Measurement of the branching fraction and time-dependent $CP$ asymmetry in the decay $B^0 \rightarrow D^{*+} D^− K^0$
MEASUREMENT OF THE BRANCHING FRACTION...

PHYSICAL REVIEW D 74, 091101(R) (2006)

25 Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
26 University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
27 Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
28 Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
29 Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
30 Harvard University, Cambridge, Massachusetts 02138, USA
31 Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
32 Imperial College London, London, SW7 2AZ, United Kingdom
33 University of Iowa, Iowa City, Iowa 52242, USA
34 Johns Hopkins University, Baltimore, Maryland 21218, USA
35 University Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
36 Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, BP 34, F-91898 ORSAY Cedex, France
37 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
38 University of Liverpool, Liverpool L69 7EZ, United Kingdom
39 Queen Mary, University of London, E1 4NS, United Kingdom
40 University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
41 University of Louisville, Louisville, Kentucky 40292, USA
42 University of Manchester, Manchester M13 9PL, United Kingdom
43 University of Maryland, College Park, Maryland 20742, USA
44 University of Massachusetts, Amherst, Massachusetts 01003, USA
45 Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
46 McGill University, Montréal, Québec, Canada H3A 2T8
47 Università di Milano, Dipartimento di Fisica e INFN, I-20133 Milano, Italy
48 University of Mississippi, University, Mississippi 38677, USA
49 Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
50 Mount Holyoke College, South Hadley, Massachusetts 01075, USA
51 Università di Napoli Federico II, Dipartimento di Scienze Fisiche e INFN, I-80126, Napoli, Italy
52 NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
53 University of Notre Dame, Notre Dame, Indiana 46556, USA
54 Ohio State University, Columbus, Ohio 43210, USA
55 University of Oregon, Eugene, Oregon 97403, USA
56 Università di Padova, Dipartimento di Fisica e INFN, I-35131 Padova, Italy
57 Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
58 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
59 Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
60 Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
61 Prairie View A&M University, Prairie View, Texas 77446, USA
62 Princeton University, Princeton, New Jersey 08544, USA
63 Università di Roma La Sapienza, Dipartimento di Fisica e INFN, I-00185 Roma, Italy
64 Universität Rostock, D-18051 Rostock, Germany
65 Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
66 DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
67 University of South Carolina, Columbia, South Carolina 29208, USA
68 Stanford Linear Accelerator Center, Stanford, California 94309, USA
69 Stanford University, Stanford, California 94305-4060, USA
70 State University of New York, Albany, New York 12222, USA
71 University of Tennessee, Knoxville, Tennessee 37996, USA
72 University of Texas at Austin, Austin, Texas 78712, USA
73 University of Texas at Dallas, Richardson, Texas 75083, USA
74 Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
75 Università di Trieste, Dipartimento di Fisica e INFN, I-34127 Trieste, Italy
76 IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
77 University of Victoria, Victoria, British Columbia, Canada V8W 3P6
78 Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
† Also with Università della Basilicata, Potenza, Italy.
We study the decay $B^0 \to D^{*+} D^{*-} K_S^0$ using $(230 \pm 2) \times 10^6 B\bar{B}$ pairs collected by the BABAR detector at the PEP-II $B$ factory. We measure a branching fraction $\mathcal{B}(B^0 \to D^{*+} D^{*-} K_S^0) = (4.4 \pm 0.4 \pm 0.7) \times 10^{-3}$ and find evidence for the decay $B^0 \to D^{*-} D_{sJ}^+(2536)$ with a significance of 4.6$\sigma$. A time-dependent CP asymmetry analysis is also performed to study the possible resonant contributions to $B^0 \to D^{*+} D^{*-} K_S^0$ and the sign of $\cos 2\beta$. Our measurement indicates that there is a sizable resonant contribution to the decay $B^0 \to D^{*+} D^{*-} K_S^0$ from an unknown $D_{sJ}^+$ state with large width, and that $\cos 2\beta$ is positive at the 94% confidence level under certain theoretical assumptions.

