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Abstract

Peat forming Sphagnum mosses are able to prevent the dominance of vascular plants under ombrotrophic conditions by
efficiently scavenging atmospherically deposited nitrogen (N). N-uptake kinetics of these mosses are therefore expected to
play a key role in differential N availability, plant competition, and carbon sequestration in Sphagnum peatlands. The
interacting effects of rain N concentration and exposure time on moss N-uptake rates are, however, poorly
understood. We investigated the effects of N-concentration (1, 5, 10, 50, 100, 500 mM), N-form (15N - ammonium or
nitrate) and exposure time (0.5, 2, 72 h) on uptake kinetics for Sphagnum magellanicum from a pristine bog in Patagonia
(Argentina) and from a Dutch bog exposed to decades of N-pollution. Uptake rates for ammonium were higher than for
nitrate, and N-binding at adsorption sites was negligible. During the first 0.5 h, N-uptake followed saturation kinetics
revealing a high affinity (Km 3.5–6.5 mM). Ammonium was taken up 8 times faster than nitrate, whereas over 72 hours this
was only 2 times. Uptake rates decreased drastically with increasing exposure times, which implies that many short-term N-
uptake experiments in literature may well have overestimated long-term uptake rates and ecosystem retention. Sphagnum
from the polluted site (i.e. long-term N exposure) showed lower uptake rates than mosses from the pristine site, indicating
an adaptive response. Sphagnum therefore appears to be highly efficient in using short N pulses (e.g. rainfall in pristine
areas). This strategy has important ecological and evolutionary implications: at high N input rates, the risk of N-toxicity
seems to be reduced by lower uptake rates of Sphagnum, at the expense of its long-term filter capacity and related
competitive advantage over vascular plants. As shown by our conceptual model, interacting effects of N-deposition and
climate change (changes in rainfall) will seriously alter the functioning of Sphagnum peatlands.
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Introduction

Bogs (ombrotrophic peatlands, i.e. predominantly fed by

rainwater, from Greek ombros, rain, and trephein, to feed) are

exceptional ecosystems that may show high storage rates for

nutrients and carbon, while nutrient availability is very low due to

ombrotrophic conditions (water and nutrient input solely by rain)

limiting the growth of vascular plants. A set of traits, unique to

Sphagnum mosses, enable their dominance in bog ecosystems.

Sphagnum has evolved a high nutrient use efficiency to cope with

low input rates of nutrients [1,2]. The atmospheric input of

nutrients is efficiently retained in moss peat and decomposition

rates are low, due to the high retention of rainwater, acidic

conditions and poorly degradable organic matter [3]. In addition,

a substantial part of the C losses (including CH4) are refixed by

Sphagnum as growth and photosynthesis have been shown to

increase upon elevated CO2 in porewater [4–6]. This combination

of traits enables Sphagnum to avoid being outcompeted by vascular

plants. However, increased availability of nitrogen, e.g. by high

airborne inputs, favours vascular plants at the expense of Sphagnum

mosses. Displacement of Sphagnum by vascular bog plants often

leads to reduced storage of nutrients, carbon (peat) and water [7–

9]. In comparison to vascular plants, Sphagnum spp. show low

decomposition rates due their chemical composition [2,3], in

addition to anoxic and acidic conditions, and may still have similar

primary production rates [10,11]. Sphagnum peat may therefore

accumulate substantial amounts of nutrients, if considered

m22 y21, even though nutrient concentrations in Sphagnum are

lower.

Bog vegetation hardly responds to small increments of nitrogen

availability as the living Sphagnum layer filters nitrogen by retaining

and storing substantial amounts of nitrogen in biomass and peat

[12,13]. This nitrogen filter prevents the build-up of airborne

nitrogen and increased N availability in soil layers below the moss

carpet. Cryptogams in general appear to be more efficient in

retaining atmospheric nitrogen than other plant groups [14,15].

Moss biomass has even been found to be the major determinant of

N retention capacity of ecosystems [16,17]. Therefore, mosses are

thought to dampen effects of increased anthropogenic inputs of

nitrogen [18,19].
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High nitrogen deposition rates were, however, found to have

detrimental effects on biomass production of mosses [20,21].

Negative effects of nitrogen can be direct (e.g. lower photosyn-

thesis; increased metabolic costs) and indirect (e.g. shading and

lower water availability due to increased cover of vascular plants).

Direct physiological changes in mosses including Sphagnum have

also been found upon increased availability of nitrogen [1,22,23].

High uptake rates can cause a saturation of nitrogen in Sphagnum

mosses [1,12], which is often followed by growth reduction

[24,25]. A meta-analysis suggested a general decline in biomass

production of Sphagnum mosses with increasing nitrogen tissue

content [21]. At present, however, little is known about

mechanism causing negative effects of nitrogen (saturation) at

the cellular level.

Indirect effects of nitrogen are mostly related to an increased

cover of vascular plants and concomitant shading of the Sphagnum

layer [26,27]. Vascular plants can also lower water availability to

Sphagnum mosses by increased ecosystem evaporation resulting in

lower water levels. Leaching of nitrogen through the moss layer

plays a major role in the vegetation change by increasing the

availability of N in the rhizosphere to vascular plants [26,28]. As a

dense cover of vascular plants has the potential to decrease moss

biomass, vascular plants may also indirectly increase nitrogen

leaching and availability in the root zone, as has been suggested by

field studies [17,29]. Leaching of nitrogen in bogs is also facilitated

by the high porosity of the living Sphagnum layer and underlying

layers of litter and recently formed peat.

