The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://repository.ubn.ru.nl/handle/2066/127835

Please be advised that this information was generated on 2017-09-02 and may be subject to change.
Search for Quantum Black Hole Production in
High-Invariant-Mass Lepton+Jet Final States Using pp
Collisions at $\sqrt{s} = 8$ TeV and the ATLAS Detector

The ATLAS Collaboration

Abstract

This Letter presents a search for quantum black-hole production using 20.3fb^{-1} of data collected with the ATLAS detector in pp collisions at the LHC at $\sqrt{s} = 8$ TeV. The quantum black holes are assumed to decay into a final state characterized by a lepton (electron or muon) and a jet. In either channel, no event with a lepton–jet invariant mass of 3.5 TeV or more is observed, consistent with the expected background. Limits are set on the product of cross sections and branching fractions for the lepton+jet final states of quantum black holes produced in a search region for invariant masses above 1 TeV. The combined 95\% confidence level upper limit on this product for quantum black holes with threshold mass above 3.5 TeV is 0.18fb. This limit constrains the threshold quantum black-hole mass to be above 5.3 TeV in the model considered.
Search for Quantum Black Hole Production in High-Invariant-Mass Lepton+Jet Final States Using \(pp \) Collisions at \(\sqrt{s} = 8 \) \(\text{TeV} \) and the ATLAS Detector

The ATLAS Collaboration

This Letter presents a search for quantum black-hole production using \(20.3 \text{fb}^{-1} \) of data collected with the ATLAS detector in \(pp \) collisions at the LHC at \(\sqrt{s} = 8 \text{TeV} \). The quantum black holes are assumed to decay into a final state characterized by a lepton (electron or muon) and a jet. In either channel, no event with a lepton-jet invariant mass of 3.5 \(\text{TeV} \) or more is observed, consistent with the expected background. Limits are set on the product of cross sections and branching fractions for the lepton+jet final states of quantum black holes produced in a search region for invariant masses above 1 \(\text{TeV} \). The combined 95\% confidence level upper limit on this product for quantum black holes with threshold mass above 3.5 \(\text{TeV} \) is 0.18 fb. This limit constrains the threshold quantum black-hole mass to be above 5.3 \(\text{TeV} \) in the model considered.

Quantum black holes (QBHs) \([1,2]\) are predicted in low-scale quantum gravity theories that offer solutions to the mass hierarchy problem of the Standard Model (SM) by lowering the scale of quantum gravity (\(M_\text{D} \)) from the Planck scale (\(\sim 10^{16} \text{TeV} \)) to a value of about 1 \(\text{TeV} \). In models with large extra dimensions such as the Arkani-Hamed–Dimopoulos–Dvali (ADD) model \([3,5]\), only the gravitational field is allowed to penetrate the \(n \) extra dimensions, while all SM fields are localized in the usual four-dimensional space-time. QBHs with masses near \(M_\text{D} \), postulated to conserve total angular momentum, color and electric charge, may decay to two particles \([2,6]\). The behavior of QBHs is distinct from semicalssical black holes that decay via Hawking radiation to a large number of objects \([7]\). Searches for semi-classical black holes typically require three or more objects \([8,9]\).

The quantum approximations used in the modeling of black hole production are valid when black-hole masses are above a minimal threshold mass, \(M_{\text{th}} \), which is taken to be equivalent to the QBH inverse gravitational radius. If the QBHs investigated in this Letter are accessible at the Large Hadron Collider (LHC) \([10]\), they can produce lepton+jet final states \([2,6]\) motivating this first dedicated search for high-invariant-mass final states with a single electron (\(e \)) or a single muon (\(\mu \)), and at least one jet. Two-particle QBH decays to a final state consisting of a lepton and a quark-jet violate lepton and baryon number conservation, producing a distinctive signal for physics beyond the SM. Previous searches for QBHs relied on signatures such as dijet mass distributions \([11,12]\), generic multijet configurations \([6]\) and photon+jet final states \([13]\).