In the standard model framework, CP violation arises from a complex phase in the Cabibbo-Kobayashi-Maskawa quark-mixing matrix [1]. Measurements of CP asymmetries by the BABAR [2] and Belle [3] collaborations have firmly established this effect in the decay $B^0 \to J/\psi K_S^0$ [4] and related modes that are governed by the $b \to c\bar{c}s$ transition. Since both $B^0$ and $\bar{B}^0$ mesons can decay to the final state $D^{*+} D^{*-} K_S^0$ and this process is dominated by a single weak phase, $W$-emission $b \to c\bar{c}s$ transition, a time-dependent CP violating asymmetry is expected.

In the approximation of neglecting penguin contributions for the decay $B^0 \to D^{*+} D^{*-} K_S^0$, there is no direct CP violation. The time-dependent decay rate asymmetry of $B^0 \to D^{*+} D^{*-} K_S^0$ in the half Dalitz space $s^+ \leq s^-$ or $s^+ \geq s^-$ can be written as [5]

$$A(t) \equiv \frac{\Gamma_{\beta^e} - \Gamma_{\beta^e}}{\Gamma_{\beta^e} + \Gamma_{\beta^e}}$$

$$= \eta_s \frac{J_{s1}}{J_0} \cos(\Delta m_d t) - \frac{2J_{s1}}{J_0} \sin 2\beta + \eta_c \frac{2J_{s2}}{J_0} \cos 2\beta$$

$$\times \sin(\Delta m_d t),$$

where $s^+ \equiv m^2(D^{*+} K_S^0)$ and $s^- \equiv m^2(D^{*-} K_S^0)$, $\Gamma_{\beta^e}$ ($\Gamma_{\beta^e}$) is the decay rate for $B^0 (\bar{B}^0)$ to $D^{*+} D^{*-} K_S^0$ at a proper time $t$ after production, $\Delta m_d$ is the mass difference between the two $B^0$ mass eigenstates, and $\eta_s = -1 + (1/3)$ for $s^+ \leq s^-$ ($s^+ \geq s^-$). The parameters $J_0$, $J_s$, $J_{s1}$, and $J_{s2}$ are the integrals over the half Dalitz phase space with $s^+ < s^-$ of the functions $[a]_2^2 + [\tilde{a}]_2^2$, $[a]_2^2 - [\tilde{a}]_2^2$, Re($\tilde{a}a^*$), and Im($\tilde{a}a$), where $a$ and $\tilde{a}$ are the decay amplitudes of $B^0 \to D^{*+} D^{*-} K_S^0$ and $B^0 \to D^{*+} D^{*-} K_S^0$, respectively.

If the decay $B^0 \to D^{*+} D^{*-} K_S^0$ has only a nonresonant component, the parameter $J_{s2}$ is at the few percent level [5]. The CP asymmetry can be extracted by fitting the $B^0$ time-dependent decay distribution. The measured CP asymmetry is $\sin 2\beta$ multiplied by a factor of $2J_{s1}/J_0$ because the final state is an admixture of CP eigenstates with different CP parities. In this case, the value of the dilution factor $2J_{s1}/J_0$ is estimated to be large [5], similar to the decay $B^0 \to D^{*+} D^{*-}$. The situation is more complicated if intermediate resonances such as $D_{sJ}^+$ are present. In this case, the parameter $J_{s2}$ is nonzero and $J_s$ can be large. The resonant components are expected to be dominated by two $P$-wave excited $D_{sJ}^+$ states [5]. One such state is $D_{sJ}^+(2536)$ that has a narrow width and does not contribute much to $J_{s2}$. It can be easily removed by imposing a mass window requirement. The other $D_{sJ}^+$ resonant state is predicted in the quark model [6] to have a mass above the $D^{*+} K_S^0$ mass threshold with a large width. In this case, the $J_{s2}$ can be large. Therefore by studying the time-dependent asymmetry of $B^0 \to D^{*+} D^{*-} K_S^0$ in two different Dalitz regions, the sign of $\cos 2\beta$ can be determined for a sufficiently large data set using the method described in Refs. [5,7,8]. This would allow the resolution of the $\beta \to \pi/2 - \beta$ ambiguity despite the large theoretical uncertainty of $2J_{s2}/J_0$. However, if the unknown $P$-wave $D_{sJ}^+$ is the newly discovered $D_{sJ}^+(2317)$ or $D_{sJ}^+(2460)$, both of which lie below the $D^{*+} K_S^0$ mass threshold, then it will not contribute to the decay $B^0 \to D^{*+} D^{*-} K_S^0$. As a result, the time-dependent analysis of $B^0 \to D^{*+} D^{*-} K_S^0$ not only has a potential to measure the sign of $\cos 2\beta$, but also can help us to understand the possible structure of the excited charm meson spectrum.

