The following full text is a publisher's version.

For additional information about this publication click this link.
http://repository.ubn.ru.nl/handle/2066/128240

Please be advised that this information was generated on 2017-08-15 and may be subject to change.
Measurements of Branching Fractions, Polarizations, and Direct CP-Violation Asymmetries in $B \to \rho K^*$ and $B \to f_0(980)K^*$ Decays

PRL 97, 201801 (2006) 201801-3

Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany

Ecole Polytechnique, Laboratoire Leprince-Ringuet, F-91128 Palaiseau, France

University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

Università di Ferrara, Dipartimento di Fisica e INFN, I-44100 Ferrara, Italy

Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy

Università di Genova, Dipartimento di Fisica e INFN, I-16146 Genova, Italy

Harvard University, Cambridge, Massachusetts 02138, USA

Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany

Imperial College London, London, SW7 2AZ, United Kingdom

University of Iowa, Iowa City, Iowa 52242, USA

Johns Hopkins University, Baltimore, Maryland 21218, USA

Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany

Laboratoire de l’Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B.P. 34, F-91898 ORSAY Cedex, France

Lawrence Livermore National Laboratory, Livermore, California 94550, USA

University of Liverpool, Liverpool L69 7ZE, United Kingdom

University of Massachusetts, Amherst, Massachusetts 01003, USA

Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA

McGill University, Montréal, Québec, Canada H3A 2T8

Università di Milano, Dipartimento di Fisica e INFN, I-20133 Milano, Italy

University of Mississippi, University, Mississippi 38677, USA

Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7

Mount Holyoke College, South Hadley, Massachusetts 01075, USA

Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy

NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands

Ohio State University, Columbus, Ohio 43210, USA

University of Oregon, Eugene, Oregon 97403, USA

Università di Padova, Dipartimento di Fisica e INFN, I-35131 Padova, Italy

Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France

University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy

Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy

Prairie View A&M University, Prairie View, Texas 77446, USA

Princeton University, Princeton, New Jersey 08544, USA

Università di Roma La Sapienza, Dipartimento di Fisica e INFN, I-00185 Roma, Italy

Universität Rostock, D-18051 Rostock, Germany

Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom

DSM/Dapnia, CEA/Saclay, F-91191 GIF-sur-Yvette, France

University of South Carolina, Columbia, South Carolina 29208, USA

Stanford Linear Accelerator Center, Stanford, California 94309, USA

Stanford University, Stanford, California 94305-4060, USA

State University of New York, Albany, New York 12222, USA

University of Tennessee, Knoxville, Tennessee 37996, USA

University of Texas at Austin, Austin, Texas 78712, USA

University of Texas at Dallas, Richardson, Texas 75083, USA

Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy

Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy

IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain

University of Victoria, Victoria, British Columbia, Canada V8W 3P6

Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

University of Wisconsin, Madison, Wisconsin 53706, USA

Yale University, New Haven, Connecticut 06511, USA

(Received 27 July 2006; published 14 November 2006)
We report searches for B-meson decays to the charmless final states ρK^* and $f_0(980)K^*$ with a sample of 232×10^6 $B\bar{B}$ pairs collected with the BABAR detector at the PEP-II e^+e^- collider. We measure in units of 10^{-6} the following branching fractions, where the first error quoted is statistical and the second systematic, or upper limits are given at the 90% confidence level: $\mathcal{B}(B^+ \to \rho^+ K^{*0}) = 9.6 \pm 1.7 \pm 1.5$, $\mathcal{B}(B^0 \to \rho^0 K^{*0}) < 12.0$, $\mathcal{B}(B^0 \to \rho^0 K^{*0}) = 5.6 \pm 0.9 \pm 1.3$, $\mathcal{B}(B^+ \to f_0(980)K^{*0}) = 5.2 \pm 1.2 \pm 0.5$, and $\mathcal{B}(B^0 \to f_0(980)K^{*0}) < 4.3$. For the significant modes, we also measure the fraction of longitudinal polarization and the charge asymmetry: $f_L(B^+ \to \rho^0 K^{*0}) = 0.52 \pm 0.10 \pm 0.04$, $f_L(B^0 \to \rho^0 K^{*0}) = 0.57 \pm 0.09 \pm 0.08$, $\mathcal{A}_{\text{CP}}(B^+ \to \rho^0 K^{*0}) = -0.01 \pm 0.16 \pm 0.02$, $\mathcal{A}_{\text{CP}}(B^0 \to \rho^0 K^{*0}) = 0.09 \pm 0.19 \pm 0.02$, and $\mathcal{A}_{\text{CP}}(B^+ \to f_0(980)K^{*0}) = -0.34 \pm 0.21 \pm 0.03$.