The largest QBH cross section for the final states considered is predicted for the collision of two \(u \)-quarks (\(\sigma_{uu} \)), which produces charge \(+4/3 \) objects with equal branching fractions (BFs) of BF\(uu = 11\% \) to each lepton+jet final state. The next largest cross sections are for charge \(+1/3 \) (ud) and \(-2/3 \) (dd) QBHs with lepton+jet BFs of BF\(ud = 5.7\% \) and BF\(dd = 6.7\% \) \([6]\). Processes with initial states having antiquarks and heavier sea-quarks are suppressed by at least a factor of 100 and can be neglected. The QBH cross section is a steeply declining function of \(M_{\text{th}} \), and has \(\Sigma_{qq} \times \text{BF}_{qq} \approx 8.6 \times 10^5 \text{fb} \), 8.9 \(\times 10^5 \text{fb} \) and 0.75 fb for \(M_{\text{th}} \) of 1 \(\text{TeV} \), 3 \(\text{TeV} \) and 5 \(\text{TeV} \), respectively \([14]\).

The ATLAS detector \([15]\) includes an inner tracker, covering a pseudorapidity \([16]\) range \(|\eta| < 2.5 \), surrounded by a superconducting solenoid providing a 2 T central field. A liquid-argon (LAr) electromagnetic (EM) sampling calorimeter (\(|\eta| < 3.2 \)), a scintillator-tile hadronic calorimeter (\(|\eta| < 1.7 \)), a LAr hadronic calorimeter (\(1.4 < |\eta| < 3.2 \)), and a LAr forward calorimeter (\(3.1 < |\eta| < 4.9 \)) provide the energy measurements. The muon spectrometer consists of tracking chambers covering \(|\eta| < 2.7 \), and trigger chambers covering \(|\eta| < 2.4 \), in a magnetic field produced by a system of air-core toroids. Events considered in this analysis are required to have one high-transverse-momentum (high-\(p_T \)) lepton (\(e/\mu \)) that passes requirements of the three-level trigger system \([17]\). The thresholds applied at the third trigger level are 60 GeV and 36 GeV for electrons and muons, respectively. The analysis is based on the complete 2012 data set of \(pp \) collisions taken at a center-of-mass energy of \(\sqrt{s} = 8 \text{TeV} \) by the ATLAS detector at the LHC, corresponding to an integrated luminosity of \(20.3 \pm 0.6 \text{fb}^{-1} \) \([18]\) after data-quality requirements.

The event selection is designed to be efficient for generic lepton+jet final states and is based on leading-order simulated-signal QBH events obtained from the QBH1.04 generator \([13]\), followed by parton showering and hadronization using PYTHIA8.165 \([19]\). The signal generator uses the MSTW2008LO \([20]\) set of leading-order parton distribution functions (PDFs) with the AU2 underlying-event tune \([21]\). This Letter assumes the ADD model with \(M_{\text{th}} = M_{\text{D}} , n = 6 \), and the QCD factorization scale for the PDFs set to the inverse gravitational radius \([14]\). Samples with \(M_{\text{th}} \) from 1 \(\text{TeV} \) to 6 \(\text{TeV} \), in steps of 0.5 \(\text{TeV} \), are generated for both channels.

Events with a high-\(p_T \) lepton and one or more jets can also arise from electroweak (EW) processes includ-
ing vector-boson production with additional jets; diboson
(WW, WZ, ZZ), top-quark pair (t\bar{t}) and single top-quark
(t or \bar{t}) production; and multijet processes including non-
prompt leptons from semileptonic hadron decays and jets
misidentified as leptons.

The EW background in the signal region (SR) is esti-
mated using Monte Carlo (MC) samples normalized
to data in control regions. All MC simulated sam-
ples are produced using the ATLAS detector simula-
tion \cite{22} based on GEANT4 \cite{23}. The simulated events
are reconstructed in the same manner as the data. The
\(t\bar{t}\) and single-top-quark events are simulated with
MC@NLO4.06 \cite{24} and AcerMC3.8 \cite{25}, respectively; the
production of \(W\) +jets and \(Z\) +jets is simulated using
ALPGEN2.14 \cite{26}; and diboson production is simulated
with SHERPA1.4.1 \cite{27}. The leading-order CTET6L1
PDFs \cite{28} are used for ALPGEN and AcerMC samples
while the next-to-leading-order CT10 PDFs \cite{29} are used for
the SHERPA and MC@NLO samples. The generators
for all samples except dibosons are interfaced to HER-
WIG6.520 \cite{30,31} for parton showering and hadroniza-
tion and to JIMMY4.31 \cite{32} for the underlying-event
model. The results of higher-order calculations are used
to adjust the relative fractions of the simulated events
as in Refs. \cite{33,34}. Additional inelastic \(pp\) interactions,
termed pileup, are included in the event simulation so
as to match the distribution in the data (on average 21
interactions per bunch crossing).

Electron candidates are identified as localized depo-
sitions of energy in the EM calorimeter with \(p_T^{\text{miss}} >
130 \text{ GeV}\) and \(|\eta| < 2.47\), excluding the barrel–endcap
transition region, \(1.37 < |\eta| < 1.52\), and matched to
a track reconstructed in the tracking detectors. Back-
ground from jets is reduced by requiring that the shower
profiles are consistent with those of electrons \cite{35}. Iso-
lated electrons are selected by requiring the trans-
verse energy deposited in a cone of radius \(\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.3\) centered on the electron cluster,
excluding the energy of the electron cluster itself, to be
less than \(0.0055 \times p_T^{\text{miss}} + 3.5 \text{ GeV}\) after corrections for en-
dergy due to pileup and energy leakage from the electron
cluster into the cone. This criterion provides nearly con-
stant selection efficiency for signal events over the entire
\(p_T^{\text{miss}}\) range explored and for all the pileup conditions.

Muon candidates are required to be detected in at
least three layers of the muon spectrometer and to have
\(p_T^{\mu} > 130 \text{ GeV}\) and \(|\eta| < 2.4\). Possible background from
cosmic rays is reduced by requiring the transverse and
longitudinal distances of closest approach to the interac-
tion point to be smaller than 0.2 mm and 1.0 mm, respec-
tively. Signal muons are required to be isolated such that
\(\sum p_T < 0.05 \times p_T^{\mu}\), where \(\sum p_T\) is the sum of the \(p_T\)
of the other tracks in a cone of radius \(\Delta R = 0.3\) around the
direction of the muon.

Jets are constructed from three-dimensional noise-
suppressed clusters of calorimeter cells using the anti-\(k_T\)
algorithm with a radius parameter of 0.4 \cite{36,37}. Jet
energies are corrected for losses in material in front of
the active calorimeter layers, detector inhomogeneities,
the non-compensating nature of the calorimeter, and
pileup. Jet energies are calibrated using MC simula-
tion and the combination of several in-situ techniques
applied to data \cite{38,40}. All jets are required to have
\(p_T^{\text{miss}} \geq 50 \text{ GeV}\) and \(|\eta| < 2.5\). In addition, the most ener-
getic jet is required to have \(p_T^{\text{miss}} > 130 \text{ GeV}\).

The missing transverse momentum (with magnitude
\(E_T^{\text{miss}}\), used only in the background estimation, is cal-
culated as the negative of the vectorial sum of calibrated
clustered energy deposits in the calorimeters, and is cor-
corrected for the momenta of any reconstructed muons \cite{41}.

In the electron (muon) channel, events are required
to have exactly one electron (muon). Multijet background
can be reduced, with minimal loss in signal efficiency, by
requiring the average value of \(\eta\) for the lepton and lead-
ing jet to satisfy \(|\eta(L) - \eta(J)| < 1.25\) and the difference be-
tween the lepton and leading jet \(\eta\) to satisfy \(|\Delta \eta| < 1.5\).
The signal lepton and jet are mostly back-to-back in \(\phi\) and
are required to satisfy \(|\Delta \phi| > \pi/2\).

The invariant mass (\(m_{\text{inv}}\)) is calculated from the lepton
and highest-\(p_T\) jet. The SR is defined by a lower bound
on \(m_{\text{inv}}\), \(m_{\text{min}}\), that accounts for experimental resolu-
tion. In the electron channel \(m_{\text{min}} = 0.9M_{\text{th}}\) is used. In
the muon channel, the requirement is loosened at high
invariant mass, as muon resolution has a term quadratic
in \(p_T^{\mu}\), resulting in \(m_{\text{min}} = 0.95 \times 0.05M_{\text{th}}/1\text{TeV} \times 1\text{TeV}\).
A low-invariant-mass control region (LIMCR) is defined
with \(m_{\text{inv}}\) between 400 GeV and 900 GeV, which has a
negligible contamination from a potential signal (< 2%)
for the lowest \(M_{\text{th}}\) considered.

The acceptance of the event selection is about 65%,
based on generator-level quantities and calculated by
imposing selection criteria that apply directly to phase
space (lepton/jet \(\eta\), lepton/jet \(p_T\), \(\Delta \eta\), \(\Delta \phi\), \(\eta\), and
\(m_{\text{inv}}\)). All other selection criteria, which in general cor-
respond to event and object quality requirements, are
used to calculate the experimental efficiency based on
the events included in the acceptance. The experimental
efficiency falls from 89(59)% to 81(50)% for masses from
1 TeV to 6 TeV in the electron (muon) channel. The exper-
imental efficiency in the muon channel is lower than that
in the electron channel because more stringent re-
quirements are applied to ensure the best possible reso-
lution on \(m_{\text{inv}}\). The cumulative signal efficiency is the
product of the acceptance and experimental efficiency.

In the electron channel, the multijet background
is characterized by small values of \(E_T^{\text{miss}}\), while EW back-
ground events can have large \(E_T^{\text{miss}}\) due to the produc-
tion of high-momentum neutrinos. The discriminating power
of \(E_T^{\text{miss}}\) is used to determine the normalization of the
two backgrounds to the data in the LIMCR. The multijet
template is taken from data in which electron candidates
pass relaxed identification criteria but fail the normal
identification selection, and the EW template is taken from MC simulation where electron candidates pass the normal selection. The templates are fit to the E_T^{miss} distribution in the interval $[0,150]$ GeV in five separate detector-motivated regions of η, to determine normalization factors for both the multijet and EW backgrounds.

To extrapolate both the multijet and EW background to the SR, functions of the form $p_1x^{p_2+p_3\ln(x)}(1-x)^{p_4}$ (with $x = m_{\text{inv}}/\sqrt{s}$ and fit parameters p_1–p_4) \cite{12} are used and the contributions are scaled by the corresponding normalization factor derived in the LIMCR. A simple power-law fit, with p_3 and p_4 fixed to zero, adequately describes both data and simulation. This is used as the baseline, while p_3 and p_4 are allowed to vary as part of the evaluation of the systematic uncertainty.

In the muon channel, the multijet and EW backgrounds can be discriminated on the basis of the transverse impact parameter (d_0) distribution of the muon since multijet background is dominated by jets containing charm and bottom hadrons decaying to muons while EW backgrounds are dominated by prompt muons. The template for the EW background is selected using Z-boson decays to two muons while the template for multijet background is taken from muons that fail the isolation requirement. Both templates are taken from data. The templates are fit to the d_0 distribution in the interval $[-0.1,0.1]$ mm to determine the normalization factors. The fraction of multijet background, 0.046 ± 0.005, is neglected when extrapolating the background in SR. The procedure for extrapolating the EW background to the SR is the same as for the electron channel.

The background estimate in the SR, shown in Fig. 1 was not compared to data until the final fit method and parameters were fixed. The hatched area in Fig. 1 shows the total uncertainty in the background estimate, which is dominated by the systematic uncertainties. In extracting the limits, the fits described above are used to extrapolate the background into the high invariant-mass region.

The systematic uncertainties on the background are evaluated as a function of m_{inv}, and are dominated by uncertainties on the fits used to extrapolate the background to the highest m_{inv}, uncertainties on PDFs, and the choice of MC generator. Systematic uncertainties due to the choice of fitting functions are evaluated by fitting the m_{inv} spectrum with parameters p_3 and p_4 free and taking the difference between these fits and the fits with p_3 and p_4 fixed to zero. Additionally, SHERPA samples are used instead of ALPGEN and the fits are repeated. The uncertainty in the PDFs is estimated using a set of 44 PDF eigenvectors for CTEQ6.6 \cite{43}. For each of the 44 sets, the background fits are repeated and the extrapolated backgrounds are estimated. To estimate the uncertainty in the multijet background in the electron channel, an alternative selection of background-enriched data events, based on photons, is used. The systematic uncertainties from the simulation of the detector response are associated with the jet and electron energy scales and resolutions, the muon momentum scale and resolution, and the trigger requirement. The combined uncertainty in the background prediction ranges from 16% (1 TeV) to 100% (6 TeV) for the electron channel and from 50% (1 TeV) to 170% (6 TeV) for the muon channel. Background systematic uncertainties for $M_{th} = 5$ TeV are given in Table 1.

Uncertainties on the signal efficiency in each of the mass bins are associated with the requirements on Δy, $\Delta \phi$, $\langle n \rangle$, m_{inv}, and isolation. In addition, uncertainties on the detector simulation, mentioned above for the background, as well as the uncertainty in luminosity are taken into account. The combined uncertainty in the signal efficiency from these sources ranges from 3.5% at 1 TeV to
3.9% at 6 TeV for the electron channel and from 3.6% at 1 TeV to 5.6% at 6 TeV for the muon channel. The cumulative efficiency, shown in Table I, is taken from the signal MC simulation for charge +4/3 QBHs. The differences in the efficiency between the charge +4/3 state and the other charged states are much smaller than the uncertainties mentioned above and are neglected. The effect of the 0.65% uncertainty in the LHC beam energy [44] is to change the QBH production cross section. Since the QBH cross section is nearly constant in M_{th}, this is effectively an uncertainty in M_{th} and has a negligible effect on the limits.

The observed numbers of events and the expected backgrounds, shown in Table II, are in agreement within the total uncertainty. There is no evidence for any excess. Upper limits on $\Sigma \sigma_{qq} \times BF_{qq}$ for the production of QBHs above M_{th} are determined in the interval 1–6 TeV assuming lepton universality and using the CLs method [45] [46], which is designed to give conservative limits in cases where the observed background fluctuates below the expected values. The statistical combination of the channels employs a likelihood function constructed as the product of Poisson probability terms describing the total number of events observed in each channel. Systematic uncertainties are incorporated as nuisance parameters into the likelihood through their effect on the mean of the Poisson functions and through convolution with their assumed Gaussian distributions. Correlations between channels are taken into account.

Figure 2 shows the 95% confidence level (C.L.) combined lepton+jet upper limit on the cross section times branching fraction for the production of QBHs as a function of M_{th}. Above 3.5 TeV, the limit is 0.18 fb. For the $n = 6$ QBH model assumed in this Letter, the 95% C.L. lower limit on M_{th} is 5.3 TeV. For $n = 2$, and all other model assumptions the same, the 95% C.L. lower limit on M_{th} is 4.7 TeV. Treating the channels separately, the 95% C.L. upper limit on the electron (muon)+jet $\Sigma \sigma_{qq} \times BF_{qq}$ above 3.5 TeV is 0.27 (0.49) fb, and the $n = 6$ lower limit on M_{th} is 5.2 (5.1) TeV.

In conclusion, a first search for two body lepton+jet final states with large invariant mass has been performed using $20.3 \text{ fb}^{-1} of pp$ collisions recorded at $\sqrt{s} = 8$ TeV with the ATLAS detector at the LHC. In the invariant-mass region above 1 TeV the observed events are consistent with data-driven extrapolated backgrounds from the low-invariant-mass control region. Above 3.5 TeV the expected

Table I. Breakdown of relative systematic uncertainties on the SM background for the threshold mass $M_{\text{th}} = 5$ TeV.

The uncertainties are added in quadrature to obtain the total uncertainty.

<table>
<thead>
<tr>
<th>Source</th>
<th>Electron+jet</th>
<th>Muon+jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale and resolution</td>
<td>+2</td>
<td>-1</td>
</tr>
<tr>
<td>Jet reconstruction</td>
<td>+31</td>
<td>-15</td>
</tr>
<tr>
<td>Multijet modeling</td>
<td>+27</td>
<td>-27</td>
</tr>
<tr>
<td>PDF</td>
<td>+52</td>
<td>-33</td>
</tr>
<tr>
<td>Total</td>
<td>+100</td>
<td>-89</td>
</tr>
</tbody>
</table>

Table II. Numbers of expected background (Exp.) and observed (Obs.) events, along with the cumulative signal efficiencies (Eff.), with uncertainties including both the statistical and systematic components for various values of M_{th}.

