The following full text is a publisher's version.

For additional information about this publication click this link.
http://repository.ubn.ru.nl/handle/2066/128223

Please be advised that this information was generated on 2017-08-03 and may be subject to change.
Measurement of Branching Fractions and Charge Asymmetries in B Decays to an η Meson and a K^+ Meson

babar collaboration
(Received 2 August 2006; published 15 November 2006)

PRL 97, 201802 (2006) PHYSICAL REVIEW LETTERS week ending 17 NOVEMBER 2006

24 Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
25 Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
26 Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
27 Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
28 Università di Genova, Dipartimento di Fisica e INFN, I-16146 Genova, Italy
29 Harvard University, Cambridge, Massachusetts 02138, USA
30 Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
31 Imperial College London, London, SW7 2AZ, United Kingdom
32 University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
33 Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
34 Johns Hopkins University, Baltimore, Maryland 21218, USA
35 Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76128 Karlsruhe, Germany
36 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
37 Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, F-91898 ORSAY Cedex, France
38 University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
39 University of Liverpool, Liverpool L69 7ZE, United Kingdom
40 Queen Mary, University of London, E1 4NS, United Kingdom
41 University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
42 University of Louisville, Louisville, Kentucky 40292, USA
43 University of Manchester, Manchester M13 9PL, United Kingdom
44 University of Maryland, College Park, Maryland 20742, USA
45 University of Massachusetts, Amherst, Massachusetts 01003, USA
46 Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
47 McGill University, Montréal, Québec, Canada H3A 2T8
48 Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
49 University of Mississippi, University, Mississippi 38677, USA
50 Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
51 Mount Holyoke College, South Hadley, Massachusetts 01075, USA
52 Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
53 NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
54 University of Notre Dame, Notre Dame, Indiana 46556, USA
55 The Ohio State University, Columbus, Ohio 43210, USA
56 University of Oregon, Eugene, Oregon 97403, USA
57 Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
58 Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
59 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
60 Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
61 University of Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
62 Prairie View A&M University, Prairie View, Texas 77446, USA
63 Princeton University, Princeton, New Jersey 08544, USA
64 Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
65 Universität Rostock, D-18051 Rostock, Germany
66 Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
67 DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
68 University of South Carolina, Columbia, South Carolina 29208, USA
69 Stanford Linear Accelerator Center, Stanford, California 94309, USA
70 Stanford University, Stanford, California 94305-4060, USA
71 State University of New York, Albany, New York 12222, USA
72 University of Tennessee, Knoxville, Tennessee 37996, USA
73 University of Texas at Austin, Austin, Texas 78712, USA
74 University of Texas at Dallas, Richardson, Texas 75083, USA
75 Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
76 Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
77 IFIC, Universitat de Valencia–CSIC, E-46071 Valencia, Spain
78 University of Victoria, Victoria, British Columbia, Canada V8W 3P6
79 Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
80 University of Wisconsin, Madison, Wisconsin 53706, USA
81 Yale University, New Haven, Connecticut 06511, USA

(Received 2 August 2006; published 15 November 2006)
We present measurements of branching fractions and charge asymmetries for the decays $B \to \eta K^*$, where K^* indicates a spin 0, 1, or 2 $K\pi$ system. The data sample corresponds to $344 \times 10^9 BB$ pairs collected with the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider at SLAC. We measure the branching fractions (in units of 10^{-9}): $\mathcal{B}(B^0 \to \eta K^{0\!\!}(892)) = 16.5 \pm 1.1 \pm 0.8$, $\mathcal{B}(B^+ \to \eta K^{++}(892)) = 18.9 \pm 1.8 \pm 1.3$, $\mathcal{B}(B^0 \to \eta (K\pi)_0^{0\!\!}(1430)) = 9.6 \pm 1.8 \pm 1.1$, and $\mathcal{B}(B^+ \to \eta K^{++}_2(1430)) = 9.1 \pm 2.7 \pm 1.4$. We also determine the charge asymmetries for all decay modes.

Decays of B mesons to charmless hadronic final states are widely used to test the accuracy of theoretical predictions. The decays involving η and η' mesons have received considerable attention because early predictions were unable to explain the data. For decays of interest in this paper, there have been recent calculations from QCD factorization [1,2] and flavor SU(3) symmetry [3].

Charmless B decays to final states with strangeness are expected to be dominated by $b \to s$ loop ("penguin") amplitudes. The branching fraction for the decay $B \to \eta K^*$ is expected to be larger than most similar decays (though not as large as $B \to \eta' K$) due to constructive interference between two penguin amplitudes [4].