DOI: 10.1103/PhysRevLett.97.201801 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh

The study of B-meson decays to charmless hadronic final states plays an important role in understanding CP violation. The charmless decays $B \to \rho K^*$ proceed through dominant penguin loops and Cabibbo-suppressed tree processes ($B^+ \to \rho^+ K^{0\ast}$ is pure penguin) to two vector particles (VV). A large longitudinal polarization fraction f_L (of order $(1 - 4m_\pi^2/m_H^2) \sim 0.9$) is predicted for both tree- and penguin-dominated VV decays [1]. However, recent measurements of the pure penguin VV decays $B \to f K^*$ indicate $f_L \sim 0.5$ [2]. Several attempts to understand this small value of f_L, within or beyond the standard model (SM) have been made [3]. Further information about $SU(3)$-related decays may provide some insight into this polarization puzzle. Characterization of the four $B \to \rho K^*$ modes can also be used within the SM framework to help constrain the angles α and γ of the unitarity triangle [4].

We report measurements of branching fractions, longitudinal polarizations, and direct CP-violating asymmetries for the $B \to \rho K^*$ decay modes, with explicit consideration of nonresonant backgrounds. We also measure branching fractions and direct CP-violating asymmetries for the $B \to f_0(980)K^*$ modes that share the same final states. Some modes were previously measured [5–7]. Charge-conjugate modes are implied throughout.

This analysis is based on a data sample of 232×10^6 $B\bar{B}$ pairs, corresponding to an integrated luminosity of 210 fb$^{-1}$, collected with the BABAR detector [8] at the Stanford Linear Accelerator Center (SLAC) PEP-II asymmetric-energy e^+e^- collider operating at a center-of-mass (c.m.) energy $\sqrt{s} = 10.58$ GeV, corresponding to the Y(4S) resonance mass.

The angular distribution of the ρK^* decay products, after integrating over the angle between the decay planes of the vector mesons, for which the acceptance is uniform, is proportional to

$$\frac{1}{4}(1 - f_L)\sin^2\theta_{K^*}\sin^2\theta_\rho + f_L \cos^2\theta_{K^*}\cos^2\theta_\rho,$$

where θ_{K^*} and θ_ρ are the helicity angles of K^* and ρ, defined between the $K(\rho)$ momentum and the direction opposite to B in the $K(\rho)$ rest frame [9]. We also measure the time-integrated direct CP-violating asymmetry $\mathcal{A}_{\text{CP}} = (\Gamma^- - \Gamma^+)/\Gamma^+= \Gamma^+$, where the superscript on the total width Γ indicates the sign of the b-quark charge in the B meson.

We fully reconstruct charged and neutral decay products including the intermediate states ρ^0 or $f_0(980) \to \pi^+\pi^-$, $\rho^+ \to \pi^+\pi^0$, $K^{0\ast} \to K^+\pi^-$, $K^{+\ast} \to K^0\pi^0$, $K^{0\ast} \to K^0\pi^0$ (only in $\rho^0 K^{*0}$), $\pi^0 \to \gamma\gamma$, and $K^0 \to \pi^+\pi^-$. We assume the $f_0(980)$ measured line shape [10] and a branching ratio of 100% for $f_0(980) \to \pi^+\pi^-$.

Table I lists the selection requirements on the invariant mass and helicity angle of B-daughter resonances.

The tracks from the B-meson candidate are required to originate from the interaction point. Looser criteria are applied to tracks forming K^0_S candidates, for which we require $|m_{\pi^+\pi^-} - m_{K^0_S}| < 12$ MeV, a measured proper decay time greater than 5 times its uncertainty, and the cosine of the angle between the reconstructed flight and momentum directions to exceed 0.995. Charged particle identification provides discrimination between kaons and pions and is also used to reject electrons and protons. We reconstruct π^0 mesons from pairs of photons, each with a minimum energy of 30 (in $\rho^0 K^{*0}$) or 50 MeV (in $\rho^0 K^{*0}$ and $\rho^- K^{*+}$). The invariant mass of π^0 candidates is required to be within 15 (in $\rho^0 K^{*0}$ or 25 MeV (in $\rho^0 K^{*0}$ and $\rho^- K^{*+}$) of the nominal mass [11].