<table>
<thead>
<tr>
<th>M_{th} (TeV)</th>
<th>Electron+jet</th>
<th>Muon+jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1200</td>
<td>$1210^{+39.30}_{-35.29}$</td>
</tr>
<tr>
<td>1.5</td>
<td>100</td>
<td>110^{+40}_{-37}</td>
</tr>
<tr>
<td>2.0</td>
<td>12</td>
<td>$19^{+13.1}_{-12}$</td>
</tr>
<tr>
<td>2.5</td>
<td>0</td>
<td>$5.3^{+5.5}_{-5.9}$</td>
</tr>
<tr>
<td>3.0</td>
<td>0</td>
<td>$1.8^{+1.9}_{-1.6}$</td>
</tr>
<tr>
<td>3.5</td>
<td>0</td>
<td>$0.76^{+0.73}_{-0.67}$</td>
</tr>
<tr>
<td>4.0</td>
<td>0</td>
<td>$0.35^{+0.38}_{-0.33}$</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
<td>$0.09^{+0.10}_{-0.08}$</td>
</tr>
<tr>
<td>6.0</td>
<td>0</td>
<td>$0.03^{+0.04}_{-0.03}$</td>
</tr>
</tbody>
</table>
pected background drops below one event and the 95% C.L. upper limit on the electron (μ+μ)+jet $σ_{qq}$ † BF$_{eq}$ is 0.27 (0.49) fb. Assuming lepton universality, the 95% C.L. upper limit on the sum of the product of QBH lepton+jet production cross sections and branching fractions is 0.18 fb.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNES, CNRS, and CPT, France; CERN; INFN, Italy; MEXT and JSPS, Japan; DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, and NSRF, European Union; IN2P3-CNRS, CEA-CESTA, China; COLCIENCIAS, Colombia; MIE, IFA, Romania; MES of Russia and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; and RFN, Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF Center, Israel; INFN, Italy; MEXT and JSPS, Japan; DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, and NSRF, European Union; IN2P3-CNRS, CEA-CESTA, China; COLCIENCIAS, Colombia; MIE, IFA, Romania; MES of Russia and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; and RFN, Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[16] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe, referred to the x-axis.

