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Abstract

We characterised task-related top-down signals in monkey auditory cortex cells by comparing single-unit activity during passive
sound exposure with neuronal activity during a predictable and unpredictable reaction-time task for a variety of spectral-temporally
modulated broadband sounds. Although animals were not trained to attend to particular spectral or temporal sound modulations,
their reaction times demonstrated clear acoustic spectral-temporal sensitivity for unpredictable modulation onsets. Interestingly,
this sensitivity was absent for predictable trials with fast manual responses, but re-emerged for the slower reactions in these
trials. Our analysis of neural activity patterns revealed a task-related dynamic modulation of auditory cortex neurons that was
locked to the animal’s reaction time, but invariant to the spectral and temporal acoustic modulations. This finding suggests
dissociation between acoustic and behavioral signals at the single-unit level. We further demonstrated that single-unit activity
during task execution can be described by a multiplicative gain modulation of acoustic-evoked activity and a task-related top-down

signal, rather than by linear summation of these signals.

Introduction

The mammalian auditory cortex (AC) not only encodes the spectral-
temporal acoustic properties of sounds, but also processes a variety
of other signals. For example, AC neurons have been shown to be
modulated by multisensory integration (Schroeder et al., 2001; Foxe
et al., 2002; Fu et al., 2003; Brosch et al., 2005; Ghazanfar et al.,
2005; Kayser et al., 2007, 2008, 2009, 2010; Lakatos et al., 2007),
attentive behavior (Hubel ef al., 1959; Fritz et al., 2003, 2005,
2007; Brechmann & Scheich, 2005; Sussman et al., 2005, 2007;
Scheich et al., 2007; Yin et al., 2008; Atiani et al., 2009; Niwa
et al., 2012a,b; Massoudi et al., 2013; Bizley et al., 2013; Dong
et al., 2013), auditory learning and conditioning (Bakin et al., 1996;
Ji et al., 2001; Kilgard & Merzenich, 2002; Kilgard et al., 2001,
2002; Ohl & Scheich, 1997; Ohl and Scheich 2005), expected
reward (Jaramillo & Zador, 2011; David et al., 2012), the sound’s
location (Recanzone, 2000; Lee & Middlebrooks, 2011), and
changes in eye position (Werner-Reiss et al., 2003; Maier & Groh,
2010).
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Non-acoustic top-down signals could interact with acoustic signal
processing in a variety of ways. For a purely additive signal interac-
tion, the neural response in a given trial under active listening is a
linear combination of the response to the acoustic signal response
and a non-acoustic top-down signal. In the case of a purely multipli-
cative interaction, the latter combines with the acoustically-evoked
response through a non-linear, multiplicative gain modulation. These
different modes of interaction are usually not dissociated (Maier &
Groh, 2010).

Here, we determined the type of interaction at the single-neuron
level in the AC during a simple auditory reaction-time task. In such
a task the acoustic tuning properties of AC neurons are unaffected
by task performance, although evoked neural spike trains during
active listening differ substantially from those recorded during pas-
sive sound exposure (Massoudi et al., 2013). A stable acoustic rep-
resentation by AC cells could facilitate the formation of an invariant
percept of the acoustic environment when changing between passive
and active listening conditions. Although the systematic differences
in neural activity patterns suggested the presence of a top-down
signal, the precise nature of this signal remained elusive (Massoudi
et al., 2013).

In this study, we characterised this signal by analysing the type
of interaction between sound-evoked and top-down signals in AC

© 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd



responses, as well as the potential contribution of acoustic and
non-acoustic factors to this interaction. To that end, we compared
single-unit activity to a wide range of acoustic stimuli [dynamic
spectral-temporal ripples, and amplitude-modulated (AM) Gaussian
noises], presented during either passive sound exposure, or during
an auditory reaction-time task. As the latter contained unexpected
(in non-predictable trials) as well as predictable onsets of spectral
and/or temporal sound modulations that were randomly inter-
leaved, it added a cognitive component to the paradigm (the pres-
ence or absence of prediction). We analysed the monkeys’
reaction times as a function of the spectral and temporal modula-
tion rates and of modulated sound-onset predictability, and identi-
fied the neural signature of these behavioral components on the
single-unit activity patterns. Finally, we quantitatively dissociated
additive and multiplicative signal-interaction modes in the neural
response patterns.

Materials and methods
Subjects

We performed neurophysiological recordings in the left AC of two
adult male rhesus monkeys (Macaca mulatta; monkey J, 7-9 kg;
monkey T, 8-10 kg). Animals participated in the recording ses-
sions for about 2 years. They were trained to manually respond to
an acoustic change from a static broadband sound into a temporal
and/or spectral modulation to receive a drop of water as a reward
for each successful trial. Experiments were conducted in accor-
dance with the European Communities Parliament and Council
Directive (22 September 2010, 2010/63/EU). All experimental pro-
tocols were approved by the local Ethics Committee on Animal
Research of the Radboud University Nijmegen (RU-DEC, ‘Rad-
boud University Dier Experimenten Commissie’). Monkeys were
pair-housed to facilitate normal interactive behavior. At about 24 h
before the start of an experimental session, water intake was lim-
ited to 20 mL/kg. In the experiment, the monkey earned a small
water reward of 0.2 mL per successful trial. We ensured that the
animals earned at least the minimum of 20 mL/kg on an experi-
mental day. After an experimental session, water was supple-
mented to the required minimum amount, if needed, and the
animal received additional pieces of fruit. At weekends, the ani-
mals’ fluid intake was increased to 400 mL daily. To monitor the
animals’ health status, we kept records of body weight, and water
and food intake. Expert veterinarian assistance was available on
site. Quarterly testing of hematocrit values ensured that the ani-
mals’ kidney function remained within the normal physiological
range. Our procedures followed the water-restriction protocol of
the Animal Use and Care Administrative Advisory Committee of
the University of California at Davis (UC Davis, AUCAAC,
2001). Whenever an animal showed signs of discomfort, or illness,
experiments were stopped and the animal was treated until the
problem was solved.

Surgical procedures

After completing the initial training (when the monkey reached a
day-to-day performance level of at least 80%), the animal underwent
surgery under full anesthesia and sterile conditions. Anesthesia was
maintained by artificial respiration (0.5% isoflurane and N,O), and
additional pentobarbital (3 mg/kg/h, i.v.), ketamine (0.1 mL/kg,
i.m.), and fentanyl (20 pg/kg/h, i.v.) were administered. A stainless-
steel recording chamber (12 mm diameter) was placed over a
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trepanned hole in the skull (10 mm diameter). The orientation and
coordinates of the chamber were directed to the AC, as determined
on the basis of magnetic resonance images. The chamber allowed a
vertical approach to the left AC. A stainless-steel bolt, embedded in
dental cement on the skull, allowed firm fixation of the head during
recording sessions.