In this paper, we present an improved measurement of the branching fraction of the decay $B^0 \to D^{*+} D^{*-} K_S^0$ [9] and a search for intermediate resonant decays. We also perform a time-dependent CP asymmetry analysis to study the possible resonant contributions and the sign of $\cos 2\beta$.

The data used in this analysis comprise $(230 \pm 2) \times 10^6 B\bar{B}$ decays collected with the BABAR detector at the PEP-II storage rings. The BABAR detector is described in detail elsewhere [10]. We use a Monte Carlo (MC) simulation based on GEANT4 [11] to validate the analysis procedure and to study the relevant backgrounds.

We select $B^0 \to D^{*+} D^{*-} K_S^0$ decays by combining two oppositely charged $D^+$ candidates reconstructed in the modes $D^{*+} \to D^0 \pi^+$ and $D^{*+} \to D^- \pi^0$ with a $K_S^0$ candidate. We include the $D^{*+} D^{*-}$ combinations $(D^0 \pi^+, \bar{D}^0 \pi^-)$ and $(D^0 \pi^-, D^- \pi^0)$, but not $(D^+ \pi^0, D^- \pi^0)$ because of the small branching fraction and large backgrounds. To suppress the $e^+ e^- \to q\bar{q}$ ($q = u, d, s, c$) continuum background, we require the ratio of the second and zeroth order Fox-Wolfram moments [12] to be less than 0.5.
Candidates for $D^0$ and $D^+$ mesons are reconstructed in the modes $D^0 \rightarrow K^- \pi^+$, $K^- \pi^+ \pi^0$, $K^- \pi^+ \pi^+ \pi^-$, and $D^+ \rightarrow K^- \pi^+ \pi^+$, by selecting track combinations with invariant mass within $\pm 0.0025$ of the nominal $D$ masses [13]. The resolution $\sigma$ is measured using a large data sample of inclusive $D$ decays. It is equal to 7.0 MeV/$c^2$ for $D^0 \rightarrow K^- \pi^+$ decays, 13.5 MeV/$c^2$ for $D^0 \rightarrow K^- \pi^+ \pi^0$ decays, 5.7 MeV/$c^2$ for $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$ decays, and 5.6 MeV/$c^2$ for $D^+ \rightarrow K^- \pi^+ \pi^+$ decays.

The $K_S^0$ candidates are reconstructed from two oppositely charged tracks with an invariant mass within 15 MeV/$c^2$ of the nominal $K_S^0$ mass [13], which is equivalent to slightly less than 5$\sigma$ of the measured $K_S^0$ mass resolution. The $\chi^2$ probability of the $\pi^+\pi^-$ vertex fit must be greater than 0.1%. To reduce combinatorial background, we require the measured proper decay time of the $K_S^0$ to be greater than 3 times its uncertainty. Charged kaon candidates, except for the one in the decay $D^0 \rightarrow K^- \pi^+$, are required to be inconsistent with the pion hypothesis, as inferred from the Cherenkov angle measured by the Cherenkov detector and the ionization energy loss measured by the charged-particle tracking system [10]. Neutral pion candidates are formed from pairs of photons detected in the electromagnetic calorimeter [10], each with energy above 30 MeV. The mass of the pair must be within 30 MeV/$c^2$ of the nominal $\pi^0$ mass, and their summed energy is required to be greater than 200 MeV. In addition, a mass-constrained fit is applied to the $\pi^0$ candidate.

The $D^0$ and $D^+$ candidates are subject to a mass-constrained fit prior to the formation of the $D^{*+}$ candidates. The slow $\pi^-$ from the $D^{*+}$ decay is required to have a momentum in the Y(4S) center-of-mass (CM) frame less than 450 MeV/$c$. The slow $\pi^0$ from the $D^{*+}$ must have a momentum between 70 and 450 MeV/$c$ in the CM frame. No requirement on the photon-energy sum is applied to the $\pi^0$ candidates from the $D^{*+}$ decays. The $D^{*+}$ mass is required to be within 4 MeV/$c^2$ of the nominal $D^*$ mass, corresponding to slightly more than 3$\sigma$ of the measured $D^*$ mass resolution.

For each $B^0 \rightarrow D^{*+} D^{*-} K_S^0$ candidate, we calculate the difference of the $B^0$ candidate energy $E_B$ from the beam energy $E_{\text{beam}}$, $\Delta E = E_B - E_{\text{beam}}$, in the CM frame. In order to reduce the combinatorial background further, $|\Delta E|$ is required to be less than 25 MeV, which is equivalent to 2.5$\sigma$ of the measured $\Delta E$ resolution.

The beam energy-substituted mass, $m_{\text{ES}} = \sqrt{E_{\text{beam}}^2 - p_B^2}$, where $p_B$ is the $B^0$ candidate momentum in the CM frame, is used to extract the signal yield from the events satisfying the aforementioned selection. We select $B^0$ candidates with $m_{\text{ES}} \simeq 5.23$ GeV/$c^2$. On average we have 1.25 $B^0$ candidates per event. If more than one candidate is selected in an event, we retain the one with the smallest $|\Delta E|$. Studies using MC samples show that this procedure results in the selection of the correct $B^0$ candidate more than 95% of the time.

The total probability density function (PDF) is the sum of the signal and background components. The signal $m_{\text{ES}}$ PDF is modeled by a Gaussian function and the combinatorial background is described by an ARGUS [14] function. MC studies show that there is a small peaking background from $B^+ \rightarrow D^{*0} D^{*-} K_S^0$ in which a $D^0$ originating from a $\bar{D}^{*0}$ decay is combined with a random soft $\pi^-$ to form a $D^{*-}$ candidate. The peaking background is described by the same PDF as the signal, its fraction with respect to the signal yield is fixed to be 1.4%, determined from the MC simulation. An unbinned maximum likelihood (ML) fit to the $m_{\text{ES}}$ distribution yields 201 $\pm$ 17(stat) signal events, where the mean and width of the signal Gaussian, as well as the ARGUS shape parameters, are allowed to float in the fit. In the region of $m_{\text{ES}} > 5.27$ GeV/$c^2$, the signal purity is approximately 79%. The fit result is shown in Fig. 1(a).

To correct for variations in signal efficiency across the $D^{*-} D^{*-} K_S^0$ Dalitz plane, we calculate the branching fraction using the $sPlots$ method [15]:

$$B = \sum_i N_{B}^{i} \cdot e_i \cdot B_{\text{sub}}$$

(2)

where the sum is over all events $i$, $e_i$ is the efficiency estimated from the simulated events in the vicinity of each data point in the Dalitz plane, $B_{\text{sub}}$ is the product of the branching fractions of the subdecays, and $w_{\text{sig}}$ is an event-dependent signal weight that is defined as [15]

$$w_{\text{sig}}(m_{\text{ES},i}) = \frac{\sum_{j=1}^{N_s} V_{\text{sig,J}} P_j(m_{\text{ES},i})}{\sum_{j=1}^{N_s} N_j P_j(m_{\text{ES},i})},$$

(3)

which is calculated from the yield $N_j$ of the $j$th PDF component $P_j$ in the fit, and the covariance matrix elements $V_{\text{sig,J}}$ between the signal yield $N_{\text{sig}}$ and $N_j$. The $N_s$ is the number of PDF components in the fit.