<table>
<thead>
<tr>
<th>Institution Name</th>
<th>Location</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty of Applied Information Science, Hiroshima Institute of Technology</td>
<td>Hiroshima</td>
<td>Japan</td>
</tr>
<tr>
<td>Department of Physics, Indiana University</td>
<td>Bloomington IN</td>
<td>United States of America</td>
</tr>
<tr>
<td>Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität</td>
<td>Innsbruck</td>
<td>Austria</td>
</tr>
<tr>
<td>University of Iowa</td>
<td>Iowa City IA</td>
<td>United States of America</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, Iowa State University</td>
<td>Ames IA</td>
<td>United States of America</td>
</tr>
<tr>
<td>Joint Institute for Nuclear Research</td>
<td>Dubna, Dubna</td>
<td>Russia</td>
</tr>
<tr>
<td>KEK, High Energy Accelerator Research Organization</td>
<td>Tsukuba</td>
<td>Japan</td>
</tr>
<tr>
<td>Graduate School of Science, Kobe University</td>
<td>Kobe</td>
<td>Japan</td>
</tr>
<tr>
<td>Faculty of Science, Kyoto University</td>
<td>Kyoto</td>
<td>Japan</td>
</tr>
<tr>
<td>Kyushu University</td>
<td>Fukuoka</td>
<td>Japan</td>
</tr>
<tr>
<td>Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET</td>
<td>La Plata</td>
<td>Argentina</td>
</tr>
<tr>
<td>Physics Department, Lancaster University</td>
<td>Lancaster, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Oliver Lodge Laboratory, University of Liverpool</td>
<td>Liverpool, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, Jožef Stefan Institute and University of Ljubljana</td>
<td>Ljubljana, Slovenia</td>
<td></td>
</tr>
<tr>
<td>School of Physics and Astronomy, Queen Mary University of London</td>
<td>London, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, Royal Holloway University of London</td>
<td>Surrey, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University College London</td>
<td>London, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Louisiana Tech University</td>
<td>Ruston LA</td>
<td>United States of America</td>
</tr>
<tr>
<td>Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3</td>
<td>Paris, France</td>
<td></td>
</tr>
<tr>
<td>Fysiska institutionen, Lunds universitet</td>
<td>Lund, Sweden</td>
<td></td>
</tr>
<tr>
<td>Departamento de Física Teorica C-15, Universidad Autonoma de Madrid</td>
<td>Madrid, Spain</td>
<td></td>
</tr>
<tr>
<td>Institut für Physik, Universität Mainz</td>
<td>Mainz, Germany</td>
<td></td>
</tr>
<tr>
<td>School of Physics and Astronomy, University of Manchester</td>
<td>Manchester, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>CPPM, Aix-Marseille Université and CNRS/IN2P3</td>
<td>Marseille, France</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, University of Massachusetts</td>
<td>Amherst MA</td>
<td>United States of America</td>
</tr>
<tr>
<td>Department of Physics, McGill University</td>
<td>Montreal QC, Canada</td>
<td></td>
</tr>
<tr>
<td>School of Physics, University of Melbourne</td>
<td>Melbourne, Victoria, Australia</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, The University of Michigan</td>
<td>Ann Arbor MI, United States of America</td>
<td></td>
</tr>
<tr>
<td>Department of Physics and Astronomy, Michigan State University</td>
<td>East Lansing MI, United States of America</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Milano; Dipartimento di Fisica, Università di Milano</td>
<td>Milano, Italy</td>
<td></td>
</tr>
<tr>
<td>B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus</td>
<td>Minsk, Republic of Belarus</td>
<td></td>
</tr>
<tr>
<td>National Scientific and Educational Centre for Particle and High Energy Physics</td>
<td>Minsk, Republic of Belarus</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, Massachusetts Institute of Technology</td>
<td>Cambridge MA, United States of America</td>
<td></td>
</tr>
<tr>
<td>Group of Particle Physics, University of Montreal</td>
<td>Montreal QC, Canada</td>
<td></td>
</tr>
<tr>
<td>P.N. Lebedev Institute of Physics, Moscow</td>
<td>Moscow, Russia</td>
<td></td>
</tr>
<tr>
<td>Institute for Theoretical and Experimental Physics (ITEP)</td>
<td>Moscow, Russia</td>
<td></td>
</tr>
<tr>
<td>Moscow Engineering and Physics Institute (MEPhI)</td>
<td>Moscow, Russia</td>
<td></td>
</tr>
<tr>
<td>D.V.Skobeltsyn Institute of Nuclear Physics, M.V.Lomonosov Moscow State University</td>
<td>Moscow, Russia</td>
<td></td>
</tr>
<tr>
<td>Fakultät für Physik, Ludwig-Maximilians-Universität München</td>
<td>München, Germany</td>
<td></td>
</tr>
<tr>
<td>Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)</td>
<td>München, Germany</td>
<td></td>
</tr>
<tr>
<td>Nagasaki Institute of Applied Science</td>
<td>Nagasaki, Japan</td>
<td></td>
</tr>
<tr>
<td>Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University</td>
<td>Nagoya, Japan</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Napoli; Dipartimento di Scienze Fisiche, Università di Napoli</td>
<td>Napoli, Italy</td>
<td></td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University of New Mexico</td>
<td>Albuquerque NM, United States of America</td>
<td></td>
</tr>
<tr>
<td>Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef</td>
<td>Nijmegen, Netherlands</td>
<td></td>
</tr>
<tr>
<td>Nikhef National Institute for Subatomic Physics and University of Amsterdam</td>
<td>Amsterdam, Netherlands</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, Northern Illinois University</td>
<td>DeKalb IL, United States of America</td>
<td></td>
</tr>
<tr>
<td>Budker Institute of Nuclear Physics, SB RAS</td>
<td>Novosibirsk, Russia</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, New York University</td>
<td>New York NY, United States of America</td>
<td></td>
</tr>
<tr>
<td>Ohio State University</td>
<td>Columbus OH, United States of America</td>
<td></td>
</tr>
<tr>
<td>Faculty of Science, Okayama University</td>
<td>Okayama, Japan</td>
<td></td>
</tr>
<tr>
<td>Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma</td>
<td>Norman OK, United States of America</td>
<td></td>
</tr>
</tbody>
</table>
Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy
ac Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
ad Also at Section de Physique, Université de Genève, Geneva, Switzerland
ae Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal
af Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
ag Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
ah Also at DESY, Hamburg and Zeuthen, Germany
ai Also at International School for Advanced Studies (SISSA), Trieste, Italy
aj Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
ak Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
al Also at Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
am Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
an Also at Department of Physics, Oxford University, Oxford, United Kingdom
ao Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
ap Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
aq Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
* Deceased