Experimental setup

The head-restrained monkey sat in a primate chair within a com-
pletely dark and sound-attenuated room (2.45 x 2.45 x 3.5 m)
while a glass-coated tungsten microelectrode (impedance 1-2 M(;
Alpha Omega, Ubstadt-Weiher, Germany) was carefully positioned
and lowered into the brain through a stainless-steel guide tube by an
electronically-driven stepping motor (MM-3M-F-1, National Aper-
ture Inc.). Electrode signals were grounded to a contact mounted in
the skull. The analog electrode signal was amplified (model A-1,
BAK Electronics), band-pass filtered between 0.1 and 15 kHz
(custom-built eighth order Butterworth filter; model 3343, Krohn-
Hite; 100 Hz high-pass cut-off), and monitored through a speaker
and oscilloscope. The raw signal was then digitised (at 25 kHz, A/D
convertor, TDT2 system; module AD-1; Tucker-Davis Technolo-
gies). An automated algorithm detected individual action potentials
(Brainware, V 9.07 for TDT, running on a PC, Windows 98;
DELL). Data analysis and spike sorting were performed offline in
MATLAB (version 7.14.0.739, R2012a; MathWorks, Natick, MA,
USA).

The behavior and wakefulness of the animals were observed via
an infrared camera during the experimental and training sessions.

Sound stimuli

Sound stimuli were digitally generated at a sampling rate of
100 kHz and delivered via BRAINWARE software and TDT2 hardware.
A trigger, provided by a TG6 module, started the sound presentation
(DA1, low-pass filtered at 20 kHz through a TDT2-FT6 module)
and spike data acquisition. A speaker (Blaupunkt PCxg352, flat fre-
quency characteristics within 5 dB between 0.2 and 20 kHz), posi-
tioned at the frontal central position at a distance of 1.0 m from the
monkey, presented the stimuli at a fixed sound level of 60 dB (set
by two programmable attenuators, PA4).

The ambient background acoustic noise level was about 30 dB.
Acoustic foam that was mounted on the walls, floor, ceiling, and
every large object in the room effectively absorbed reflections above
500 Hz.

Tones

Pure tones lasted for 150 ms and were presented over a frequency
range from 250 to 16 000 Hz at four different sound levels (10, 30,
50, and 70 dB sound pressure level). Trials were presented at least
four times in a randomised manner. The frequency-tuning curve of a
neuron was determined from the average firing rate for each tone
across all sound level presentations. The best frequency of each neu-
ron was taken at the maximum of the tuning curve. The characteris-
tic frequency was defined as the frequency that produced a response
higher than the mean plus 2 SDs of the baseline activity at the low-
est intensity. The cell’s response-onset latency was defined as the
moment after the pure-tone onset at which the firing rate exceeded
the mean baseline activity plus twice its SD for the first time for at
least 10 ms. The peak latency was the time at which the firing rate
reached its maximum.
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Ripples

The ripple stimuli consisted of a broadband complex of 126 spectral
components, equally distributed (20/octave) from 250 Hz to 20 kHz
(Depireux et al., 2001; Versnel et al., 2009). All components had
random phase. The envelopes of the complex were sinusoidally
modulated in the spectrotemporal domain. The amplitude of each
component was described as follows

S(t,x) = 1 + sin(2nor + Qx) (1)

where 7 is time (in s), x is position of the spectral component in
octaves above the lowest frequency (250 Hz), o is ripple velocity
(in Hz; temporal modulation) and §2 is ripple density [cycles/octave
(c/o); spectral modulation].

The set of 55 different ripples used in our study consisted of
all combinations of 11 different ripple densities (2 in
[-2.0: 04 :+2.0] c/o) and five different velocities (® in
[8 : 8 : 40] Hz). A negative density corresponds to an upward direc-
tion of the spectral envelopes, a positive density corresponds to a
downward direction, and 2 = 0 means a pure AM sound (e.g. Vers-
nel et al., 2009). The modulation depth was 100% for all ripples.
The static noise was frozen within each block of trials, and was gen-
erated setting the ripple modulation depth to 0, i.e. all spectral com-
ponents had the same amplitude. The sound level of the static noise
and ripple was 60 dB sound pressure level.

Amplitude-modulated noise

The AM noise stimuli were temporally modulated in 15 steps, loga-
rithmically spaced from 2 to 256 Hz. Like the dynamic ripples, the
modulation depth was 100%. In contrast to the ripples, the broad-
band noise was generated fresh for each stimulus. The average
sound level was 60 dB sound pressure level.

Experimental paradigms

The neural responses were measured while monkeys were
exposed to the spectral-temporal ripples and AM noises, each
presented in different blocks of trials. Each stimulus started
(Fig. 2, sound onset) with a static epoch (@ = 0 Hz, £ =0 c/o),
which smoothly changed (Fig. 2, dynamic onset) into a dynamic
epoch that was either a pseudo-randomly selected ripple that
lasted for 1000 ms, or an AM noise that lasted for 700 ms
(Fig. 2, sound offset).

Sounds were presented to the animal in two different behavioral
paradigms: (i) passive listening (Fig. 2, top), in which the monkey
was merely exposed to the sounds without a task, and the fixation
light was off; and (ii) active listening, in which, upon presentation
of a red fixation light at straight ahead, the monkey had to initiate
a trial by pressing a lightweight bar. It heard the same sounds as
during passive exposure, but now had to respond to the sound-
modulation onset within 100600 ms to receive a drop of water as
reward. Trials in which the monkey did not detect the ripple onset
correctly were repeated at a randomly selected trial within the
same recording block. The passive and active paradigms were pre-
sented in different blocks, typically starting with the passive sound
exposure.

In the passive experiment the trial started automatically with the
static noise (Fig. 2, sound onset). Data collection started at 300 ms
before sound onset. For ripples the trial ended at 700 ms after sound
offset, yielding a total recording duration of 2500 ms. For AM noise

stimuli the data acquisition ended at 500 ms after AM offset, giving
a recording duration of 2000 ms per trial (Fig. 2, top). The number
of trial repetitions was between four and 10, and the interstimulus
interval was 2.5 s.

