusters in the EMC with an invariant mass, $m_{\gamma\gamma}$, satisfying $100 < m_{\gamma\gamma} < 160$ MeV/c^2. These clusters are required to be isolated from any charged tracks, carry a minimum energy of 30 MeV, and have a lateral energy distribution consistent with that of a photon. Each π^0 candidate is required to have a minimum energy of 200 MeV and is constrained to the nominal mass [12]. Finally, the $B^0 \rightarrow J/\psi \pi^0$ candidates (B_{rec}) are constrained to originate from the e^+e^- interaction point using a geometric fit.

We use two kinematic variables, m_{ES} and ΔE, in order to isolate the signal: $m_{\text{ES}} = \sqrt{(E_{\text{beam}})^2 - (p_B^{CM})^2}$ is the beam-energy substituted mass and $\Delta E = E_B - E_{\text{beam}}$ is the difference between the B-candidate energy and the beam energy. E_{beam} and p_B^{CM} are the beam energy and B-candidate momentum (energy) in the center-of-mass (CM) frame. We require $m_{\text{ES}} > 5.2$ GeV/c^2 and $|\Delta E| < 0.3$ GeV.

A significant source of background is due to $e^+e^- \rightarrow q\bar{q}(q = u, d, s, c)$ continuum events. We combine several kinematic and topological variables into a Fisher discriminant (F) [13] to provide additional separation between signal and continuum. The three variables L_0, L_2 and $\cos(\theta_H)$ are inputs to F. L_0 and L_2 are the zeroth- and second-order Legendre polynomial moments; $L_0 = \sum |p_i^2|$ and $L_2 = \sum |p_i^2|/2(3\cos^2\theta_H - 1)$, where p_i^2 are the CM momenta of the tracks and neutral calorimeter clusters that are not associated with the signal candidate. The θ_H are the angles between p_i^* and the thrust axis of the signal candidate and θ_H is the angle between the positively charged lepton and the B candidate in the J/ψ rest frame.

We use multivariate algorithms to identify signatures of B decays that determine (tag) the flavor of the decay of the other B in the event (B_{tag}) to be either a B^0 or \bar{B}^0. The flavor tagging algorithm used is described in more detail elsewhere [14]. In brief, we define seven mutually exclusive tagging categories. These are (in order of decreasing signal purity) Lepton, KaonI, KaonII, Kaon-Pion, Pion, Other, and No-Tag. The total effective tagging efficiency of this algorithm is $(30.5 \pm 0.4\%)$.

The decay rate $f_+ (f_-)$ of neutral decays to a CP eigenstate, when B_{tag} is a $B^0(\bar{B}^0)$, is

$$f_+ (f_-) = \frac{e^{-|\Delta t|/\tau_{\Psi^0}}}{4\tau_{\Psi^0}^2} \left[1 \pm \sin(\Delta m_d \Delta t) \mp \cos(\Delta m_d \Delta t)\right].$$

(2)

where Δt is the difference between the proper decay times of the B_{rec} and B_{tag} mesons, $\tau_{\Psi^0} = 1.536 \pm 0.014$ ps is the B^0 lifetime and $\Delta m_d = 0.502 \pm 0.007$ ps$^{-1}$ is the $B^0 - \bar{B}^0$ oscillation frequency [12]. The decay width difference between the B^0 mass eigenstates is assumed to be zero.

After all of the selection criteria mentioned above have been applied, the average number of candidates per event is approximately 1.1, indicating some events still have multiple candidates. In these events, we randomly choose one candidate to be used in the fit. This selection is unbiased. Overall, the true signal candidate is correctly identified 91.7% of the time. After this step, the signal efficiency is 22.0% and a total of 1318 on-peak events are selected.

In addition to signal and continuum background events, there are also $B\bar{B}$-associated backgrounds present in the data. We divide the B backgrounds into the following types: (i) $B^0 \rightarrow J/\psi K_S^0$, where $K_S^0 \rightarrow \pi^0 \pi^0$ (ii) inclusive neutral B meson decays, and (iii) inclusive charged B meson decays. When normalized to the integrated luminosity, Monte Carlo (MC) studies predict $153 \pm 9, 68 \pm 14$ and 314 ± 63 events of these background types, respectively. The inclusive neutral B meson decays exclude signal and $B^0 \rightarrow J/\psi K^0_S$ events. The inclusive B decay backgrounds are dominated by contributions from $B \rightarrow J/\psi X$ (inclusive charmonium final states). In particular the inclusive charged B meson decay backgrounds are dominated by $B^+ \rightarrow J/\psi \rho^+$ decays. The $B^0 \rightarrow J/\psi K^0_S$ background was studied separately since it contributes a significant amount of neutral B background, has a large asymmetry, and has the almost same tagging efficiency and resolution as the signal.

The signal yield, S and C are simultaneously extracted from an unbinned maximum-likelihood (ML) fit to the B candidate sample, where the discriminating variables used in the fit are m_{ES}, ΔE, F, and Δt. The signal yield is fitted using known tagging efficiencies [14]. The continuum yield for the seven mutually-exclusive tagging categories, is also allowed to vary in the ML fit.

The probability density function (PDF) for signal m_{ES} distribution takes the form of a Gaussian with a low side exponential tail [15]. We parameterize the m_{ES} distribution.
for continuum and neutral inclusive B background with an Argus phase space distribution [16]. As there are significant correlations between m_{ES} and ΔE for the charged inclusive B and the $B^0 \rightarrow J/\psi K_S^0$ backgrounds, we parameterize these variables with two-dimensional nonparametric PDFs as described in Ref. [17]. The ΔE distribution for signal events is modeled by a Gaussian with an exponential tail on the negative side to account for energy leakage in the EMC, plus a polynomial contribution. The ΔE distributions for the continuum and the neutral inclusive B background are described by second and third-order polynomials, respectively. The F distributions for the signal and the backgrounds are described by bifurcated Gaussians with different widths above and below the peak value.

The signal decay rate distribution of Eq. (2) is modified to account for dilution coming from incorrectly assigning the flavor of B_{ES} and is convolved with a triple Gaussian resolution function, whose core width is about 1.1 ps [18]. The decay rate distribution for B backgrounds is similar to that for signal. The inclusive B backgrounds are assigned an effective lifetime instead of their respective B lifetimes to account for their misreconstruction. This effective lifetime is determined from MC simulated data. The potential CP asymmetry of the inclusive B background is evaluated by allowing the parameters of S and C for this background to vary. The decay rate distribution for $B^0 \rightarrow J/\psi K_S^0$ is the same as that for signal and reflects the known level of CP violation in that decay. The continuum background is modeled with a prompt lifetime component convolved with a triple Gaussian resolution function. The core Gaussian parameters and fractions are allowed to vary in the ML fit. The other two Gaussians have means fixed to zero, and widths of 0.85 ps and 8.0 ps, respectively.

The results from the ML fit are 109 ± 12 (stat) signal events, with $S = -0.68 \pm 0.30$ (stat) and $C = -0.21 \pm 0.26$ (stat). The fit yields the following numbers of continuum events: $N_{\text{Lepton}} = 17 \pm 5$, $N_{\text{Koanl}} = 38 \pm 8$, $N_{\text{KoanlII}} = 101 \pm 12$, $N_{\text{Koanlpion}} = 102 \pm 12$, $N_{\text{Pion}} = 115 \pm 12$, $N_{\text{Other}} = 94 \pm 11$, and $N_{\text{NoTag}} = 227 \pm 17$. Figure 2 shows the distributions of m_{ES}, ΔE, and F for the data. In these plots the signal has been enhanced by selecting $|\Delta E| < 0.1$ GeV for the m_{ES} plot, $m_{ES} > 5.275$ GeV/c^2 for the ΔE plot and by applying both of these criteria for the F plot. After applying these requirements to the signal (background) samples that are used in the fit, they are reduced to a relative size of 83.1% (24.3%), 85.0% (21.1%) and 73.1% (2.8%) for the m_{ES}, ΔE, and F distributions, respectively.

Figure 3 shows the Δt distribution for signal B^0 and \bar{B}^0 tagged events. The signal has been enhanced using the same m_{ES} and ΔE cuts as for Fig. 2. The time-dependent decay rate asymmetry $[N(\Delta t) - \bar{N}(\Delta t)]/[N(\Delta t) + \bar{N}(\Delta t)]$ is also shown, where N (\bar{N}) is the decay rate for B^0 (\bar{B}^0) tagged events and the decay rate takes the form of Eq. (2).

Table I summarizes the systematic uncertainties on the signal yield, S and C. These include the uncertainty due to the PDF parameterization (including the resolution function), evaluated by varying the signal and the background PDF parameters within uncertainties of their nominal values. The effect of SVT misalignment; the uncertainties...
associated with the Lorentz boost, the z-scale of the tracking system, and the event-by-event beam spot position.

The uncertainty coming from the fit bias is estimated by performing ensembles of mock experiments using signal MC which is generated using the GEANT4-based [19] BABAR MC simulation, embedded into MC samples of background generated from the likelihood. The deviation from input values is added in quadrature to the error on the background. The time-dependent CP asymmetry (see text) is also shown (bottom), where the curve is the measured asymmetry.

![Graphs showing Δt distribution for signal enhanced events tagged as B^0 (top) and \bar{B}^0 (middle). The dotted lines are the sum of backgrounds and the solid lines are the sum of signal and backgrounds.](image)

FIG. 3 (color online). The Δt distribution for a sample of signal enhanced events tagged as B^0 (top) and \bar{B}^0 (middle). The dotted lines are the sum of backgrounds and the solid lines are the sum of signal and backgrounds. The time-dependent CP asymmetry (see text) is also shown (bottom), where the curve is the measured asymmetry.

states which dominate the inclusive B background, are precisely known from previous measurements. Their yields are then fixed in the fit. As a crosscheck, the yields for inclusive B backgrounds that are not well known are allowed to vary. The deviation from the nominal result is taken as a systematic uncertainty. We include an additional systematic uncertainty to account for neglecting the small correlation between m_{ES} and ΔE in signal and neutral inclusive B background events.

In order to evaluate the uncertainty coming from CP violation in the B background, we have allowed the S and C parameters to vary in a fit for the neutral inclusive B background, and have separately allowed the C parameter to vary in a fit for the charged inclusive B background. The deviations of the fitted values of the signal S and C from the nominal fit results are assigned as systematic errors. The uncertainty from CP violation in $B^0 \rightarrow J/\psi K^0_S$ is determined by varying S and C within current experimental limits [14].

The inclusive B background uses an effective lifetime in the nominal fit and we replace this with the world-average B lifetime [12] to evaluate the systematic error due to the CP background lifetime. There is also a small asymmetry in the tagging efficiency between B^0 and \bar{B}^0 tagged events, for which a systematic uncertainty is evaluated. We study the possible interference between the suppressed $b \rightarrow \bar{u}c\bar{d}$ amplitude with the favored $b \rightarrow c\bar{d}u$ amplitude for some tagside B decays [20]. The difference in the distribution of J/ψ between data and MC is evaluated with a large sample of $B \rightarrow D^{\ast}\rho$ decays. There are additional systematic uncertainties that contribute only to the branching fraction. These come from uncertainties for charged particle identification (5.2%), π^0 meson reconstruction efficiency (3%), the $J/\psi \rightarrow \ell^+\ell^-$ branching fractions (2.4%), the tracking efficiency (1.2%) and the number of B meson pairs (1.1%).

The systematic error contribution from MC statistics is negligible. The 109 ± 12 signal events correspond to a branching fraction of

$$\mathcal{B}(B^0 \rightarrow J/\psi\pi^0) = (1.94 \pm 0.22_{\text{stat}} \pm 0.17_{\text{syst}}) \times 10^{-5}.$$

We determine the CP asymmetry parameters to be

$$S = -0.21 \pm 0.26_{\text{stat}} \pm 0.06_{\text{syst}},$$

$$C = -0.68 \pm 0.30_{\text{stat}} \pm 0.04_{\text{syst}},$$

where the correlation between S and C is 8.3%. The value of S is consistent with SM expectations for a tree-dominated $b \rightarrow c\bar{d}d$ transition of $S = -\sin2\beta$ and $C = 0$. All results presented here are consistent with previous measurements from the B factories [7–10].

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work
possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), Institute of High Energy Physics (China), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, and the Particle Physics and Astronomy Research Council (United Kingdom). Individuals have received support from CONACyT (Mexico), the Marie-Curie Intra European Fellowship program (European Union), the A.P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.