We investigate the production of intermediate resonances by examining the invariant mass distribution of the $D^{*\pm}$ and $K_S^0$ combinations. Figure 1(b) shows the projected distribution of $m(D^{*\pm} K_S^0)$ from $B^0 \rightarrow D^{*+} D^{*-} K_S^0$ signal events after efficiency correction using the $sPlots$ technique. A peak is seen at the value of $D_{s1}^+(2536)$ mass. We do not observe evidence of the $D_{s1}^+(2573)$. The events tend to cluster toward lower values of $m(D^{*\pm} K_S^0)$ (below about 2.9 GeV/$c^2$), in contrast to the phase-space model, as shown in Fig. 1(b).

To extract the signal yield of $B^0 \rightarrow D^{*+} D_{s1}^+(2536)$, we perform an unbinned ML fit to the $\Delta m = m(D^{*\pm} K_S^0) - m(D^{*\pm}) - m(K_S^0)$ distribution in the region $|\Delta m| > 5.27$ GeV/$c^2$ with a PDF given by the sum of a Gaussian shape for the signal and a threshold function $\Delta m \exp(b |\Delta m|)$ for the background. The mean and width of the signal Gaussian, as well as the background PDF parameters $a$ and $b$, are allowed to float in the fit. The fit yields 12.3 $\pm$ 4.0(stat) signal events, as shown in Fig. 1(c).
The significanve is estimated to be 4.6σ using the log-likelihood ratio between a fit with signal and another with none. The significance is dominated by the statistical uncertainty and has little contribution from the systematic uncertainty corresponding to the estimate of the signal yield. The fitted signal mean and width are consistent with the MC simulation. We repeat the fit in different \( \Delta m \) regions up to the kinematic limit, as well as using different background parametrizations. All of these give consistent signal yields of \( D_{s1}^{(*)}(2536) \). We also examine the \( \Delta m \) distribution in the \( m_{ES} \leq 5.27 \text{ GeV}/c^2 \) region, and see no peaking structure.

The systematic uncertainties of the branching fraction measurements are dominated by the uncertainty of the charged track reconstruction efficiency (10.7%). Other sources also contribute to the systematic errors, such as the kaon particle identification efficiency (3.9%), \( \pi^0 \) reconstruction efficiency (3.5%), branching fractions of the \( D \) decays (5.8%), determination of the number of \( B\bar{B} \) in the data sample (1.1%), event selection criteria (5.0%), and the estimate of the peaking background fraction (1.8%). The measured branching fraction is

\[
\mathcal{B}(B^0 \rightarrow D^{*+}D^{*-}K_S^0) = (4.4 \pm 0.4 \pm 0.7) \times 10^{-3},
\]

where the first uncertainty is the statistical and the second is systematic. Our result is in good agreement with the previous BABAR measurement [9]. We also measure the intermediate resonant decay branching fraction and find

\[
\mathcal{B}(B^0 \rightarrow D^{*-}D_{s1}^{(*)}(2536)) \times \mathcal{B}(D_{s1}^{(*)}(2536) \rightarrow D^{*+}K_S^0) = (4.1 \pm 1.3 \pm 0.6) \times 10^{-4}.
\]

The fraction of the decay \( B^0 \rightarrow D^{*+}D^{*-}K_S^0 \) through the intermediate \( D_{s1}^{(*)}(2536) \) resonance is measured to be 0.092 \( \pm 0.024 \text{(stat)} \) \( \pm 0.001 \text{(syst)} \).

We subsequently perform a time-dependent analysis using the event sample described previously. In the time-dependent analysis, we require that the invariant mass of the \( D^{*\pm} \) and \( K_S^0 \) combination be larger than 2.55 GeV/c\(^2\) in order to reject the narrow \( D_{s1}^{(*)}(2536) \) resonant decays.