Water from low-intensity rainfall may have an average

residence time of 10–30 min in the Sphagnum layer [30–32].

Excessive rainfall .5 mm may remain for only 0.5–5 min in the

uppermost Sphagnum layer [32] (Fritz pers. observation). Future

scenarios for rainfall predict increases in excessive rain events in

regions with a substantial cover Sphagnum peatlands [33], possibly

leading to higher leaching of N. Leaching of nitrogen may also

occur when nitrogen uptake efficiency of mosses is decreased.

Earlier studies found that nitrogen uptake can be induced by high

pulses of nitrogen and seems to be variable in time [1,34]. A

slowing down of nitrogen uptake may result from nitrogen

saturation at the cellular level [12,35]. Alternatively, metabolic

changes (e.g. amino acid formation, accumulation of free

ammonium) may slow down nitrogen uptake.

Several studies have shown that prolonged exposure to elevated

nitrogen deposition can result in a decreased uptake efficiency and

nitrogen use efficiency for mosses [36,37] and vascular plants [38].

In contrast, mosses from sites in Sweden with elevated nitrogen

deposition showed higher uptake rates of inorganic nitrogen than

mosses from a low deposition site [39]. Considering these

contradictory results, a better understanding of the nitrogen

uptake kinetics of Sphagnum mosses seems to be necessary to predict

nitrogen retention time and leaching potential at elevated

atmospheric nitrogen deposition and its interaction with hydrology

(e.g. residence time of rain).

In this study we address the question whether increased

exposure time to elevated nitrogen inputs (ammonium or nitrate)

results in a reduction of nitrogen uptake efficiency and whether

this can be related to nitrogen saturation. We therefore conducted

a series of uptake experiments with the peat-forming species

Sphagnum magellanicum using 15N-ammonium and 15N-nitrate,

which mark the upper and lower ranges of N-concentrations for

inorganic and organic nitrogen forms in rain, respectively. Long-

term effects of nitrogen exposure were assessed by comparing

uptake rates of Sphagnum mosses collected from a pristine site in

Patagonia (low N deposition 1–2 kg N ha21 y21) and N-polluted

site in the Netherlands (N deposition 20 to 40 kg N ha21 y21 over

the period 1980–2010). It was hypothesised that historic exposure

time, as influenced by weather conditions and climate, interact

with concentration effects, and that acclimatization to high N

affects N-uptake kinetics. The kinetic parameters for nitrogen

uptake by Sphagnum plants from different sites were used to model

the potential leaching of nitrogen to deeper soil layers, thereby

becoming available to roots of vascular plants and increasing their

competitive strength.

Materials and Methods

Ethical statement
For the Dutch site/N-polluted site: TJTM Elzenga received the

sampling permit and samples from Mr. Albert Henckel of the

Dutch National Forest Service that manages the National Park

Dwingelderveld. In that case permits are usually not issued in a

written form in the first place.

For the Argentinean site/pristine site: No specific permits were

required for the described field study. The site was not privately-

owned land or was protected at the moment of sampling. Sphagnum

magellanicum is not endangered or protect species in Argentina. The

sampling site is under supervision of the provincial government.

Transport permission of the samples was 091429.

To the author’s knowledge an ethical statement was not needed

for the mosses that were inlcuded in the present study.

Study site, climate and N-deposition
Experiments were conducted with Sphagnum magellanicum (Bridel)

collected from lawns at two locations with contrasting histories of

nitrogen deposition. Most uptake experiments were carried out

using mosses from a pristine Sphagnum bog (54u 459S; 68u 209W) in

southernmost Patagonia (data in Figures 1, 2 and 3), Argentina

(site description in [40,41], where atmospheric nitrogen deposition

is estimated to be as low as 1–2 kg ha21 y21 [10]. This site is

hereafter termed the ‘pristine site’ (Figure S1 and Figure S2). The

second location was a small bog in the State Forest of Dwingeloo,

the Netherlands (52u 499N; 6u 259E; ‘N-polluted site’) with an

estimated atmospheric N deposition ranging between 20 and

30 kg N ha21 y21, but exceeding 40 kg N ha21 y21 in the period

1970–2000 [42]. Mosses from this site were used in the 72 h

nitrogen uptake experiments and compared with mosses from the

pristine site (data in Figure 4). In April 2010, two months prior to

our experiments, 10 cm thick sods of Sphagnum magellanicum were

collected from carpets located at five distinct parts in each

peatland (‘pristine site’ and ‘N-polluted site’). Summer water levels

ranged between 20 cm and 40 cm below the surface at all

sampling locations. Weather conditions were similar at both sites

the weeks prior to sampling with high humidity and rainfall, and

similar temperatures and light levels during daytime. After

removing vascular plants we allowed mosses to acclimatize to

lab conditions for 40 days. During this period, the water table was

kept 2–5 cm below capitula (photosynthetic active apex, 1 cm

long) for optimal water supply and light intensity was set at

200 mmol PAR m22 s21.

Uptake experiments
Uptake rates were measured according to [39]. 25 Sphagnum

plants (the capitulum and 20–25 mm living moss tissue below, 5

plants per container and 5 replicates per treatment) were

submerged in the experimental solution containing ammonium

or nitrate at different concentrations. In one treatment (0.5 h

experiment) capitula and stem tissue were separated after the

experiment and uptake rates were calculated separately and

compared (see statistical analysis).