While the decay $B \to \eta K^*(892)$ has been seen previously [5,6], there have been no searches for states with an η meson accompanied by $K^*(1430)$ mesons, and no theoretical predictions exist for these decays. In this Letter we present measurements of branching fractions and charge asymmetries for the decays $B^0 \to \eta K^{0\!\!}(892)$ [7], $B^+ \to \eta K^{++}(892)$, $B^0 \to \eta (K\pi)_0^{0\!\!}(1430)$, $B^+ \to \eta (K\pi)_0^{+\!\!}(1430)$, and $B^+ \to \eta K^{++}_2(1430)$, where we denote by $(K\pi)_0^{+\!\!}$ the 0$^+$ component of the $K\pi$ spectrum. The charge asymmetry is defined as $A_{\text{ch}} \equiv (\Gamma^- - \Gamma^+)/\Gamma^+$, where the superscript on the width Γ corresponds to the sign of the B^\pm meson or the sign of the charged kaon for B^0 decays.

The results presented here are obtained from data collected with the BABAR detector (described in detail elsewhere [8]) at the PEP-II asymmetric $e^+ e^-$ collider located at the Stanford Linear Accelerator Center. The analysis uses an integrated luminosity of 313 fb$^{-1}$, corresponding to $344 \times 10^9 BB$ pairs, recorded at the $Y(4S)$ resonance [center-of-mass (CM) energy $\sqrt{s} = 10.58$ GeV], and follows closely the technique described in detail in Ref. [6]. The sample is 3.9 times larger than that of Ref. [6].

The K^* mesons are reconstructed from $K^+ \pi^0 (K^+\pi^0\pi^0)$, $K^0 \pi^+$ $(K^{*+}\pi^0)$, or $K^+ \pi^-(K^{*0}\pi^-)$ final states. All tracks from resonance candidates are required to have charged particle identification (PID) consistent with kaons or pions. We select η, K^0, and π^0 candidates from the decays $\eta \to \gamma \gamma$, $\eta \to \pi^+ \pi^- \pi^0$, $\eta \to \pi^+ \pi^- \pi^0$, where π^0 is the γ decay angle defined, in the η rest frame, as the angle between one of the photons and the B direction.

When there are multiple candidates (fewer than 30% of events [9]), we choose the candidate with a value of the reconstructed η mass closest to the Particle Data Group mass [10]. We use Monte Carlo (MC) simulations [11] for the few charmless BB background decays that survive the candidate selection and have characteristics similar to the signal. We find these contributions to be negligible for all modes with an $\eta \to \pi^+ \pi^- \pi^0$ decay except $\eta_{3\pi} K^{*0}$. For all other

DOI: 10.1103/PhysRevLett.97.201802

PACS numbers: 13.25.Hw, 11.30.Er
modes, we include a component in the ML fit to account for them.

We obtain yields and A_{ch} for each decay chain from an extended unbinned maximum likelihood fit with the following input observables: ΔE, m_{ES}, F, m_{vis} (the masses of the η and K^* candidates), and H. For each event i and hypothesis j (signal, continuum background, $B\bar{B}$ background), we define the probability density function (PDF), with resulting likelihood L as follows:

$$P_j = P_j(m_{ES})P_j(\Delta E)P_j(F)P_j(m_{vis})P_j(H)$$

$$L = \exp\left(-\sum_j Y_j \right) \sum_j Y_j P_j$$

where Y_j is the yield of events of hypothesis j, and N is the number of events in the sample. The free parameters of the fit are the signal and background yields, between 9 and 11 $q\bar{q}$ background PDF parameters (see below), and the signal and $q\bar{q}$ background charge asymmetries.

We determine the contributions from $K^+(892)$, $(K\pi)_0^0$, and $K^*_2(1430)$ by fits in the LMR and HMR. The fit in the LMR includes $K^+(892)$ and $(K\pi)_0^0$ signal components $K^*_2(1430)$ is negligible in this region, with the fixed $(K\pi)_0^0$ yield determined from the result of the fit to the HMR. For the fit in the HMR, all three components are included; the $K^+(892)$ yield is fixed from the result of the fit in the LMR, while the $(K\pi)_0^0$ and $K^*_2(1430)$ branching fractions are free in a simultaneous fit over the two (four) subdecay modes for K^{\pm} (K^{*+}). For the generated $(K\pi)_0^0$ spectrum, we use a LASS model [12] which consists of the $K^*_2(1430)$ resonance together with an effective-range non-