For the time-dependent \( CP \) analysis, we use information from the other \( B \) meson in the event to tag the initial flavor of the fully reconstructed \( B^0 \) \( \rightarrow D^{*+}D^{*-}K_S^0 \) candidate. The decay rate \( f_+ \) for a neutral \( B \) meson accompanied by a \( B^0(\bar{B}^0) \) tag is given by

\[
f_\pm(\Delta t) = e^{-|\Delta t|/\tau_{B^0}} \left[ (1 \pm \Delta \omega) \pm (1 - 2\omega) \right.
\]

\[
\times \left[ \eta \frac{J_c}{J_0} \cos(\Delta m J \Delta t) - \left( \frac{2J_s}{J_0} \sin 2\beta \right) \sin(\Delta m J \Delta t) \right],
\]

where \( \Delta t = t_{\text{rec}} - t_{\text{tag}} \) is the difference between the proper decay time of the reconstructed signal \( B \) meson \( (B_{\text{rec}}) \) and that of the tagging \( B \) meson \( (B_{\text{tag}}) \). \( \tau_{B^0} \) is the \( B^0 \) lifetime, and \( \Delta m J \) is the mass difference determined from the \( B^0 - B^0 \) oscillation frequency [13]. The average mistag probability \( \omega \) describes the effect of incorrect tags, and \( \Delta \omega \) is the difference between the mistag rate for \( B^0 \) and \( \bar{B}^0 \).

The technique used to measure the \( CP \) asymmetry is analogous to that used in previous BABAR measurements as described in Refs. [16,17]. We calculate the time interval \( \Delta t \) between the two \( B \) decays from the measured separation \( \Delta z \) between the decay vertices of the \( B_{\text{rec}} \) and \( B_{\text{tag}} \) along the collision \( (z) \) axis [16]. The \( z \) position of the \( B_{\text{rec}} \) vertex is determined from the charged daughter tracks. The \( B_{\text{tag}} \) decay vertex is determined by fitting charged tracks not belonging to the \( B_{\text{tag}} \) candidate to a common vertex, employing constraints from the beam-spot location and the \( B_{\text{rec}} \) momentum [16]. Only events with \( 1\sigma \) uncertainty less than 2.5 ps and a measured \( \Delta t \) less than 20 ps are accepted. We perform a simultaneous unbinned maximum likelihood fit to the \( \Delta t \) and \( m_{ES} \) distributions to extract the \( CP \) asymmetry. The signal PDF in \( \Delta t \) is given by Eq. (4) convolved with an empirical \( \Delta t \) resolution function [16]. Both the signal mistag probability and \( \Delta t \) resolution function are determined from a sample of neutral \( B \) decays to flavor eigenstates, \( B_{\text{flav}} \).
MEASUREMENT OF THE BRANCHING FRACTION . . .

The background $\Delta t$ distributions are parametrized with an empirical description that includes zero and nonzero lifetime components [16]. We also allow the nonzero lifetime background to have effective $CP$ asymmetries and let them float in the likelihood fit.

The fits to the data yield

$$\frac{J_c}{J_0} = 0.76 \pm 0.18(\text{stat}) \pm 0.07(\text{syst})$$

$$\frac{2J_{s1}}{J_0} \sin 2\beta = 0.10 \pm 0.24(\text{stat}) \pm 0.06(\text{syst})$$ (5)

$$\frac{2J_{s2}}{J_0} \cos 2\beta = 0.38 \pm 0.24(\text{stat}) \pm 0.05(\text{syst}).$$

Figure 2 shows the $\Delta t$ distributions and asymmetries in yields between $B^0$ and $\bar{B}^0$ tags, overlaid with the projection of the likelihood fit result. The effective $CP$ asymmetries in the background are found to be consistent with zero within statistical uncertainties. As a cross-check, we also repeat the fit by allowing the $B^0$ lifetime to float. The obtained $B^0$ lifetime is in a good agreement with its world average [13] within the statistical uncertainty.

In summary, we have reported an improved branching fraction measurement of the decay $B^0 \to D^{*+} D^{-} K_S^0$ that supersedes the previous BABAR result [9]. We also find evidence for the decay $B^0 \to D^{*-} D_s^{(*)}(2536)$ with 4.6$\sigma$ significance. A time-dependent $CP$ asymmetry analysis has also been performed. The measured $J_c/J_0$ is significantly different from zero, which may indicate that there is a sizable resonant contribution to the decay $B^0 \to D^{*+} D^{-} K_S^0$ from an unknown $D_s^{(*)}$ state with large width, according to Ref. [5]. We measure that $(2J_{s2}/J_0) \cos 2\beta = 0.38 \pm 0.24(\text{stat}) \pm 0.05(\text{syst})$. Under the assumption that there is a significant broad resonant contribution to the decay $B^0 \to D^{*+} D^{-} K_S^0$, it implies that the sign of $\cos 2\beta$ is preferred to be positive at the 94% confidence level if the theoretical parameter $J_{s2}/J_0$ is positive, as predicted in Ref. [5].