N-Uptake Adaptation in Sphagnum Mosses
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During the entire experiment mosses where exposed to an

artificial rain solution (150 mmol l21 NaCl, 30 mmol l21 MgCl2,

30 mmol l21 KCl, 10 mmol l21 CaCl2, 10 mmol l21 KH2PO4,

pH 5.5–6.0) to which the different amounts of ammonium or

nitrate were added. In the 0.5 h experiment we applied 1, 5, 10,

50, 100 and 500 mmol l21. In the 2 h experiment we applied 10

and 100 mmol l21, and in the 72 h experiment 1, 10 and

100 mmol l21. Plants were pre-incubated in 20 l of artificial rain

solution (N-free) for 0.5 hours before transferring them to open

glass vials filled with the treatment solution. The vials were beaker-

shaped and their volume was dependent on the treatment. We

used volumes of 20, 5, 2, 0.5, and 0.25 litres in the 1, 5, 10, 50,

100, and 500 mmol l21 treatment, respectively. To avoid concen-

tration gradients, experimental solutions were gently stirred by

Figure 1. Dose response curves of (a) ammonium uptake rates (filled circles; mmol NH4
+ gDW21 h21) and (b) nitrate uptake rates

(open circles; mmol NO3
2 gDW21 h21) of Sphagnum magellanicum (n = 25) from the pristine site. The rates represent the average uptake

rates after 0.5 hours including their standard error (n = 5). Note that y-axes differ by one order of magnitude. Saturation curves (Eq. 1) were fitted to
rates: Vmax of ammonium (28 mmol NH4

+ gDW21 h21) was higher than Vmax of nitrate 2.5 mmol NO3
2 gDW21 h21), whereas Km-values were similar

(6.5 mM for ammonium and 3.5 mM for nitrate, respectively). The linear component k was higher for ammonium (0.022 l g21DW h21) than for nitrate
(0.004 l g21DW h21). Dashed lines show the fit to uptake measurements using only two parameters (Vmax and Km).
doi:10.1371/journal.pone.0079991.g001

N-Uptake Adaptation in Sphagnum Mosses
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using a rotary shaker (35 rpm), which clearly provided water

movement around the floating mosses. In the 72 hours experiment

mosses were floating in open containers of 0.3 l, in which the

treatment solution was continuously replenished by peristaltic

pumps (Masterflex, 7015–20; Cole-Parmer, Vernon Hills, IL,

U.S.A.). Flow rates varied according to the treatment: 1 mmol N

l21 at 1 l h21, 10 mmol N l21 at 0.1 l h21 and 100 mmol N l21 at

0.01 l h21, respectively. Theses rates rendered a nitrogen replen-

ishment rate of 10 mmol N g21DW h21. The replenishment

solutions were refreshed every 24 h. All treatments were replicated

5 times, and carried out at room temperature (18–21 uC) and

150 mmol PAR m22 s21. Mosses in the 72 hours experiment were

exposed to 16 hours of light and 8 hours dark period per day.

After harvesting at the end of the experiments, mosses were

carefully blotted dry, washed for 5 min in a solution of 1 M KCl

added to the artificial rain (described above) and blotted dry before

drying at 70uC for 48 hours. Oven dried mosses were ground in

liquid nitrogen before being analysed for 15N and total N using

isotope ratio mass spectrometry (Finnigan MAT Delta Plus,

Waltham, MA, USA; see Kleinebecker et al., 2009 for details).

Results were corrected for background 15N content that was

determined for each site separately (n = 10 per site). To obtain net

nitrogen uptake rates we divided the uptake of 15N by the

enrichment of N-sources used: 15NH4Cl (10 atom% 15N) and

Na15NO3 (5 atom% 15N). In addition, we estimated uptake rates

in the 72 hours experiment by means of depletion of nitrogen in

the experimental solution related to the dry weight (cf. [43,44].

Samples of the experimental solutions (24, 48 and 72 hours after

experiment started) were directly frozen (220uC) until color-

imetrical analysis of ammonium (Traacs 800+ auto-analyzer). This

allowed us to compare average uptake rates over 72 hours,

determined using IRMS, with the uptake at intermediate time

points (24, 48 and 72 hours after experiment started).

To estimate passive uptake, assumed to mainly represent

adhesion to the cell walls, we measured nitrogen uptake in

autoclaved (1 hour at 120uC) Sphagnum plants. After autoclaving,

mosses had maintained their morphology. Following the proce-

dure described above, plants were exposed for 0.5 hours to 15N-

ammonium or 15N-nitrate at three concentrations: 1 mM, 10 mM

and 100 mM, respectively. Samples were exposed to two different

washing solutions: demineralised water (releasing the loosely

attached N-fraction) and a 0.2 M SrCl2 solution (complete

exchange of cations by Sr2+ ions).