The active-listening paradigm contained active500 (A500)
(Fig. 2, center) and activel000 (A1000) (Fig. 2, bottom) trials that
were randomly interleaved in the experiment at equal probability.
The static noise was presented at 300 ms after the monkey pressed
the bar, and lasted for either 500 ms (A500 trial), or 1000 ms
(A1000 trial), upon which it changed into a spectral-temporal rip-
ple (or AM noise) that lasted for 1000 ms (or 700 ms). All trials
contained both static and dynamic epochs; there were no catch tri-
als without a dynamic modulation. For each trial the data record-
ing started at the moment of bar press, and finished 2500 ms
later. The number of repetitions depended on the monkey’s perfor-
mance (typically no repetition for ripples, and five repetitions for
AM).

Characterisation of recording site

Although we cannot with certainty identify the exact AC subdivi-
sion(s) in which we encountered individual neurons, we are confi-
dent that we recorded from the AC core [primary AC or auditory
area 1 (Al) and its immediate rostral part, area R] for the follow-
ing reasons. (i) Magnetic resonance imaging scans were used for
stereotaxic placement of the recording chamber, and the subse-
quent coordinates of the successful recording sites within the
chamber corresponded closely to the stereotaxic coordinates of Al
as provided by the atlas of the rhesus monkey brain of Paxinos
et al. (1999). (ii) For both monkeys we reconstructed the tonotop-
ic organisation of the recorded neurons, which demonstrated a
systematic increase in characteristic frequency from anterior to
posterior locations over a spatial range that corresponded well to
other reports (e.g. Niwa et al., 2012a; Dong et al., 2013). This
implied that the majority of recordings were probably taken from
Al. As an illustration, Fig. 1 shows the tonotopic map for the
recorded cells of monkey J. For monkey T, the characteristic fre-
quency also increased over both the anterior—posterior and
medial-lateral axes, which implies that recordings were taken
from an area between the rostral area of the AC and Al (not
shown) (Bendor & Wang, 2008). (iii) Before reaching an AC
recording site there was a physiologically silent period, corre-
sponding to the gap between the upper and lower parts of the lat-
eral sulcus (Kaas & Hackett, 2000). (iv) The tone-onset latency
of the recorded sites was 22.6 + 5.9 and 23.6 £+ 5.6 ms for mon-
key J and T, respectively. (v) All neurons responded well to pure
tones (best frequency: 250-16 000 Hz). (vi) The pure-tone tuning
bandwidths for monkey J and T were 1.5 + 1.2 and 1.5 £ 1.3
octaves, respectively. (vii) The pure-tone thresholds for monkey J
and T were 21 £ 13 and 23 4+ 12 dB sound pressure level,
respectively. These tuning characteristics all fall in the same
ranges as reported by Recanzone et al. (2000) for behaving mon-
keys in AC area Al, rostral area of the AC and caudomedial area
of the AC.

The recording stability was verified by analysing spike-wave-
form variability during the different behavioral tasks. We included
cells from which we obtained stable single-unit recordings with
limited spike variability during presentation of both the ripples
and AM noises in the active and passive paradigms. As a result,
we obtained 100 cells from the two monkeys (J, n=57; T,
n = 43).

© 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd

European Journal of Neuroscience, 39, 1538-1550



Monkey J
0 3200 Hz
—1 1
/g 1600 Hz
S
= -2
o
2
©
|
1] 800 Hz
g 1
[0)
< |
_4 4
400 Hz
-5 . . . . . )
0 2 4 6

Anterior—posterior (mm)

FI1G. 1. Reconstructed tonotopic map for monkey J. Characteristic frequency
(color coded) increases from anterior to posterior recording sites, which is
indicative for Al. Each pixel represents the average characteristic frequency
found at that location.

Data analysis
Spike-density function

To convert each spike-raster plot into a continuous spike-density
function (a measure for the instantaneous mean firing rate across tri-
als), we first binned the recorded spike times into a digital sequence
with a time resolution of 1 ms, and then convolved each spike with
a Gaussian kernel with a SD of 5 ms. Finally, the signals were
added across trials, and we normalised the resulting function by the
number of trials.

By default the data were aligned to sound onset (e.g. Fig. SA and
C). To relate the top-down signals to reaction time, we realigned all
neural responses to the bar-release time by shifting the spike timings
in each trial by the associated reaction time (e.g. Fig. 5B and D).

Results
Neural responses — passive and active listening

Figure 2 illustrates the experimental paradigms, and shows the neu-
ral responses of a representative neuron (J67), exposed to the AM
stimuli (AM frequencies between 2 and 256 Hz). All sounds started
with freshly generated static broadband Gaussian white noise, which
was followed by an amplitude modulation (Fig. 2, sound). In pas-
sive hearing (Fig. 2, top), animals were merely exposed to the
sounds without a required behavioral response. In that case the neu-
ron was well tuned to the acoustics of the stimuli, as demonstrated
by selective, phase-locked, responses to the different AM frequen-
cies (see central group of trials in Fig. 2, top). Similar selective
response behavior was obtained for the population of 100 neurons
(data not shown here). This was also true for the neural responses to
dynamic spectral-temporal ripples (see Massoudi et al., 2013), for
which the acoustic modulations varied in the temporal (velocity
between 8 and 40 Hz) and spectral (density between —2 and +2
c/o) domains (see Materials and methods).

In the active hearing trials (Fig. 2, center and bottom), the
monkey pressed a bar to initiate a trial. This experiment contained
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F1G. 2. Responses of cell J67 for AM noise during the passive (top), A500
(center) and A1000 (bottom) paradigms. Each panel shows the different
epochs in the stimuli (shown below the spike rasters), indicated by dark-gray
vertical lines (at sound onset, dynamic onset and sound offset). Spike rasters
are sorted according to the AM frequency (AMF) (bottom, 2 Hz; top,
256 Hz). Each dot corresponds to a spike. Red lines show the trial-averaged
spike-density curves (filtered with ¢ = 5 ms kernel). The passive paradigm
elicited clear phase locking to temporal sound modulations in the mid-AMF
range. Center and bottom panels: active paradigm to the identical sounds for
A500 and A1000 trials, respectively (randomly interleaved in the experi-
ment). The phase locking to sound modulations seems lost. Note the higher
firing rates before stimulus onset, and a lower transient peak response. Panels
also indicate the behavioral paradigm, i.e. bar press and release, and reward
delivery. Gray histograms on the bar lines represent the reaction-time distri-
butions of monkey J for this experiment. In AS500 trials reaction times fall
around the third stimulus modulation. In the A1000 paradigm, reaction times
shift to much shorter values, around the first stimulus modulation, and some-
times even before modulation onset. Gray shading in the static stimulus
epoch highlights the prediction period in which the monkey can anticipate
the modulation onset.