B-meson candidates are characterized kinematically by the energy difference $\Delta E = E_B - \sqrt{s}/2$ and the energy-substituted mass $m_{\text{ES}} = [(s/2 + \mathbf{p}_B \cdot \mathbf{p}_{B'})^2/E_B^2 - \mathbf{p}_{B'}^2]^{1/2}$, where (E_B, \mathbf{p}_B) are the four-momenta of the $Y(4S)$ and B candidates, respectively, and the asterisk denotes the $Y(4S)$ frame. Our signal lies in the region $|\Delta E| \leq 0.1$ GeV and $5.27 \leq m_{\text{ES}} \leq 5.29$ GeV. Sidebands in m_{ES} and ΔE are used to characterize the continuum background. The average number of signal B candidates per selected data event ranges from 1.05 to 1.27, depending on the final state. A single candidate per event is chosen as the one with the smallest B vertex-fit χ^2 ($\rho^0 K^{*0}$ and $\rho^0 K^{*0}$), the smallest value of χ^2 constructed from deviations of reconstructed π^0 masses from the expected value (in $\rho^- K^{*+}$), or randomly (in $\rho^0 K^{*0}$). Monte Carlo (MC) simulation shows that up to 38% (23%) of longitudinally (transversely) polarized signal events are misconstructed with one or more tracks originating from the other B in the event.
TABLE I. Selection requirements on the invariant mass (in GeV) and helicity angle of B-daughter resonances.

<table>
<thead>
<tr>
<th>Mode</th>
<th>$m_{\pi\pi}$</th>
<th>$m_{K\pi}$</th>
<th>$\cos\theta_\rho$</th>
<th>$\cos\theta_K$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho^0 K^{+\pi^-}$</td>
<td>(0.52, 1.10)</td>
<td>(0.75, 1.05)</td>
<td>(-0.95, 0.95)</td>
<td>(-0.5, 1.0)</td>
</tr>
<tr>
<td>$\rho^0 K^{+\pi^0}$</td>
<td>(0.52, 1.10)</td>
<td>(0.75, 1.05)</td>
<td>(-0.95, 0.95)</td>
<td>(-0.9, 1.0)</td>
</tr>
<tr>
<td>$\rho^+ K^{0\pi^-}$</td>
<td>(0.40, 1.15)</td>
<td>(0.77, 1.02)</td>
<td>(-0.66, 0.95)</td>
<td>(-0.95, 1.0)</td>
</tr>
<tr>
<td>$\rho^- K^{0\pi^+}$</td>
<td>(0.40, 1.15)</td>
<td>(0.77, 1.02)</td>
<td>(-0.80, 0.98)</td>
<td>(-0.80, 0.98)</td>
</tr>
<tr>
<td>$\rho^0 K^{0\pi^-}$</td>
<td>(0.52, 1.10)</td>
<td>(0.77, 1.02)</td>
<td>(-0.95, 0.95)</td>
<td>(-0.95, 1.0)</td>
</tr>
</tbody>
</table>

To reject the dominant $q\bar{q}$ continuum background, we require $|\cos\theta_T| < 0.8$, where θ_T is the c.m. frame angle between the thrust axes of the B candidate and that formed from the other tracks and neutral clusters in the event. We also use as discriminant variables the polar angles of the B-momentum vector and the B-candidate thrust axis with respect to the beam axis and the two Legendre moments L_0 and L_2 of the energy flow around the B-candidate thrust axis in the c.m. frame [12]. These variables are combined in a Fisher discriminant F ($\rho^0 K^{*+}$) or a neural network (NN) (other modes). Finally, we suppress background from B decays to charmless states by requiring the decay products consistent with $D^0 \to K^- \pi^+ (\pi^0)$ and $D^- \to K^- + \pi^- \pi^-$ decays.

We use an extended (not extended in the $\rho^+ K^{0\pi^-}$ mode) unbinned maximum-likelihood (ML) fit to extract signal yields, asymmetries, and angular polarizations simultaneously. We define the likelihood L_i for each event candidate i as the sum of $n_j P_j(\bar{\alpha})$ over hypotheses j (signal, $q\bar{q}$ background, and several BB backgrounds discussed below), where the $P_j(\bar{\alpha})$ are the probability density functions (PDFs) for the measured variables $\bar{\alpha}_i$, and n_j are the yields for the different hypotheses. The quantities $\bar{\alpha}$ represent parameters in the expected distributions of the measured variables for each hypothesis. They are extracted from MC simulation and (m_{ES}, ΔE) sideband data. They are fixed in the fit except for some shape parameters of the continuum ΔE and m_{ES} distributions. The extended likelihood function for a sample of N candidates is $L = \exp(-\sum n_j) \prod_{i=1}^N L_i$.

The fit input variables $\bar{\alpha}_i$ are m_{ES}, ΔE, NN or F, invariant masses of the candidates ρ [$f_0(980)$] and K^*, and helicity angles θ_ρ and θ_K. We study large control samples of $B \to D\pi$ decays of similar topology to verify the simulated resolutions in ΔE and m_{ES}, adjusting the PDFs to account for any difference found.

Since almost all correlations among the fit input variables are found to be small, we take each P_j to be the product of the PDFs for the separate variables with the following exceptions where we explicitly account for correlations: the correlation between the two helicity angles in signal, the correlation due to misreconstructed events in signal, and the correlation between mass and helicity in backgrounds. The effect of neglecting other correlations is evaluated by fitting ensembles of simulated experiments in which we embed the expected numbers of signal and charmless B-background events, randomly extracted from fully simulated MC samples.

We use MC-simulated events to study backgrounds from other B decays. Charmless B backgrounds are grouped into up to 11 classes with similar topologies depending on the mode. Yields for decays with poorly known branching fractions are varied in the fit with those remaining kept fixed to their measured values. One to four additional classes account for neutral and charged B decays to final states with charm. Up to 6 classes account for misreconstructed events in signal. We also introduce components for nonresonant backgrounds such as $\pi\pi K^*$, $pK\pi$, and $f_0(1370)K\pi$, which differ from signal only in resonance mass and helicity distributions. The magnitudes of these components are determined by extrapolating from fits performed on a wider mass range reaching to higher-mass values and are fixed in the fit. Figure 1 shows the sPlots [13] for the invariant mass of $K\pi$ and $\pi\pi$ in the $\rho^+ K^{0\pi^-}$ and $\rho^0 K^{0\pi^-}$ modes, respectively. The data events are weighted by their probability to be signal, calculated from the signal and backgrounds PDFs of the ΔE, m_{ES}, and NN variables.

The results of the ML fits are summarized in Table II. For the branching fractions, we assume equal production rates of B^+B^- and $B^0\bar{B}^0$. The significance S of a signal is defined by $\Delta \ln L = S^2/2$, where $\Delta \ln L$ represents the change in likelihood from the maximal value when the

FIG. 1 (color online). sPlots [13] for the invariant mass of $K\pi$ in $\rho^+ K^{0\pi^-}$ (left) and $\pi\pi$ in $\rho^0/f_0(980)K^{0\pi^-}$ (right) up to the higher-mass regions. The points with error bars show the data, and the solid (dashed) lines show the projected PDFs of the signal and nonresonant background [nonresonant background only: $pK\pi$ in $\rho^+ K^{0\pi^-}$; the sum of $f_0(1370)K^*$, $\pi\pi K^*$, and $\pi\pi K\pi$ in $\rho^0 K^{0\pi^-}$]. The arrows show the nominal fit regions.
number of signal events is set to zero, corrected for the systematic error defined below. We find significant signals for \(\rho^0 K^{*+} \), \(\rho^0 K^0 \), and \(f_0(980)K^{*+} \), and some evidence for \(f_0(980)K^0 \). For the modes with significance smaller than 5 standard deviations, we also measure the 90% confidence level (C.L.) upper limit, taking into account the systematic uncertainty. Figure 2 shows projections of the fits onto \(m_{ES} \).

A source of systematic error is related to the determination of the PDFs and is due to the limited statistics of the Monte Carlo simulation and to the uncertainty on the PDF shapes. We obtain variations in the yields ranging from 1% to 18%, depending on the mode. The systematic error due to the nonresonant background extrapolation and interference with signal is in the range 6%–21%. Event yields for \(B \)-background modes fixed in the fit are varied by their respective uncertainties. This results in a systematic uncertainty of 2%–12%. We evaluate and correct for possible fit biases with MC experiments. We assign a systematic uncertainty of 1%–7% for this.

The reconstruction efficiency depends on the decay polarization. For the \(\rho^0 K^{*+} \) mode, we calculate the efficiency using the measured polarization (combined for the two \(\rho^0 K^{*+} \) modes) and assign a systematic uncertainty corresponding to the total polarization measurement error (9% and 20% for each mode, respectively). For the other modes, we exploit the correlation between \(\mathcal{B} \) and \(f_L \) and obtain the values of \(\mathcal{B} \) from fits where \(\mathcal{B} \) and \(f_L \) are free parameters. Figure 3 shows the behavior of \(-2\ln L(f_L, \mathcal{B}) \) for the modes with significant signal.

Additional reconstruction efficiency uncertainties arise from tracking (3%–5%), particle identification (1%–2%), vertex probability (2%), track multiplicity (1%), and thrust angle (1%). \(K^0_S \) and \(\pi^0 \) reconstruction contribute 2.3% and 3% uncertainty, respectively. Other minor systematic effects are from uncertainty in daughter branching fractions, MC sample statistics, and the number of \(B \) mesons. The absolute systematic uncertainty in \(f_L \) takes into account PDF shape variations (5%–10%), \(B \) and nonresonant backgrounds (4%–8%), and efficiency dependence on the polarization (1%–2%). The absolute uncertainty in the charge asymmetry due to track charge bias is less than

Table II. Summary of results for the measured \(B \)-decay modes: signal yield \(n_{sig} \) and its statistical uncertainty, reconstruction efficiency \(\epsilon \), daughter branching fraction product \(\mathcal{B}_i \), significance \(S \) (systematic uncertainties included), measured branching fraction \(\mathcal{B} \) (90% C.L. upper limit in parentheses), measured longitudinal polarization \(f_L \) (for the modes with nonsignificant signals, the numbers in brackets are not quoted as measurements), and charge asymmetry \(\mathcal{A}_{CP} \).

<table>
<thead>
<tr>
<th>Mode</th>
<th>(n_{sig})</th>
<th>(\epsilon(%))</th>
<th>(\mathcal{B}_i(%))</th>
<th>(S(\sigma))</th>
<th>(\mathcal{B}(10^{-6}))</th>
<th>(f_L)</th>
<th>(\mathcal{A}_{CP})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho^0 K^{*+})</td>
<td>10 \pm 5</td>
</tr>
<tr>
<td>(\rho^0 K_{S}^0)</td>
<td>10 \pm 5</td>
</tr>
<tr>
<td>(\rho^0 K^0)</td>
<td>10 \pm 5</td>
</tr>
</tbody>
</table>

Figure 2 (color online). Projections of the multidimensional fit onto \(m_{ES} \) for events passing a signal-to-total likelihood probability ratio cut with the plotted variable excluded for (a) \(\rho^0 K^{*+} \), (b) \(\rho^0 K_{S}^0 \), (c) \(\rho^0 K^0 \), (d) \(f_0(980)K^{*+} \), and (f) \(f_0(980)K^0 \). The points with error bars show the data; the solid, dashed, and dotted lines show the total, background, and continuum PDF projections, respectively.
sured polarization in the B^+ and $f_L(B^0 \to K^0\rho^+)$ for $B^+ \to \rho^+K^{\ast 0}$ (left) and $B^0 \to \rho^0K^{\ast 0}$ (right) decays. The solid dots correspond to the central values and the curves give contours in $\Delta \sqrt{-2 \ln(L(B,f_L)) = 1}$ steps.

1%. PDF variations and fixed B-background effects contribute up to 2%.

In summary, we search for $B \to \rho/f_0(980)K^+$ decays. We measure the significances, the branching fractions or 90% C.L. upper limits, the fractions of longitudinal polarization, and the charge asymmetries, summarized in Table II. Our results agree with and supersede our previous measurement \cite{5}, where ρ^0K^+ and $f_0(980)K^+$ were not separated. We measure $B^+ \to \rho^+K^{\ast 0}$ with a similar result and precision as in Ref. \cite{6}. For the first time, we observe $B^0 \to \rho^0K^{\ast 0}$ and $B^+ \to f_0(980)K^{\ast +}$, see evidence for $B^0 \to f_0(980)K^{\ast 0}$, and search for $B^0 \to f^- K^{+\ast}$. The measured polarization in the $\rho^+K^{\ast 0}$ and ρ^0K^+ modes agrees with values measured in ϕK^+ decays, which are more precise by a factor of 2.

We thank I. Bigi, S. Descotes-Genon, O. Pène, and M. Pennington for their advice on the treatment of non-resonant backgrounds. We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation.

*Also at Laboratoire de Physique Corpusculaire, Clermont-Ferrand, France.
\†Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
\‡Also with Università della Basilicata, Potenza, Italy.

\begin{thebibliography}{13}
\bibitem{5} B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 91, 171802 (2003).
\bibitem{6} J. Zhang et al. (Belle Collaboration), Phys. Rev. Lett. 95, 141801 (2005).
\bibitem{12} B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 70, 032006 (2004).
\end{thebibliography}