Uptake kinetics – effects of concentrations and
increasing exposure time

We used a Michaelis–Menten kinetics combined with a linear

component (k), conform earlier work on uptake by rice and corn

roots [45,46] to describe the observed uptake rates with increasing

strength of the nitrogen solutions (1, 5, 10, 50, 100 and 500 mM)

for mosses (n = 25) exposed for 0.5 hours. The 3 parameters were

fitted to the uptake data by performing a regression analysis (single

Figure 2. Average uptake rates (mmol N gDW21 h21) after 0.5
(dark grey), 2 (grey) and 72 (light grey) hours, respectively in
Sphagnum magellanicum (n = 5) from the pristine site (Argen-
tina). The upper panel (a) shows ammonium (NH4

+) uptake, the lower
panel (b) nitrate (NO3

2) uptake.
doi:10.1371/journal.pone.0079991.g002

Figure 3. Decrease in ammonium uptake at the pristine site
with increasing exposure time on. Eq. 2 fitted well (r2 = 0.99) for the
uptake data for both 10 mM (black circles) and 100 mM (grey triangles).
The half-time value ‘b’ was 2.1 hours for both concentrations. The
constant (C) was lower in the 10 mM treatment (0.22 mmol N gDW21

h21) compared to the 100 mM treatment (0.88 mmol N gDW21 h21).
Dashed line indicates critical N-uptake to maintain biomass production
(0.8 mmol N gDW21 h21). Note that uptake rates at 24 hours and later
were based on the depletion of ammonium in the experimental
solution, whereas other rates presented in this paper are average rates
calculated from 15N uptake.
doi:10.1371/journal.pone.0079991.g003

N-Uptake Adaptation in Sphagnum Mosses
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rectangular hyperbola) in Sigma Plot 10.0 (Systat Software, Inc.),

using the following formula:

v~
Vmax| S½ �
Kmz S½ � zk S½ � ð1Þ

where v is the measured uptake rate at a given substrate

concentration [S], Vmax is the maximum uptake rate at substrate

saturation and Km is the Michaelis–Menten constant (substrate

concentration at which uptake occurs at half the maximal uptake,

i.e. the half saturation constant). The constant k modulates the

linear component in Eq.1. In Figure S3 & Table S1 of Supporting

Information S1 we discuss the consequences of omitting this linear

component to describe the saturation kinetics of nitrogen uptake in

Sphagnum mosses. For clarity and comparison, both approaches are

shown in figure 1, as Michaelis–Menten kinetics is more

commonly applied without adding a linear component [47,48].

We also estimated the dependency of uptake rates on exposure

time t for treatments receiving 10 mM or 100 mM ammonium.

Parameters for the effects of exposure time (Eq. 2) were fitted to

the uptake rates at 0.5, 2, 24, 48 and 72 h by performing a

regression analysis (hyperbolic decay) in Sigma Plot 10.0, using:

Vt~
Vini|b

bzt
zC ð2Þ

where Vt is the uptake rate at the exposure time t, and b is the time

after which Vt decreased to half of the initial uptake rate (Vini).

Uptake rates at 24, 48 and 72 hours were based on the depletion

of nitrogen in the experimental solution. The constant C

represents the rate of background nitrogen uptake e.g. to supply

nitrogen consumed by growth and natural nitrogen losses. Under

field conditions the constant C may be related to ‘‘critical N-

uptake’’, that is the N-uptake rate needed to sustain the maximal

growth rate. Aldous (2002b) estimated the annual nitrogen

requirement of a growing Sphagnum carpet to range between

0.18 and 0.35 mol N m22 y21. This is equivalent to an average

hourly nitrogen consumption of 0.14–0.57 mmol N g21DW h21

when assuming capitulum biomasses of 180–360 gDW m22 and a

5-month growing season, which has been found in other studies

[10,49].

Statistical analyses
Initial data analysis implied the fitting of multiple linear

regressions, followed by a check for violation of statistical

assumptions. In cases where heteroscedasticity was observed, we

used linear regression with the generalized least squares (GLS)

extension, which allowed us to benefit from retaining the original

variance structure in the data [50,51]. Model simplification to a

minimal adequate model was based on AIC e.g. Akaike

Information Criteria [52], after backward selection using the

likelihood ratio test (data in Fig. 2, 4). The importance of each

explanatory factor in the minimum adequate model was assessed

by comparison of this model with a reduced model (with all the

terms involving the factor of interest removed), using the likelihood

ratio test. All analyses were performed using the ‘nlme’ package (v.

3.1, [50]) in the ‘R’ (version 2.9.2) statistical and programming

environment (R Development Core Team [53]).

Results

Kinetics of active and passive nitrogen uptake
In plants of Sphagnum magellanicum from the pristine site

(Patagonian bog), nitrogen uptake rates during the first 0.5 h

increased with increasing nitrogen concentration. Uptake of

nitrogen from the fully stirred solutions could be successfully

described by saturation kinetics (Fig. 1) for both ammonium and

nitrate. Mosses showed ten times higher uptake rates for

ammonium (Vmax of 28 mmol N g21DW h21) than for nitrate

(Vmax 2.5 mmol N g21DW h21). Ammonium and nitrate were

taken up efficiently already at low concentrations (Km-values of

6.5 mM and 3.5 mM, respectively). This results in uptake rates

similar to 90% of Vmax at a concentration of 100 mmol N l21. The

linear component k was higher for ammonium (0.022 l.g21DW

h21) than for nitrate (0.004 l.g21DW h21). We found that

extending the M-M kinetics by a linear component improved

the fit of the uptake curves substantially (Supporting Information

S1) while the conceptual model of nitrogen uptake depended only

Figure 4. Differences in uptake rates (mmol N gDW21 h21) were
dependent on the origin of the mosses. N-Uptake rates are shown
at 1 mM (dark grey), 10 mM (grey) and 100 mM (light grey), respectively,
of the pristine site (Argentina, left) and the N-polluted site (The
Netherlands, right). Upper panel (a) shows ammonium (NH4

+) uptake.
The lower panel (b) shows shows nitrate (NO3

2) uptake. Experiments
lasted 72 hours.
doi:10.1371/journal.pone.0079991.g004

N-Uptake Adaptation in Sphagnum Mosses
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to a small extent on the linear component (Figure S1 & Table S1

in Supporting Information S1).

Uptake rates in living mosses appeared to be independent of the

washing solution used (demineralised water and SrCl2, respective-

ly). Thus, the fraction bound by adsorption to the cell wall is

negligible compared to the fraction taken up by the cells.

Furthermore, we measured passive uptake in mosses that were

autoclaved. The passive uptake was up to 2 orders of magnitude

lower than the uptake in living mosses. In general, autoclaved

mosses absorbed only 1 to 5% (n = 50) of the nitrogen taken up by

living mosses, with the exception of the 100 mM nitrate treatment

where this fraction is 11 to 16% (n = 10). Uptake in autoclaved

mosses increased with nitrogen concentration of the experimental

solution and was highest in the ammonium treatments. Compar-

ing the two washing solutions showed that 60–75% of ammonium

was removable with SrCl2 in autoclaved plant material. The

fraction washed-off by SrCl2 may indicate all ammonium bound to

adsorption sites. This effect of the washing solution was not found

for living mosses.

Effect of increasing exposure time
Nitrogen uptake rates clearly decreased with exposure time.

This decrease was most pronounced for ammonium. The

concentration dependency found after 0.5 hours (Fig. 1) was also

observed when the duration of the experiment was increased to

2 hours and 72 hours, respectively (Fig. 2) Uptake rates were,

however, much lower with increasing exposure time (p,0.001,

Table 1). Uptake rates after 2 hours were 1.6 times lower for

ammonium, but only 1.2 times lower for nitrate at both

concentrations (10 mM and 100 mM). During 72 hours uptake

rates of ammonium drastically decreased, and were 6–14 times

lower than rates after 0.5 hours. In contrast, nitrate uptake

efficiency was less affected by exposure time and only lowered by

factor 3. Consequently, the preference of ammonium uptake over

nitrate uptake declined with increasing exposure time. Tissue

nitrogen remained below 990 mmol N g21DW in treatments with

lower uptake rates than the 100 mM NH4-treatment. Interestingly,

uptake rates were independent of tissue nitrogen at the start of the

experiment (indicator for N saturation), which ranged from 632–

921 mmol N g21DW.

We investigated the uptake dynamics of ammonium in more

detail during the 72 hours experiment by measuring ammonium

depletion in the experimental solution. During the first 2 hours,

uptake rates slowed down below 60% of the initial uptake rates

(Fig. 3; half time value corresponds to 2.1 hours). The decline of

ammonium uptake rates with increasing exposure time can be well

described (r2 = 0.99) by equation 2 (Fig. 3). Background nitrogen

consumption (C in Eq. 2) ranged from 0.22–0.88 mmol N g21DW

h21, which was similar to nitrate uptake rates over 72 h.

Long-term adaption to increased nitrogen supply
Mosses from the pristine site (Patagonia; Figure S1 and Figure

S2) appeared to be more efficient in rapidly taking up ammonium

and nitrate than mosses from the N-polluted site (the Netherlands).

40–160% higher uptake rates were observed in all treatments in

the 72 hours experiment with the exception of the 1 mM nitrate

treatment (Fig. 4). Both sites showed a concentration effect as

described above (Fig. 2). For the 1 mM nitrate treatment, mosses

from the pristine site had similarly low rates as mosses from the

polluted site. This resulted in an interaction effect between site and

concentration (Table 2, df = 1, F = 4.35, P = 0.047). Mosses from

the pristine site were more efficient in taking up ammonium at

concentrations below 100 mM, than mosses from the N-polluted

site. This difference was most pronounced at very low ammonium

concentrations (1 mM). At 1 mM ammonium mosses from the

pristine site showed average uptake rates of 0.46 mmol N g21DW

h21 which is still within the range of ‘critical N-uptake rates’

(Figs. 3, 4). Mosses from the N-polluted site were less efficient at

concentrations of 1 mM ammonium or nitrate, resulting in total

uptake of ,13 mmol N g21DW over 72 h. Such a low uptake is on

average lower than ‘critical N-uptake rates’. In mosses from the N-

polluted site, tissue nitrogen concentrations remained below

800 mmol N g21DW during the experiment, showing no signs of

N-saturation.

Comparison of N-uptake in apical tissue and stem tissue
As rainwater usually infiltrates deeper than the upper 5–10 mm

where the capitula are situated, a larger part (30–35 mm) of the

Sphagnum mosses were used in the uptake experiments. Lower stem

tissue is likely to be in contact with soil moisture containing

ammonium and nitrate for longer periods of time. We found 30%

higher uptake by stems than by capitula for ammonium treatments

with high concentrations (50 mM and 500 mM) (Fig. 5, Table 3). In

the 1 mM nitrate treatment the specific uptake rate of stems was

not significantly higher than that of capitula, differing only

0.5 mmol N g21DW h21 (Fig. 5, Table 3).

Conceptualised model of dose–exposure time
relationship

In figure 6 the nitrogen uptake kinetics found were used to

evaluate the efficiency of Sphagnum plants to retain the nitrogen

deposited by rain episodes under field conditions. To estimate the

exposure time to nitrogen needed by Sphagnum mosses to retain
Table 1. Minimal adequate models1 used for data presented
in Fig. 2.

Uptake rate Factor Log L Ratio p-value2

NH4
+ Concentration 58.34 ,.0001

Exposure time 109.40 ,.0001

Concentration6Exposure time 22.69 ,.0001

NO3
2 Concentration 42.06 ,.0001

Exposure time 50.86 ,.0001

Concentration6Exposure time 13.43 ,.0001

1Nitrogen saturation of moss tissue was not a significant factor.
2p-values represent the importance of the explanatory factor assessed by a
comparison of the minimum adequate model with a reduced model using the
likelihood ratio test.
doi:10.1371/journal.pone.0079991.t001

Table 2. Accession effect: linear models of data presented in
Fig. 4.

Uptake rate Factor F p-value

NH4
+ Concentration 180.33 ,.0001

Origin 24.39 ,.0001

Concentration6origin 3.03 0.0936

NO3
2 Concentration 45.36 ,.0001

Origin 20.91 ,.0001

Concentration6origin 4.35 0.0469

doi:10.1371/journal.pone.0079991.t002
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90% for different nitrogen deposition loads, the following

assumptions were made: a rainfall of 5 l m22 (5 mm) and a living

moss biomass of 500 gDW m22, which is equivalent to an average

bulk density of 10 gDW l21 in the upper 5 cm (cf. [54,55]). As a

conservative estimate we assumed that the entire moss biomass

contributes to nitrogen uptake. The nitrogen pulse was diluted 4

times by the water content in Sphagnum mosses that often exceeds

10 times the dry weight of mosses [56,57]. The resulting

concentrations were used in Eq. 1 to calculate uptake rates per g

DW biomass. Five different scenarios were used for maximum

uptake rates (Vmax) based on the present uptake experiments

(Fig. 1, 2): 1) ammonium pulse exposure 28 mmol N g21DW h21,

2) ammonium long exposure 2.8 mmol N g21DW h21, 3) nitrate

pulse exposure 2.5 mmol N g21DW h21, 4) nitrate_long exposure

0.8 mmol N g21DW h21 and nitrate_low affinity 0.8 mmol N

g21DW h21. The half saturation constant (Km) was 6.5 mM for

ammonium and 3.5 mM for nitrate. For the scenario ‘‘nitrate low

affinity’’ we calculated using a Km of 35 mM. Nitrogen concen-

trations in rain (mmol NH4NO3 l21) are related to yearly loads of

nitrogen (kg ha21) by a factor of 0.105, assuming 750 mm rainfall.

Initial uptake rates of an ‘‘ammonium pulse’’ (0.5 h uptake

rates, Fig. 1) resulted in the lowest time to remove 90% of nitrogen

from rain. Since the exposure time linearly decreases with Vmax,

the highest exposure times were found for the scenarios with

lowest Vmax (‘‘nitrate long’’ and ‘‘nitrate low affinity’’). For the

scenario ‘‘nitrate long’’ simulations suggest that even at natural

nitrate concentrations the exposure time may exceed 30 minutes,

which is close to the upper limit of the average residence time of

rain (dotted line in Figure 6). The simulations suggest that all

scenarios except ‘‘ammonium pulse’’ are prone to nitrogen

leaching to deeper soil/peat layers when concentrations of

nitrogen are at levels typical for polluted areas.

Rain N concentrations below 10 mmol N l21 (natural unpollut-

ed rain) had surprisingly little influence on exposure time (Fig. 6).

In contrast, exposure time increased substantially at N concentra-

tions in rain above 30 mmol N l21 (rain from polluted areas). A

high half-saturation constant Km (viz. low affinity to nitrogen)

increased exposure time especially at low concentrations (upper-

most curve in Fig. 6 and ‘‘nitrate pulse’’ vs. ‘‘ammonium long’’).

Nitrogen doses used in many field application experiments (.

2000 mmol N l21) require exposure times up two orders of

magnitude higher than the residence time of rain, which may

probably result in deep infiltration of nitrogen.

An increased frequency of intense rain storm events can reduce

residence time of rain below ten minutes during these events.

Based on the conceptualised model proposed here, we expect an

increased leaching potential of nitrate but also of ammonium in

case Sphagnum will be exposed for several hours to ammonium.

Highest leaching is expected shortly after dry spells, for two

reasons. Firstly, our data shows passive uptake rates to be 10 to 20

times lower than active uptake. Secondly, the water holding

Figure 5. Differences between average uptake rates (mmol N
gDW21 h21) after 0.5 hours in different fractions of Sphagnum
magellanicum from the pristine site. We analysed capitula and
stems separately, while whole plant values represent the DW weighted
mean of both fractions.
doi:10.1371/journal.pone.0079991.g005

Table 3. Differences between uptake rates in capitulum and stem tissue, as shown Fig. 5.

Uptake rate stem vs. capitula concentration (mmol l21) Factor (uptake capitula vs. stem) T df p-value

NH4
+ 1 ns 2.762 4 0.0507

50 0.66 4.952 4 0.0158

500 0.73 6.125 4 0.0036

NO3
2 1 0.07 5.955 4 0.0040

50 ns 21.418 4 0.2291

500 ns 21.939 4 0.1245

The statistical values are the result of T-tests. Significant differences are printed in bold.
doi:10.1371/journal.pone.0079991.t003
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capacity of Sphagnum stands is drastically reduce due to hysteresis

occurring during drying-rewetting cycles.

Discussion

To our knowledge, this is the first study that investigates the

interactions between exposure time and nutrient concentration for

the uptake of ammonium and nitrate by Sphagnum magellanicum,

which is an important peat-forming species in peatlands globally.

High uptake rates found in the present study suggest almost

complete, immediate (within minutes) uptake of ammonium and

nitrate from rain (Fig. 6). Long-term uptake rates (Figs. 2, 3)

seemed to be sufficient to maintain N-provision for growth (critical

N-uptake rates). Higher uptake rates were found for stem tissue as

compared to capitula tissue (Fig. 5). Stems showed a higher surface

area per dry weight, which increased the relative surface of stems

to the nitrogen solution. Nitrogen uptake by Sphagnum magellanicum

from the pristine Patagonia site seemed to be much more efficient

at low concentrations (Km = 11 mM) than arctic Sphagnum spp.

([47]; Km = 1001 mM) or tropical non-Sphagnum mosses ([48];

mean Km = 59 mM for 10 species). The extremely high uptake

efficiency found in the present study may reflect the nutrient-

deprived conditions in Patagonian bogs and serve as a benchmark

for studies in polluted areas.

The highly efficient nitrogen uptake, however, provides a

serious risk of over-saturation when mosses become exposed to

high atmospheric nitrogen loads and consequently high nitrogen

availability in rainwater and surface moisture. Porewater concen-

trations of dissolved inorganic nitrogen are often in the range of 5–

50 mmol N l21 at low to average nitrogen deposition sites

[49,58,59], with ammonium being the dominating species due to

the low pH in Sphagnum-dominated ecosystems (low nitrification

rates). Our studies revealed substantial uptake rates for this range

of porewater concentrations. It has been shown for Sphagnum

mosses that photosynthetic rates decrease at nitrogen tissue

contents above 930 mmol N g21DW [37]. Mosses would exceed

their optimal nitrogen content (930 mmol N g21DW) within

36 hours (extrapolating 0.5 hour uptake rates at 10 mM ammo-

nium (15.5 mmol N g21DW h21) and a nitrogen tissue content of

400 mmol N g21DW. Evidence for supra-optimal N-uptake was

found in the 100 mM ammonium treatment over 72 h (Fig. 2).

Detoxification of excess nitrogen, especially ammonium, is slow

and requires both energy and products of photosynthesis

(production of N-rich amino acids; [1,60,61]. It is therefore very

likely that a mechanism for rapid down-regulation of N-uptake has

evolved in Sphagnum to prevent excessive uptake of nitrogen and

energy loss. We have indeed found such evidence of a decrease in

uptake efficiency upon enhanced exposure time to nitrogen

(Figs. 2–4).

Exposure time effect
Exposure time significantly decreased nitrogen uptake rates at

all N doses (Figs. 2, 3). This exposure time effect also increased

with nitrogen dose (Table 1). We expected uptake rates to remain

constant or to decline only modestly at low nitrogen doses (i.e. low

uptake rates) as earlier studies assumed a fixed upper threshold of

nitrogen uptake, which is related to nitrogen saturation of moss

tissue [12,35]. In contrast to these expectations, the present study

suggests a decrease in uptake efficiency independent of tissue

nitrogen concentration but present along the entire range of total

nitrogen uptake (12–166 mmol N g21DW) over 72 h (Fig. 3).

Nitrate uptake efficiency also decreased, but substantial differences

were only found at the scale of hours to days (Fig. 2). The observed

reduction in nitrate uptake occurred at the same time scale as the

reported decrease of nitrate reductase activity, the key enzyme in

nitrate assimilation [1,62]. A lower activity of nitrate reductase

may cause an accumulation of symplastic nitrate [35] possibly

resulting in down-regulation of transporter activity.

Interestingly, uptake rates decreased also at low concentrations

of nitrogen and consequently resulted in low total uptake. We

hypothesise that the observed rapid reduction in ammonium

uptake (40% in the first 2 h; Fig. 3) is related to the saturation of

Figure 6. Exposure time of mosses to nitrogen increases non-linearly at increasing nitrogen concentrations. We used a conceptualized
relationship (log-log) between nitrogen concentration in rain and exposure time for a living Sphagnum layer that would need to retain some 90% of
the nitrogen load. The area below the horizontal dots (average residence time of rain) indicates an increasing potential of nitrogen leaching through
the living layer of mosses. Maximum uptake rates Vmax differ between scenarios: black ‘‘ammonium pulse’’ 28 mmol N gDW21 h21, green ‘‘ammonium
long’’ 2.8 mmol N gDW21 h21, red ‘‘nitrate pulse’’ 2.5 mmol N gDW21 h21, purple ‘‘nitrate long’’ 0.8 mmol N gDW21 h21 and grey dashed line ‘‘nitrate
low affinity’’ 0.8 mmol N gDW21 h21, respectively. The model was parameterised with a Km of 6.5 mM for ammonium and a Km of 3.5 mM for nitrate.
The ‘‘nitrate low affinity’’ was calculated with a Km of 35 mM. An increasing potential of leaching is expected above the dotted black line that indicates
the upper limit of residence time of rain. Average nitrogen concentrations in rain (mmol N l21) relate to yearly wet deposition of nitrogen (kg ha21) by
a factor 0.1 (yearly rainfall 750 mm).
doi:10.1371/journal.pone.0079991.g006
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temporal storage pools (vacuole, cell wall, amino acid production).

Once these pools are saturated, ammonium may be taken up at

rates similar to nitrogen consumption in biomass production and

amino acid/protein synthesis. Little is known, however, about the

kinetics of amino acid metabolism in Sphagnum mosses. A slow

accumulation of glutamine has been reported at rates of

35 mmol g21DW over 72 hours [1]. Also [61] found activity of

glutamine synthetase substantially lower than ammonium uptake

rates in Sphagnum mosses. Biomass production, the most important

long-term sink of nitrogen, sequesters on average 0.1–0.6 mmol N

h21 per gram growing apex (capitulum) when converting seasonal

to hourly growth rates. These critical N-uptake rates are in stark

contrast to the actual nitrogen uptake rates observed during the

first two hours, but seem to be in agreement with N-uptake rates

found during the 72 h experiment (Figs. 3, 4).