TABLE 1. Fitted signal yield Y_s in events (ev), measured bias (see text), detection efficiency ϵ, daughter branching fraction product ($\prod B_i$), significance S (with systematic uncertainties included), measured branching fraction B, and signal charge asymmetry A_{ch} for each mode. The results of combining submodes are shown in bold face, where the first uncertainty is statistical and the second systematic.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Y_s (ev)</th>
<th>Bias (ev)</th>
<th>ϵ (%)</th>
<th>$\prod B_i$ (%)</th>
<th>S (σ)</th>
<th>B (10^-6)</th>
<th>A_{ch}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta\gamma K^0_{K^+\pi^+}$</td>
<td>407 ± 29</td>
<td>+15</td>
<td>24</td>
<td>26</td>
<td>17.6</td>
<td>18.2 ± 1.4</td>
<td>0.24 ± 0.07</td>
</tr>
<tr>
<td>$\eta\gamma K^0_{K^+\pi^-}$</td>
<td>111 ± 16</td>
<td>+13</td>
<td>16</td>
<td>15</td>
<td>6.3</td>
<td>10.9 ± 2.0</td>
<td>0.12 ± 0.14</td>
</tr>
<tr>
<td>$B^0 \to \eta K^{*0}(892)$</td>
<td>18.8</td>
<td>16.5 ± 1.1 ± 0.8</td>
<td>0.21 ± 0.06 ± 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\eta\gamma K^0_{K^+\pi^+}$</td>
<td>99 ± 16</td>
<td>+7</td>
<td>11</td>
<td>13</td>
<td>6.9</td>
<td>18.0 ± 3.2</td>
<td>0.19 ± 0.16</td>
</tr>
<tr>
<td>$\eta\gamma K^0_{K^+\pi^-}$</td>
<td>56 ± 11</td>
<td>+4</td>
<td>8</td>
<td>9</td>
<td>6.1</td>
<td>25.4 ± 5.5</td>
<td>-0.05 ± 0.20</td>
</tr>
<tr>
<td>$\eta\gamma K^0_{K^+\pi^+} + (K\pi)_0^0$</td>
<td>149 ± 19</td>
<td>+12</td>
<td>22</td>
<td>9</td>
<td>8.6</td>
<td>20.5 ± 2.9</td>
<td>-0.03 ± 0.13</td>
</tr>
<tr>
<td>$\eta\gamma K^0_{K^+\pi^-} + (K\pi)_0^0$</td>
<td>36 ± 10</td>
<td>+5</td>
<td>15</td>
<td>5</td>
<td>3.8</td>
<td>11.9 ± 3.9</td>
<td>-0.23 ± 0.28</td>
</tr>
<tr>
<td>$B^+ \to \eta K^{*+}(892)$</td>
<td>13.0</td>
<td>18.9 ± 1.8 ± 1.3</td>
<td>0.01 ± 0.08 ± 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\eta\gamma K^0_{K^+\pi^+} + (K\pi)_0^0$</td>
<td>163 ± 25</td>
<td>+17</td>
<td>15</td>
<td>26</td>
<td>5.3</td>
<td>10.8 ± 1.9</td>
<td>0.14 ± 0.15</td>
</tr>
<tr>
<td>$\eta\gamma K^0_{K^+\pi^-} + (K\pi)_0^0$</td>
<td>69 ± 17</td>
<td>+9</td>
<td>10</td>
<td>15</td>
<td>3.6</td>
<td>11.4 ± 3.2</td>
<td>-0.18 ± 0.25</td>
</tr>
<tr>
<td>$B^0 \to \eta (K\pi)_0^0$</td>
<td>11.0 ± 1.6 ± 1.5</td>
<td>0.06 ± 0.13 ± 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\eta\gamma K^0_{K^+\pi^+} + (K\pi)_0^0$</td>
<td>93 ± 20</td>
<td>+9</td>
<td>10</td>
<td>13</td>
<td>4.3</td>
<td>19.2 ± 4.5</td>
<td>-0.05 ± 0.21</td>
</tr>
<tr>
<td>$\eta\gamma K^0_{K^+\pi^-} + (K\pi)_0^0$</td>
<td>39 ± 12</td>
<td>+6</td>
<td>7</td>
<td>8</td>
<td>3.4</td>
<td>18.0 ± 6.3</td>
<td>0.03 ± 0.29</td>
</tr>
<tr>
<td>$\eta\gamma K^0_{K^+\pi^+} + (K\pi)_0^0$</td>
<td>55 ± 16</td>
<td>+5</td>
<td>12</td>
<td>9</td>
<td>3.0</td>
<td>13.3 ± 4.2</td>
<td>0.13 ± 0.25</td>
</tr>
<tr>
<td>$\eta\gamma K^0_{K^+\pi^-} + (K\pi)_0^0$</td>
<td>49 ± 11</td>
<td>+3</td>
<td>9</td>
<td>5</td>
<td>4.4</td>
<td>28.1 ± 6.7</td>
<td>0.18 ± 0.22</td>
</tr>
<tr>
<td>$B^+ \to \eta (K\pi)_0^0$</td>
<td>5.9</td>
<td>18.2 ± 2.6 ± 2.6</td>
<td>0.05 ± 0.13 ± 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\eta\gamma K^0_{K^+\pi^+} + (K\pi)_0^0$</td>
<td>72 ± 17</td>
<td>-1</td>
<td>18</td>
<td>14</td>
<td>4.7</td>
<td>8.4 ± 1.9</td>
<td>-0.20 ± 0.23</td>
</tr>
<tr>
<td>$\eta\gamma K^0_{K^+\pi^-} + (K\pi)_0^0$</td>
<td>40 ± 13</td>
<td>-1</td>
<td>12</td>
<td>8</td>
<td>3.4</td>
<td>12.5 ± 4.1</td>
<td>0.23 ± 0.31</td>
</tr>
<tr>
<td>$B^0 \to \eta K^*_2(1430)$</td>
<td>5.3</td>
<td>9.6 ± 1.8 ± 1.1</td>
<td>-0.07 ± 0.19 ± 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\eta\gamma K^0_{K^+\pi^+} + (K\pi)_0^0$</td>
<td>26 ± 12</td>
<td>-1</td>
<td>13</td>
<td>7</td>
<td>2.3</td>
<td>9.1 ± 4.0</td>
<td>-0.16 ± 0.41</td>
</tr>
<tr>
<td>$\eta\gamma K^0_{K^+\pi^-} + (K\pi)_0^0$</td>
<td>20 ± 8</td>
<td>-1</td>
<td>9</td>
<td>4</td>
<td>2.6</td>
<td>17.8 ± 7.2</td>
<td>-0.82 ± 0.47</td>
</tr>
<tr>
<td>$\eta\gamma K^0_{K^+\pi^+} + (K\pi)_0^0$</td>
<td>12 ± 10</td>
<td>-1</td>
<td>13</td>
<td>5</td>
<td>1.8</td>
<td>6.4 ± 4.7</td>
<td>0.05 ± 0.58</td>
</tr>
<tr>
<td>$\eta\gamma K^0_{K^+\pi^-} + (K\pi)_0^0$</td>
<td>2 ± 5</td>
<td>+1</td>
<td>10</td>
<td>3</td>
<td>0.2</td>
<td>0.9 ± 5.1</td>
<td>-1.00 ± 1.56</td>
</tr>
</tbody>
</table>