two different conditions: in AS500 trials (Fig. 2, center) the static
noise lasted for 500 ms, whereas in A1000 trials (Fig. 2, bottom) it
lasted for 1000 ms. To obtain a reward the animal had to react, by
releasing the bar within 600 ms, to the perceived sound change from
static noise to dynamic modulations. As both trial types were ran-
domly interleaved at equal probabilities, the change occurred unex-
pectedly (probability 50%) in the A500 trials, but animals could in
principle anticipate the sound onset in A1000 trials (with probability
100%), as soon as 500 ms of static noise had passed (highlighted
by the light-gray epoch in Fig. 2, bottom).

Being in a task drastically changed the neural responses, which
was readily obvious in changes of the mean overall firing rates (e.g.
prestimulus firing rate increased for active trials; ripple mean £+ SD:
passive, 18 £ 17 spikes/s, A500, 32 + 31 spikes/s, A1000,
31 £ 30 spikes/s; AM mean £+ SD: passive, 23 £ 23 spikes/s,
AS500, 35 + 36 spikes/s, A1000, 35 £ 36 spikes/s). Here, we will
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not focus on these general differences, which might be due to a
non-specific attentional signal (like alertness), but will focus instead
on the substantial changes in the neural firing patterns related to task
execution. During the dynamic response epochs of active trials
(Fig. 2, center and bottom) the phase locking to acoustic modula-
tions seemed less obvious in the spike rasters than for the passive
trials (Fig. 2, top). This is due to two factors: (i) a higher firing rate
introduces additional noise to the firing patterns because of the
increased and variable baseline, and (ii) additional activity that is
locked to the monkey’s reaction time varies considerably from trial
to trial, and therefore blurs the phase locking when spike rasters are
aligned to sound onset, rather than to bar release. Note, however,
that our previous study showed that, despite these additional signals,
the underlying phase locking of AC cells to ripples, and hence their
spectral-temporal tuning characteristics, remained fully intact for the
active trials (Massoudi et al., 2013). Below, we will demonstrate
that the changes in firing patterns betray the presence of a dynamic
task-related signal that interacts with the neuron’s acoustic tuning
response, but varies systematically from trial to trial with the ani-
mal’s behavior. To better appreciate the different task-related factors
of the experiment, we first quantify the behavioral effects of the
acoustic and non-acoustic aspects of our paradigm.

Behavior

The AS500 and A1000 trials led to clearly different behavioral
responses of the monkeys (Figs 2 and 3). For example, during the
recording session of cell J67 (Fig. 2, gray histograms), the reaction
times for AM A1000 trials were on average 198 ms shorter than for
AM A500 trials (tq5 - 14 = 13.5, P < 0.0001; A1000: median £ SE,
170 £+ 11 ms, A500: median + SE, 368 + 14 ms). This result was
obtained for all recording sessions, both stimulus types, and both
animals. In the unpredictable AS500 trials the reaction times across
sessions were 384 £ 21 ms for ripples, and 357 &£ 21 ms for the
AM noises, with reaction times typically falling after the sound
change (e.g. Fig. 2, gray histogram center). These reaction times are
in line with a sensory-evoked hand-movement response (Rogal
et al., 1985). The predictability of sound-change onset in the A1000
trials invariably led to a substantial reduction of the reaction times
to 188 £ 16 ms for ripples, and 158 £+ 16 ms for AM noises, with
17.5% of the responses falling even before the stimulus change (e.g.
Fig. 2, gray histogram, bottom). Importantly, although median reac-
tion times varied substantially from day to day (as demonstrated by
the considerable SDs), there was no systematic trend in these values
over time, or in the difference between non-predictive and predictive
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trials (data not shown). Thus, animals did not display evidence of
procedural learning during the course of the experiments.

Table 1 represents the combined performance of the two monkeys
in the active trials for AM and ripple stimuli. Trials were counted
‘correct’ (and hence rewarded) when the manual reaction times were
between 100 and 700 ms (see Materials and methods). In total, the
correct trial percentages were around 90% for non-predictable A500
trials and 60—-65% for the predictable A1000 trials. In about 4% of
trials the animals did not respond with a manual reaction (‘misses’);
these trials were excluded from the database for further analysis.
Note that, whereas in 8.50% of the ripple AS500 trials animals
reacted later than 700 ms, this decreased to 0.04% for AM AS500 tri-
als, which implies that the AM stimuli were easier to detect than the
dynamic ripples. Only about 1% of A500 trials were early. Although
late responses for A1000 trials were rare, more than 30% of them
were early responses. This indicates that animals often released the
bar on the basis of sound-modulation onset prediction in A1000
trials.

Reaction times and acoustics

To verify that the predictive and non-predictive differences reflected
a cognitive component in the behavior (i.e. uncertainty and predict-
ability of sound-modulation onset), we analysed the reaction times
of both animals as a function of the acoustic modulation parameters
for the 70 different stimuli (i.e. for 55 different spectral-temporal
ripples, and 15 AM stimuli), and the two response conditions (A500
and A1000; data pooled and averaged across animals and cells).
When the modulation onset was unpredictable (i.e. a probability of
0.5 in A500 trials), the monkeys’ reaction times strongly depended
on both spectral (Fig. 3A; anova; Faf - 5 =91, P <0.0001) and
temporal (Fig. 3A and C; aNova; ripples, Fgr - 4 = 7.5, P < 0.0001;

TABLE 1. Behavioral performance

Active trials Total Correct (%) Missed (%) Late (%) Early (%)
Ripple A500 6602  87.00 3.20 8.50 1.00
Ripple A1000 6805  65.50 2.00 0.40 32.00
AM A500 7535  95.40 3.60 0.04 0.90
AM A1000 8875 61.40 2.30 0.00 36.10

Data from both monkeys are pooled. Reaction times were between 100 and
700 ms for correct trials, < 100 ms for early trials, and > 700 ms in late
trials. In the missed trials, the monkeys did not respond.