The cation exchange at the cell wall could represent additional

ammonium storage. The results with autoclaved mosses suggested,

however, that only ,1 mmol NH4 g21DW could be adsorbed to

the cell wall when mosses where exposed to a medium containing

260 meq l21 competing cations (see methods). This low adsorption

of ammonium is in agreement with other studies [63,64]. The

capacity to adsorb ammonium has been shown to be lowered by

competing cations like K+, Na+ and Ca2+ [64].

Global change increases the risk of nitrogen leaching
Adaption to high nitrogen loads may not only occur at the scale

of hours, but also after years or decades of increased nitrogen

deposition [38]. Our results indeed provide evidence that the N-

uptake efficiency of Sphagnum magellanicum decreases by a factor

1.4–2.6 in mosses that experienced long-term exposure (decades)

to high nitrogen deposition (Fig. 4). A decrease of nitrogen

retention would be exacerbated when Sphagnum moss density is

reduced by nitrogen [10,54,55]. Therefore, we expect a substan-

tially lower nitrogen retention by stands of Sphagnum from polluted

sites compared to pristine mosses, which may further enhance

nitrogen leaching in N polluted sites, even when nitrogen

deposition would decrease. Further studies are needed to unravel

the physiological mechanisms causing the reduction in uptake

efficiency.

We propose a conceptual model (Fig. 6) that relates uptake

efficiency to both dose and exposure time. Our model suggests

enhanced leaching (lower effective retention) with increasing N

loads. The model explains the leaching found in gradient studies

[17,65], pulse loading studies [34,49,54] and fertilisation studies

[14,26,66]. The decrease in uptake efficiency of mosses (Fig. 2)

within 72 hours results in substantially higher exposure times

(Fig. 6), by which both ammonium and nitrate are at increased risk

of leaching even at natural nitrogen concentrations in rain.

Substantial leaching of nitrate may also occur at the short

residence times associated with continuous rainfall, typical for the

large oceanic bogs of North and South America [67,68].

The nitrogen uptake kinetics found here also suggest that

climate change may interact with N-retention efficiency (Fig. 6).

Excessive rainfall and extended dry spells may become more

frequent, and in combination will result in rapid and deep

infiltration of rainwater and solutes [32,33,69]. Dry conditions

may also lower uptake efficiency as a result of low metabolic

activity and growth of mosses after desiccation [70,71]. N-loads

typically applied in field addition experiments (.1000 mmol N l21;

5–40 kg N ha21 per application) would remain available for days

to weeks in the living Sphagnum layer (Fig. 6), as has been found in

field studies [10,72]. At exposure times of days, availability of

applied nitrogen depends largely on hydrological changes (dilution

by rain, infiltration), which may partly account for the high

variation found in nitrogen uptake by Sphagnum mosses [21].

Conclusion

Sphagnum mosses have developed a rapid uptake mechanism to

deal with low availability of nitrogen, where other species in

ombrotrophic environments have dealt with the same constraint

by becoming insectivorous or particularly nutrient-conservative

[73]. Nitrogen uptake of Sphagnum appears to be highly efficient

(‘‘N-sprinter’’) and very well adapted to natural rain events (1–

20 mmol N l21), traits that have been selected for during the

evolution of this 34–102 million year old genus [74]. However,

Sphagnum has to deal with a delicate trade-off between preventing

potential adverse effects of high N-uptake (Fig. 2), and promoting

the competitive strength of vascular plants by substantial leaching

(Fig. 6) and accumulation of nitrogen in the rhizosphere

[12,75,76]. This trade-off extends across several scales, from cell

to peatland system. In case Sphagnum biomass decreases, leaching

of nitrogen is strongly increased [17]. Once the accumulation of

nitrogen promotes the expansion of vascular plants [26,28],

Sphagnum growth is impeded by shading and desiccation at the

ecosystem scale [7,11,77].

The present study indicates that long-term nitrogen retention is

tightly linked to nitrogen assimilation via biomass production of

Sphagnum mosses (Fig. 3). Productivity of Sphagnum mosses is often

limited by water availability ([78] and literature therein) and we

therefore expect a strong interaction between moisture availability

and nitrogen retention. The expected hydrological extremes (e.g.

[79]) as a result of climate change increase the negative effects of

high nitrogen availability and can thereby stress Sphagnum-

dominated vegetation under already low nitrogen loads. There-

fore, both types of global change in concert (climate change and

increased anthropogenic N input) are expected to severely change

the functioning of Sphagnum-dominated peatlands, and complicate

the conservation and restoration of these self-regulating ecosystems

[80].

Supporting Information

Figure S1 Photo that provides an overview of the
pristine site in Patagonia where material was collected
from 5 plots.
(JPG)

Figure S2 Photo showing a close-up of a dense stand of
Sphagnum magellanicum at the pristine site before
sampling. Note that vascular plants are scattered at a low

density accounting for less than 1% of the total biomass.

(JPG)

Supporting Information S1 Comparing two kinetic mod-
els (Michaelis-Menten vs. model used in the main text)
revealed that differences between a 2-parameter model
and a 3-parameter model are small within the range of
natural nitrogen concentrations in rain.
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