The sources and estimates of systematic uncertainties are summarized in Table I. Since the signal reconstruction efficiency is not uniform over the entire Dalitz space, the different $CP$ components may not have the same acceptance. Therefore the measured parameters will deviate slightly from their true values. We estimate the possible bias using the signal MC weighted according to the expected theoretical Dalitz distributions in Ref. [5]. Because of the lack of knowledge of the unknown $D_s^{(*)}$ state, we vary its mass and width over a wide range. The largest bias of the measured parameters $J_c/J_0$, $(2J_{s1}/J_0) \sin 2\beta$, and $(2J_{s2}/J_0) \cos 2\beta$ are taken as the corresponding systematic uncertainties on the acceptance effect.

The other systematic uncertainties arise from the possible backgrounds that tend to peak under the signal and their $CP$ asymmetries, the assumed parametrization of the $\Delta t$ resolution function, the possible differences between the $B_{tag}$ and $B^{0} \to D^{*+} D^{-} K_S^0$ tagging performances, knowledge of the event-by-event beam-spot position, and the possible interference between the suppressed $b \to u\bar{c}d\bar{d}$ amplitude and the favored $b \to c\bar{u}d\bar{d}$ amplitude for some tag-side decays [18]. They also include the systematic uncertainties from the finite MC sample used to verify the fitting method. All the systematic uncertainties are found to be much smaller than the statistical uncertainties.

In Table I, we summarize the sources of systematic errors, their estimates, and the final results for the branching fractions.

Table I. Sources of systematic error on $J_c/J_0$ (column I), $(2J_{s1}/J_0) \sin 2\beta$ (column II), and $(2J_{s2}/J_0) \cos 2\beta$ (column III).

<table>
<thead>
<tr>
<th>Source</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance</td>
<td>0.060</td>
<td>0.040</td>
<td>0.030</td>
</tr>
<tr>
<td>Peaking backgrounds</td>
<td>0.009</td>
<td>0.016</td>
<td>0.002</td>
</tr>
<tr>
<td>$\Delta t$ resolution function</td>
<td>0.015</td>
<td>0.006</td>
<td>0.008</td>
</tr>
<tr>
<td>Mistag fraction differences</td>
<td>0.016</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>Detector Alignment</td>
<td>0.005</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>$\Delta m_d$, $x_d$</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>MC statistics</td>
<td>0.021</td>
<td>0.032</td>
<td>0.032</td>
</tr>
<tr>
<td>Others</td>
<td>0.005</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td>Total</td>
<td>0.068</td>
<td>0.058</td>
<td>0.050</td>
</tr>
</tbody>
</table>

FIG. 2. (a) The distribution of $\Delta t$ in the region $m_{ES} > 5.27$ GeV/c$^2$ for $B^0$ ($\bar{B}^0$) tag candidates in the half Dalitz space $s^+ < s^-$ ($\eta_s = -1$). The solid (dashed) curve represents the fit projections in $\Delta t$ for $B^0$ ($\bar{B}^0$) tags. (b) The raw asymmetry $(N_{fg} - N_{gf})/(N_{fg} + N_{gf})$, as functions of $\Delta t$, where $N_{fg}$ ($N_{gf}$) is the number of candidate with $B^0$ ($\bar{B}^0$) tag. (c) and (d) contain the corresponding information for the $B^0$ candidates in the other half Dalitz space $s^+ > s^-$ ($\eta_s = +1$).
We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.A.), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIIF (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), Marie Curie EIF (European Union), the A.P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.

[4] We imply charge conjugate modes throughout the paper.