AM

O

Median reaction time (ms)

2 4 8 16 32 64 128256
Modulation frequency (Hz)

FI1G. 3. Median reaction times (color coded) for each of the 55 dynamic ripples during A500 (A) and A1000 (B) trials. Note the clear pattern of faster and
slower reaction times for A500 trials as function of temporal (velocity) and spectral (density) modulations, which is absent for the A1000 trials. (C) Median
reaction times of each AM noise during A500 (cyan) and A1000 (green) trials. Cyan curve, Eqn 1; green line, Eqn 2. Data points for zero-density ripples in

A500 (red) and A1000 (dark blue) are superimposed.
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AM, Fgyr - 14 = 121, P < 0.0001) acoustic modulations. Ripple den-
sities of O c/o elicited the shortest reaction times of 337 & 2.5 ms
(mean + SE; Fig. 3A, green), which gradually increased to
458 + 12 ms for the highest ripple densities (—2 and 2 c/o, Fig. 3A,
dark red). Moreover, for the ripples the animals’ reaction times also
reflected a significant interaction between spectral and temporal modu-
lations (aNovaA; Far — 20 = 1.88, P = 0.001) with the combination of
higher velocities and densities yielding an additional increase in reac-
tion times.

In the AM detection paradigms we employed a much larger range
(2-256 Hz) of temporal modulations than in the ripple experiments
(840 Hz). The modulation frequency clearly affected the monkeys’
behavioral responses for the AM noises (Fig. 3C, cyan dots), and in
a similar fashion for the purely AM ripples at zero density (Fig. 3C,
red dots). The monkeys reacted slowest for the lowest modulation
frequency at 2 Hz (median + SE, 483 £ 4 ms), and fastest for the
highest modulation frequency at 256 Hz (median & SE,
315 + 4 ms). This finding seems at odds with reports suggesting
that lower modulation frequencies are easier to perceive and detect
than high modulation frequencies (e.g. Chi et al., 1999). However, a
possible explanation for this reaction-time effect could be that it
simply takes more time for slow acoustic amplitude modulations to
reach a perceptual detection threshold than for faster amplitude mod-
ulations (e.g. Heil & Neubauer, 2003), even though in general the
detection threshold is lower for the lowest modulation frequencies.
In line with this idea, we could fit the following simple linear
regression model (with respect to the modulation period) to the AM
reaction times

RTams00 = 130/W + 359 ms (2)

where w is the modulation frequency (in Hz) and RT is the reaction
time (in ms). This result (Fqs - 7041 = 1632, P < 0.0001) indicates
that the perceptual detection threshold for AM stimuli (presented at
100% modulation depth) is reached at about 13% of the period of
the modulation, and that an additional 359 ms are needed to prepare
the manual motor response (Fig. 3C; cyan line).

In contrast, for the predictable modulation onsets (A1000 trials;
Fig. 3B and C), reaction times were virtually independent of the
acoustic modulation parameters (ANOvVA; ripple spectral modulations,
Faqf - 5 =34, P=0.1; ripple temporal modulations, Fgs - 4 = 1,
P =041; AM, F4q¢ - 14 = 1.5, P = 0.1), which becomes especially
evident when applying the linear model of Eqn 2

RTAM1000 = O/W + 162 ms (3)

The optimal fit to the data (Fgr - gogo = 11.1, P = 0.0008) indi-
cated that the manual responses did not depend on the modulation
frequency (w), and required only 162 ms of preparation (Fig. 3C;
green line). Again, the data obtained for the AM (zero-density) rip-
ples nicely coincided with the AM responses (Fig. 3C, blue trian-
gles). The predictive aspect of the A1000 task was therefore clearly
reflected in a considerable reduction of manual reaction times of
about 220 ms for the ripples (Fig. 3A and B) and about 200 ms for
the AM noises (Fig. 3C, see also above).

Although the reaction-time distributions for AS00 and A1000 tri-
als differed substantially, they nonetheless overlapped, which means
that a sizeable fraction of the A1000 responses could be considered
as relatively slow (e.g. Fig. 2, gray histograms). To test whether
these slower A1000 responses depended on spectral-temporal modu-
lations, like the AS500 responses, we divided the behavioral
responses of all recorded A1000 trials into fast (< 225 ms) and slow
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(> 225 ms) reaction times, and analysed them as a function of AM
frequency (for AM noises), and ripple density. Through this defini-
tion, 40% of the reaction times to ripples, and 33% of the reaction
times to AM noises were categorised as slow responses for A1000
trials. Figure 4A and B shows the reaction times (relative to the
mean A1000 reaction time) for slow (blue), and fast (red) A1000 tri-
als, and for all A500 trials (gray). Interestingly, the slower A1000
responses were controlled by modulation-onset prediction (like fast
A1000 responses), as well as by the acoustic modulations (like
AS500 responses).

Taken together, these findings demonstrate that the animals used
all available information in the trial to obtain a reward. For A500
trials responses were exclusively guided by acoustic information. In
A1000 trials, however, both acoustic (when the animal had a long
reaction time) and non-acoustic (prediction, when the reaction was
fast) signals determined the animal’s responses.

Top-down neural signals

The neural responses in active trials differed substantially from the
passive-evoked acoustic responses to the same sounds (e.g. Fig. 2)
(Massoudi et al., 2013). This suggests the presence of an additional
task-related signal, which interacts with the acoustically-evoked
response. The behavioral results shown in Figs 3 and 4 indicate that
the manual reactions were guided by at least two factors — acoustic
spectral-temporal modulations in the unpredictable AS500 trials as
well as in the late A1000 trials, and a non-acoustic predictive signal
in all A1000 trials (both early and late). Thus, to identify the top-
down neural signals in the active trials, different possibilities should
be considered.

First, if the top-down signal is a general attentive signal (e.g.
reflecting non-specific task engagement, or vigilance), it could
induce an overall change in the firing rate of the active trials, which
would relate to neither the acoustic events in the trial, nor the motor
events of the monkey’s reaction. Second, if the top-down signal is
purely acoustic, the change in activity should be locked to the stim-
ulus events (e.g. as a gain-amplitude modulation). Third, if the top-
down modulation represents a purely behavioral signal (e.g. the
preparation of the manual release response) it should be locked to
the manual reaction time and be independent of the sound type.
Note that, in principle, the top-down signal could reflect contribu-
tions from all of these different factors, in which case there will be
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FIG. 4. Fast and slow reaction times in the predictive A1000 paradigm. (A)
Mean reaction times [relative to the mean reaction time for AM frequency
(AMF) = 256 Hz] as function of AMF for the unpredictable A500 trials
(gray), fast (red) and slow (blue) A1000 trials. Note that the slow A1000
responses depend on AMF in a similar way as AS5S00 responses. (B) Mean
reaction times (relative to the mean at zero density) as function of ripple
density (averaged across ripple velocities). Note that the slow A1000 reaction
times vary with ripple density, like the A500 responses.
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no single variable that fully explains the extracted neural modula-
tion. To investigate these possibilities, we aligned each trial’s
response to either the sound-modulation onset, or the manual reac-
tion time.

The results of this analysis for one of the neurons (T103) are
shown in Fig. 5. We determined the average spike-density functions
across trials (see Materials and methods) for passive (black), unpre-
dictable A500 (red) and predictable A1000 (blue) trial types, and for
ripples (Fig. 5A and B) and AM noises (Fig. 5C and D). In the left-
hand column the data were aligned to sound onset. Although the
average passive firing rate remained almost flat for the two sound
types (ripples and AM noises), the A500 and A1000 neural
responses changed considerably around the dynamic sound onset
(indicated by the red and blue vertical lines, respectively), with
roughly similar firing patterns for both sound types. For A500 trials
the change in the activity started a few hundred milliseconds after
dynamic sound onset, whereas for the A1000 trials the change
started even before the sound-modulation onset. As the activity pat-
terns do not align for the A500 and A1000 responses [neither when
aligned to sound onset (Fig. 5SA and C) nor to modulation onset
(not shown)], the top-down signals were clearly not primarily driven

by the sound acoustics. Interestingly, the neural responses appeared
to follow roughly similar patterns as the underlying reaction-time
distributions for the two trial types (filled histograms at the bottom
of Fig. 5A and C). This suggests that the neural responses may be
better related to the animal’s reaction times.

Figure 5B and D shows the average active neural responses when
trials were aligned to the reaction time. The firing rates show a
steady increase that starts at about 150 ms before the reaction time,
with patterns that are highly similar for both unpredictable (A500)
and predictable (A1000) trial types. This indicates that the top-down
signal could be attributed to a motor-preparation and/or a reward-
expectation signal (Fig. 5B and D). The peak at about 20 ms after
bar-release has a similar shape and onset latency as the sound-onset
peak, and can be attributed to the soft sound produced by the rapid
bar-release.

Figure 6 shows the results of this analysis for the population of
100 cells. The observations for neuron T103 persist for the total
population; the neural responses in the active trials were much better
aligned to the monkey’s reaction time than to the acoustic modula-
tions, and demonstrate that the top-down signals reflect a dynamic,
non-acoustic signal at the level of single AC cells. The A1000 trials
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with early responses (~30% of the A1000 trials; Table 1) had a sim-
ilar top-down signal (data not shown; there were too few early-
response AS00 trials to reliably obtain the instantaneous firing rate).

In the analysis so far we averaged neural responses across the dif-
ferent stimuli in the experiment. Although the top-down signals
were not locked to the acoustic modulations (Fig. 6A and C), it is
conceivable that the signals themselves could somehow depend on
the spectral and temporal modulation rates. For example, as the
behavioral data (Figs 3 and 4) clearly indicated that the reaction
times depended quite reliably on the stimulus acoustics and behav-
ioral context (predictive and non-predictive trials, or fast and slow
responses), the amplitude of the top-down signal could depend on
the reaction time itself. Alternatively, because the top-down signal
rides on top of the sound-evoked activity, it could be stronger for
preferred stimuli for each cell.

To investigate the influence of acoustics on the top-down signal,
we selected the trials along the spectral and temporal stimulus mod-
ulation dimensions, and behavioral contexts (predictive/non-predic-
tive), and calculated the sound-specific top-down signals for the
neural population. Figure 7A and B separates the ripple trials for all
cells and reaction times into the different ripple densities (pooled
across the five ripple velocities, while pooling 2 > 0 with Q < 0;
Fig. 7A) and different ripple velocities (pooled across the 11 ripple
densities, Fig. 7B). Figure 7C shows the data for the 15 different
AM frequencies of the AM stimuli. The left-hand panels of Fig. 7

correspond to the A5S00 condition and the right-hand panels to the
A1000 condition. The individual curves are remarkably similar
within each modulation range (aNova over the epoch [—200 to 0]
ms; ripple spectral modulations: A500, Fyyr - 10 = 0.31, P = 0.98;
A1000, Fyq¢ - 10 = 0.16, P = 1; ripple temporal modulations: A500,
Fyr - 4 =0.06, P =0.99; A1000, Fg¢ - 4 = 0.01, P = 1; AM stim-
uli: ASOO, FdAfA - 14 = 02, P= 1, AIOOO, FdAfA - 14 = 013, P= 1),
and between different modulation types. Thus, spectral-temporal
modulation rates, or predictive and non-predictive modulation
onsets, had no influence on the size and shape of the top-down neu-
ral modulation.

Model selection

We here consider two potential models for the neural interaction of
acoustic and behavioral signals on single AC neurons — linear sum-
mation, and non-linear gain modulation. For the summation model,
the neural response for a trial in the active reaction-time task can be
described by

RADD(S; Z) :AACT(S; l) +B(I—ZR) (4)

where Aacr(S; f) is the acoustic-evoked response component to
sound S in the active listening condition, and B(r — tg) is the behav-
ioral top-down signal, which is referenced to the reaction time, tp
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(according to Fig. 6B and D), and taken independent of the acous-
tics of sound S (demonstrated in Fig. 7). In contrast, the multiplica-
tive gain-modulation model for that trial reads

RMUL(S; l) = (1 + B(l — tR)) X AACT(S; l’) (5)

We employ the property that the acoustic component of the
response during active listening is the same as for passive listening,
as recently reported by Massoudi et al. (2013). In other words,
Aact(S,H) = Apass(S.f). Further, in the absence of a behavioral
signal [B(r — tg) = 0] both models reduce to the passive-evoked

response. To dissociate the two models, we use the observation that
the mean firing rates of AC cells for the static and dynamic compo-
nents of the stimuli during passive listening varied considerably
from cell to cell (ranging from only a few spikes/s to over 100
spikes/s), but, when averaged across sound modulations, remained
roughly constant during the trial (see Figs 5 and 6, black lines). As
a measure for this passive sound-evoked activity we calculated, for
each cell, the mean firing rate obtained during the passive static-
noise epoch, separately for ripples and AM noises: Upass = mean
(Apass(S; ). We took 200 < 7 < 500 ms to avoid a biased contribu-
tion from the transient sound-onset peaks. We then subtracted this
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value from the mean active response during the acoustic modulation
epoch for each active trial, and aligned the resulting modulatory
activity to the animal’s reaction time for that trial. We subsequently
determined the spike-density function, now pooled across all ripples
and AM noises, to obtain the mean dynamic change in activity for
each neuron resulting from the top-down signals

ARyion (t — tr) = R(t — 1R) — Mpass (6)

Applying Eqn 6 to the two interaction schemes (Eqns 4 and 5)
predicts for the additive model that

ARADD(I — ZR) = B(l — lR) (7)
and for the multiplicative model
ARvuL(f — 1r) = Hpass % B(1 — g) (8)

In other words, when plotting the modulatory firing rate vs. the
mean passive firing rate, ppass, it would yield a flat line if the
additive model is valid, with an offset at the mean top-down mod-
ulation-firing rate. In contrast, the multiplicative model predicts a
linear relation with a slope that is determined by the average top-
down modulation strength. A combination of additive and multipli-
cative signals on the neurons would give an additional offset to
Eqn 8. Figure 8A shows the results of this analysis for the popula-
tion of 100 cells (pooled for the two monkeys, and across ripples
and AM noises). Data points were colored according to their mean
passive firing rate (see color bar). The correlation coefficient of
r=0.62 is highly significant (Fys - 9 = 61.3, P < 0.001). The
linear regression line through the data points has a slope of 0.51
(tag. = o3 = 7.83, P < 0.001), and an offset that is indistinguishable
from zero (offset = —1.4 spikes/s, fq¢ - 95 = —0.44, P = 0.65).
Thus, the data do not support the presence of an additive compo-
nent, and clearly favor the prediction of the multiplicative model
(Egns 5 and 8).

In Fig. 8B we show the instantaneous modulatory firing rates
(Eqn 6) aligned to bar release, after sorting the cells for their mean
passive firing rates (color bar). The figure illustrates that the higher
the cells’ mean firing rate, the stronger the change in modulatory
activity across the measured epoch (here 150 ms), as predicted by
Eqn 8.
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Discussion
Summary

This study is the first to compare task-related top-down signals in
the monkey AC for different acoustic stimuli during the same
behavioral demands. Our results revealed clear top-down compo-
nents during active hearing that could be extracted from the animal’s
behavior (Figs 3 and 4), which contained acoustic (spectral-tempo-
ral) and non-acoustic (cognitive) factors. We also identified a sys-
tematic top-down signal at the level of single-unit activity that was
locked to the animal’s behavioral response but invariant to the
acoustic modulations (Figs 5-7). We demonstrated that the neural
top-down component is processed independently from the acoustic
signals by AC neurons in a multiplicative, separable, way (gain
modulation).

Behavioral response properties

The behavioral results demonstrated that the monkeys’ manual reac-
tion times depended on the spectral-temporal sound characteristics
in unpredictable trials (Fig. 3A and C) and, interestingly, also in the
slower predictable trials (Fig. 4). In all A1000 trials the reaction
times were substantially shortened by prediction of the upcoming
sound change (Figs 2 and 3) (Jaramillo & Zador, 2011; Massoudi
et al., 2013). These results suggest that the animals adopted a single
strategy for both trial types, which led them to use all available
information to earn a reward as fast as possible. In A500 trials the
monkey only had acoustic information to achieve this goal, as all
sounds and trial types were randomly selected, and equally likely
and important. The results for the ripples and AM noises reflected
this acoustic dependence quite clearly. Reaction times to unpredict-
able AM noises and zero-density ripples were only determined by
the AM frequencies, and could be fitted well with the simple cycle-
detection regression model of Eqn 1 (Fig. 3C). The manual
responses to the unpredictable moving ripples (density # 0) relied
on both spectral and temporal modulations, showing a significant
interaction between these acoustic features (Fig. 3A).

In the A1000 trials, however, the monkey acquired target-onset
predictability as an additional source of information. This non-
acoustic cognitive top-down signal appeared to over-ride the
dependence on purely acoustic information; reaction times not only
shortened by about 200 ms on average, their reliance on acoustic
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F1G. 8. Evidence for multiplicative signal interaction at AC cells. (A) Change in mean modulatory firing rate as a function of the mean passive firing rate in
the static epoch (based on Eqn 6). For each cell (n = 100), data were pooled for ripples and AM noises, and for A500 and A1000 trials. Note linear relation
with zero offset (r = 0.62). (B) The modulatory signal aligned to bar release. For higher passive static firing rates, the total modulatory signal is also stronger.

Different colors denote different mean passive firing rates (color bar).
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modulation rates had also virtually disappeared (Fig. 3B and C).
However, when the animal withheld its immediate response in
A1000 trials, the longer reaction times (> 225 ms) also depended on
the acoustic modulations. These results demonstrate a clear qualita-
tive difference between the predictable and unpredictable trial types,
which was reflected in the single-unit responses of AC neurons
(Figs 2, 5A and C, and 6A and C), but not in the strength of the
top-down signals (Figs 5B and D, 6B and D, and 7). In other
words, the neural response does not reveal an additional prediction
signal.

Task-related effects on auditory cortex responses

Executing a sound-detection task considerably changed the neural
firing patterns for all AC cells, when compared with the passive
condition (Fig. 2). For both sound types, active engagement in the
task led to an overall increase of the spontaneous (background) fir-
ing rate prior to trial initiation (Fig. 2), and during the acoustic-
evoked firing rates, when compared with passive hearing (Figs SA
and C, and 6A and C) (see also Massoudi et al., 2013). However,
the pure stimulus-evoked mean activity was hardly affected, as is
visible in the responses during the static noise (Figs 5A and C, and
6A and C). The overall increase in mean firing rate during the
dynamic epochs is therefore attributable to the behavioral top-down
modulation. Most studies have reported that attentional demands,
including non-specific effects due to arousal and vigilance, increase
cortical firing rates (Edeline et al., 2001; Steriade et al., 2001; Scott
et al., 2007; Niwa et al., 2012a,b), whereas some studies reported
decreased AC responses during task performance in rats (Otazu
et al., 2009) and ferrets (Atiani et al., 2009), and overall inhibition
during behavior in the somatosensory cortex of mice (Crochet &
Petersen, 2006; Poulet & Petersen, 2008). In contrast to these
reports, our data did not reveal strong non-specific effects on the
firing rates of AC neurons, which was further supported by the zero
offset in the regression analysis of Fig. 8A.

Note that in our paradigms the animals did not, and could not,
attend to a particular precued acoustic feature of the upcoming target
sound, as they were not instructed to do so, and were merely antic-
ipating any detectable spectral-temporal modulation while listening
to the static noise. Neither could the animals predict any particular
acoustic modulation in advance, as stimuli were all equally likely
and important for obtaining a reward. The only trial-specific feature
that mattered in the experiment was the duration of the static inter-
val. Our data clearly demonstrate that the animals indeed used this
information, and the neural activity patterns reflected this non-acous-
tic aspect of the task.

Realigning the active responses of each trial to its associated reac-
tion time revealed a signal starting at about 150 ms before the bar
release. This signal was clearly present at the single cell and popula-
tion level (Figs 5B and D, and 6B and D), and was found to be
invariant to the acoustic modulations (Figs 5-7). The signal may be
attributed to either motor preparation for bar release, or to reward
expectation. These two interpretations could not be dissociated as,
in our experiments, reward delivery fell immediately after bar
release. Previous studies have also shown the presence of motor-
preparation (Brosch er al., 2005, 2011a,b; Selezneva et al., 2006;
Yin et al., 2008; Niwa et al., 2012a), and reward expectancy (Yin
et al., 2008) signals at the level of AC neurons, although the rela-
tive proportions of cells carrying such a signal differ between stud-
ies from < 15% (e.g. Yin et al., 2008) to more than 60% (e.g.
Brosch ez al., 2005). A possible explanation for this apparent dis-
crepancy could be related to the results on the multiplicative effects

in Fig. 8. Although many recorded AC cells carry the task-related sig-
nal (47% of cells; Wilcoxon signed rank test on the change in modula-
tory firing rate), its strength, and hence its detectability, are directly
proportional to the mean acoustic-evoked firing rate. Variation in
these firing rates between studies could thus underlie the different pro-
portions of cells seen to carry multiplicative non-acoustic modula-
tions. These task-related signals could originate from different cortical
areas such as parietal and frontal cortical areas (reward) (Romanski
et al., 1999; Fritz et al., 2010), or from the premotor cortex (motor
preparation) (Lemus et al., 2009).

Although for the fast A1000 trials (Fig. 4, red) the animals
responded mainly on the basis of sound-change prediction, we
observed no additional neural prediction signal in AC cells, as the
A500 and A1000 curves did not systematically differ. This suggests
that the prediction signal, possibly originating from the prefrontal
cortex (Nobre et al., 1999), induces a temporal shift (by about
200 ms) of the top-down modulation on AC cells.

Additive and multiplicative interactions

Multiplicative interactions between sensory signals, top-down sig-
nals, and motor-related signals have been described for a variety of
brain areas and sensory-motor systems. For example, reports have
described eye-position gain fields for visually responsive cells in the
monkey posterior parietal cortex (Andersen et al., 1985), and for
eye-movement-related visual-motor cells in the monkey midbrain
superior colliculus (Van Opstal et al., 1995). Similarly, in the audi-
tory system, eye-position gain-field tuning, as well as multiplicative
spatial sensitivity, has been reported for auditory sensitive cells in
the monkey inferior colliculus (Groh et al., 2001; Zwiers et al.,
2004). It has also been shown that attention may influence the firing
rate of visual (McAdams & Maunsell, 1999; Treue & Martinez Truj-
illo, 1999; Reynolds et al., 2000; Maunsell & Treue, 2006), and
somatosensory (Sripati & Johnson, 2006) cortex cells in a multipli-
cative fashion. This indicates that attention can change the gain of
neuronal responses without changing their underlying response prop-
erties, or tuning curve. Different gain mechanisms could be invoked
by attention, such as enhancing the attended stimulus strength,
changing the neuronal gain of the behaviorally salient target, or
sharpening the sensory selectivity of the neuron. Polack er al.
(2013) recently identified a noradrenergic mechanism underlying
gain modulations in mouse V1 cells, which led to a stronger, but
less variable, change in the cells’ membrane potential during a
locomotion task.

Other studies have proposed additive interactions between sensory
and non-sensory signals at the level of AC neurons. For example,
Maier & Groh (2010) suggested an additive interaction of eye-posi-
tion signals with auditory-evoked activity in the behaving monkey
AC, and Schnupp er al. (2001) demonstrated that the spatial selec-
tivity of AC neurons in the anesthetised ferret is well predicted by a
linear integration model of sound levels within each frequency band
and ear. Additive interactions have also been proposed for atten-
tional top-down signals in the visual cortex (Luck et al., 1997,
Williford & Maunsell, 2006; Buracas & Boynton, 2007; Thiele
et al., 2009).

The analysis in Fig. 8 demonstrates that it is possible to dissociate
additive and multiplicative interactions on AC cells by exploiting
the cell-to-cell variability of mean acoustic responses, together with
the idea that the sound-evoked responses are unaffected by task
performance. We recently verified this latter requirement for the
spectral-temporal receptive fields of AC neurons (Massoudi er al.,
2013). Indeed, a relatively slow modulation on top of a rapid

© 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd

European Journal of Neuroscience, 39, 1538-1550



acoustic tuning response will not affect the spectrum of the latter.
This requirement on the top-down signals is typically fulfilled; the
monotonic rising phase of the top-down signal is confined to the
low-frequency spectrum (up to a few Hz; Fig. 8B), when compared
with the rapid phase-locked response profiles of AC cells to acoustic
amplitude modulations (up to 256 Hz in our sample of cells).

Our population analysis revealed that the non-acoustic top-down
modulation and the sound-evoked activity combine in a separable
way through multiplicative gain modulation (Eqns 5 and 8; Fig. 8).
Such multiplexing of different signal types is beneficial for an effi-
cient and reliable transmission of multiple sources of information,
which express different types of variables, through the same chan-
nel. A relatively simple read-out mechanism, based on linear weight-
ing of the cell contributions in the recruited population, could
subsequently decode the individual signals for further processing.
Quantitative models for such read-out mechanisms have been
described for eye-position, sound-level and sound-location gain
fields of cells in the auditory midbrain inferior colliculus (Zwiers
et al., 2004), and for eye-position gain fields in the visuomotor
midbrain superior colliculus (Van Opstal & Hepp, 1995).
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