| $B^+ \to \eta K^*_2(1430)$ | 3.5 | 9.1 ± 2.7 ± 1.4 | -0.45 ± 0.30 ± 0.02 |
resonant component. For the parameters of our model [13], 9.6% of the $B \to \eta (K\pi_1^0)$ branching fraction is in the region above $m_{K\pi} = 1535$ MeV where the model is most uncertain. The $K_2^*(1430)$ is generated as a relativistic Breit-Wigner shape with known mass and width [10].

For the signal and $B\bar{B}$ background components we determine the PDF parameters from MC. For background from continuum and nonpeaking combinations from B decays, we obtain the PDF from $(m_{ES}, \Delta E)$ sideward data for each decay, before applying the fit to data in the signal region; we refine this PDF by letting all parameters vary in the final fit. We parametrize each of the functions $P_{\text{sig}}(m_{ES}), P_{\text{sig}}(\Delta E), P_f(f)$ and the peaking components of $P_f(m_{res})$ with either a Gaussian, the sum of two Gaussians, or an asymmetric Gaussian function as required to describe the distribution. For $P_{\text{sig}}(B)$ we use a low order polynomial. Slowly varying distributions (all masses, ΔE and B for continuum) are represented by one or a combination of linear, quadratic, and phase-space motivated functions [6]. The fitted $q\bar{q}$ background PDF parameters are found to be in close agreement with the expected number of signal and background events, after subtracting the fit bias from the measured yield, and dividing the result by the efficiency and the number of produced events. The uncertainty due to the efficiency of the trigger is taken to be half of the correction. We estimate the uncertainty on the efficiency of the Trigger from auxiliary studies of inclusive control samples [6], where the model is most uncertain.

Before applying the fitting procedure to the data we subject it to several tests. In particular, we evaluate possible biases in the yields from our neglect of small residual correlations among discriminating variables in the signal and charmless $B\bar{B}$ background PDFs. The bias is determined by fitting ensembles of simulated $q\bar{q}$ events generated from the PDFs into which we have embedded the expected number of signal and $B\bar{B}$ background events, randomly extracted from the fully simulated MC samples. The small biases are listed in Table I. We measure the correlations in the data and find them to be negligibly small.

We compute the branching fraction for each decay by subtracting the fit bias from the measured yield, and dividing the result by the efficiency and the number of produced $B\bar{B}$ pairs. We assume equal decay rates for the $Y(4S)$ to $B^+B^-\,\text{and}\,B^0\bar{B}^0$. In Table I we show for each decay mode the measured branching fraction together with the event yield Y_3, efficiency ϵ, and A_{ch}. The significance is taken as the square root of the difference between the value of $-2\ln L$ (with systematic uncertainties included) for zero signal and the value at its minimum.

For the LMR the measurements for separate daughter decays are combined by adding the values of $-2\ln L$ as functions of the branching fractions, taking account of the correlated and uncorrelated systematic uncertainties [6] described below.

In Fig. 1 we show projections onto m_{ES} of subsamples enriched with a threshold requirement on the signal likelihood (computed without the variable plotted) that optimizes the sensitivity. There are substantial signals in all four samples. For the HMR, separation of the $(K\pi_1^0)$ and $K_2^*(1430)$ signals is afforded mainly by the $K\pi$ mass and helicity shapes; projections of these distributions are shown in Fig. 2. The statistical correlations between the two signals are -0.42 in the HMR fits to both the B^0 and B^+ decays.

The largest systematic uncertainties are due to the signal and $B\bar{B}$ PDF modeling, the fit bias correction, the modeling of the $K\pi$ mass distribution, the neutral selection efficiency, and neglect of interference between signal components. The PDF modeling error is largely included in the statistical uncertainty because all background parameters are free in the fit. The uncertainties in the signal PDF parameters are estimated from the consistency of fits to MC and data in control samples with similar final states. Varying the signal PDF parameters within these errors, we estimate the mode-dependent uncertainties to be 1–4 events. The uncertainty in the fit bias correction is taken to be half of the correction. We estimate the uncertainty from modeling the $B\bar{B}$ backgrounds to be less than 1 event.

Uncertainties in the reconstruction efficiency, found from auxiliary studies of inclusive control samples [6], are 0.4% per track, 3.0% per η/π^0, and 1.9% for a K_2^*. Our estimate of the systematic uncertainty for the number of $B\bar{B}$ pairs is 1.1%. Published data [10] provide the uncertainties for the B-daughter product branching fractions (1%–2%). The uncertainty due to the efficiency of the $\cos \theta_T$ requirement is 0.5%. The systematic uncertainty for A_{ch} is estimated to be 2%, dominated by tracking and PID systematic effects [14].
Because our model does not account for interference among the components, we assign systematic uncertainties based on the $m(K\pi)$ dependence of the complex phases measured in Ref. [12], with allowance for unknown process-dependent overall phases. The effect is small for the LMR and about 10% for the HMR. For the HMR, the process-dependent overall phases. The effect is small for

In summary, we have presented improved measurements of the branching fractions for the decays $B^0 \rightarrow \eta K^{*0}(892)$ and $B^+ \rightarrow \eta K^{*+}(892)$, as well as measurements of the decays $B^0 \rightarrow \eta(K\pi)_0^0$, $B^+ \rightarrow \eta(K\pi)_0^{*+}$, $B^0 \rightarrow \eta K^{*0}_{2}(1430)$, and $B^+ \rightarrow \eta K^{*+}_{2}(1430)$, which had not been seen previously. The first two supersede previous BABAR measurements [6] and agree with earlier results and theoretical predictions [1–3]. We also calculate the branching fraction for the resonant decays to $\eta K^{*}_0(1430)$ using the composition of $(K\pi)_0^0$ from [13]. We find

and

where the third errors arise from the uncertainties on the branching fraction $K^{*}_0(1430) \rightarrow K\pi [10]$ and the resonant fraction of $(K\pi)_0^0$

There are no theoretical predictions for the decays involving spin-0 or 2 mesons. The measured values of \mathcal{A}_{cb} are mostly consistent with zero within their uncertainties; the value for $B^0 \rightarrow \eta K^{*0}(892)$ shows evidence for direct CP violation.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (U.K.). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation.