The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://repository.ubn.ru.nl/handle/2066/127415

Please be advised that this information was generated on 2016-01-29 and may be subject to change.
Elliptic Curve Based Security Processor for RFID

Yong Ki Lee(1), Student Member, IEEE, Kazuo Sakiyama(2), Member, IEEE, Lejla Batina(3), Member, IEEE, and Ingrid Verbauwhede(1),(3), Senior Member, IEEE

Abstract—RFID (Radio Frequency IDentification) tags need to include security functions, yet at the same time their resources are extremely limited. Moreover, to provide privacy, authentication and protection against tracking of RFID tags without losing the system scalability, a public-key based approach is inevitable. In this paper, we present an architecture of a state-of-the-art processor for RFID tags with an Elliptic Curve (EC) processor over GF(2^{163}). It shows the plausibility of meeting both security and efficiency requirements even in a passive RFID tag. The proposed processor is able to perform EC scalar multiplications as well as general modular arithmetic (additions and multiplications) which are needed for the cryptographic protocols. As we work with large numbers, the register file is the most critical component in the architecture. By combining several techniques, we are able to reduce the number of registers from 9 to 6 in the EC processor. To obtain an efficient modulo arithmetic, we introduce a redundant modular operation. Moreover, the proposed architecture can support multiple cryptographic protocols. The synthesis results with a 0.13 µm CMOS technology show that the gate area of the most compact version is 12.5 Kgates.

Index Terms—RFID systems, Security Processor, Elliptic Curve Cryptography, Scalable Hardware, Arithmetic and Logic Units, Public Key Cyptsystems.

I. INTRODUCTION

Designing an RFID system is one of the most challenging tasks since it requires compact and power efficient solutions, especially when security related processing is needed. The most commonly required security properties are anti-cloning and un-tractability. Besides these security properties, the systems should be scalable since the number of tags can be very large. For example, it can be millions for large libraries or warehouses. To satisfy those security and system requirements, it is proven that a public key cryptosystem is necessary [1]. An Elliptic Curve (EC) based cryptosystem would be one of the best candidates for the RFID systems due to its small key size and efficient computation.

In this paper, the proposed RFID processor is composed of a micro controller, an EC processor (ECP) and a bus manager, where the ECP is over GF(2^{163}). For an efficient computation with restrictions on the gate area and the number of cycles, several techniques are introduced in the algorithms and the architecture level. The optimization techniques can be considered in two parts: the ECP and the micro controller. First, noting that the ECP is dominated by the registers due to a large key size of 163 bits, the optimization of the ECP is mostly concentrated on the register file. By proposing a common Z coordinate system (and its corresponding formula) and by introducing a register reuse technique, we reduce the number of registers from 9 to 6. In addition, we design a new register file architecture which reduces around 30% of gate area of the register file with small overhead in cycles. Second, the micro controller is designed to perform general modular operations efficiently. For efficient general modular operations, we propose a redundant representation which results in an efficient computation with less memory compared to conventional methods.

Those techniques result in the most compact ECP of 10.1 Kgates with 276 Kcycles for one point multiplication. The ECP is attached to the micro controller of a tag. General modular operations are also needed for the computation of the authentication protocols. In general, the minimally required operations are modular additions and multiplications. The modular additions and multiplications take 574 cycles and 25 Kcycles respectively for a word size of 163 bits. Since the modular operations can be performed in parallel with the EC scalar multiplication, the former operations do not contribute to the latency. As a result, the overall architecture takes 12.5 Kgates. The architecture is also scalable in the digit size of the ECP (the ECP’s ALU performs the field multiplication in digit serial), and hence a better performance can be easily obtained. We also demonstrate the proposed processor for an EC based authentication protocol.

The remainder of this paper is organized as follows. In Sect. II, an overview of arithmetic operations for EC cryptography is introduced, and in Sect. III, the starting points are summarized. The system overview of the proposed RFID processor architecture is shown in Sect. IV, and several techniques to minimize the ECP are described in Sect. V. The architecture and the instructions of the RFID micro controller are given in Sect. VI, and the synthesis results and the performance analysis are summarized in Sect. VII followed by the conclusion in Sect. VIII.

II. OVERVIEW OF ARITHMETIC OPERATIONS FOR ELLIPTIC CURVE CRYPTOGRAPHY

Elliptic Curve Cryptography (ECC) includes protocols that are based on arithmetic of elliptic curves. Curves that are commonly used in applications are usually defined over GF(p) or GF(2^n), where p is a prime number. Elliptic curve systems
over both types of fields provide the same level of security but the so-called binary fields have some implementation advantages. Namely, binary arithmetic is “carry-free”, squaring can be implemented very efficiently in some cases etc. The properties are very convenient for hardware implementations. Binary fields offer also more arithmetic options as there are many choices for bases, irreducible polynomials, fields, etc. In general, the elliptic curve arithmetic consists of several hierarchical levels. The top level is EC scalar multiplication which is executed by point addition and doubling. The point operations can be performed by different formulae, which depend on the representation chosen i.e. coordinates. The formulae for point arithmetic are sequences of finite field operations: addition/subtraction, multiplication/squaring and inversion.

A. EC Scalar Multiplication

All ECC protocols include one (or a few) scalar or point multiplications. This operation is achieved by repeated point additions and doublings. The basic algorithm for scalar multiplication is the so-called binary method [2].

```
Algorithm 1 Scalar multiplication: Binary method [2]
Require: A point \( P \), a \( t \)-bit integer \( k \), \( k = (k_{t-1}, k_{t-2}, \cdots, k_0) \) \( k_i \in \{0, 1\} \)
Ensure: \( Q = kP \)
1: \( Q \leftarrow O \)
2: for \( i \) from \( t - 1 \) down to \( 0 \) do
3: \( Q \leftarrow 2Q \)
4: if \( k_i = 1 \) then \( Q \leftarrow Q + P \)
5: end for
6: Return \( Q \)
```

For scalar multiplication one often chooses the Montgomery ladder [3]. In the Montgomery ladder the computation is balanced and independent of \(k_i \) in the iteration, and therefore, it is secure against simple side channel attacks.

```
Algorithm 2 Montgomery ladder [3]
Require: a \( t \)-bit integer \( k > 0 \) and a point \( P \)
Ensure: \( kP \)
1: \( k \leftarrow 1, k_{t-2}, \ldots, k_1, k_0 \);
2: \( P_1 \leftarrow P \), \( P_2 \leftarrow 2P \);
3: for \( i \) from \( t - 2 \) down to \( 0 \) do
4: if \( k_i = 1 \) then \( P_1 \leftarrow P_1 + P_2 \), \( P_2 \leftarrow 2P_2 \);
5: else \( P_2 \leftarrow P_2 + P_1 \), \( P_1 \leftarrow 2P_1 \);
6: end for
7: Return \( P_1 \);
```

For the point operation exist several formulae depending on the choice of coordinates. For example, formulae based on affine coordinates and projective coordinates can be found in [6] and [9] respectively. Projective coordinates is commonly used to avoid the field inversion.

![Fig. 1. Schnorr’s identification protocol.](image)

B. General Modular Arithmetic Operation

Besides the EC scalar multiplier, general modular arithmetic operations are required to perform the cryptographic protocols. For example, the Schnorr protocol [4] is shown in Fig. 1. When the prover calculates \(y(= ke + r \mod n) \), general modular operations (multiplication and addition) should be performed. General modular operations include also the reduction operation. Efficient reduction is possible for Mersenne primes, but since \(n \) is the order of a curve, the reduction should work for an arbitrary \(n \). In this case, the reduction needs more computation than the addition and multiplication themselves.

There exist efficient reduction algorithms such as Montgomery’s reduction algorithm [7] and Barrett’s algorithm [8]. However, since Montgomery’s algorithm requires the transformation overhead, it is not convenient to use it in this situation. In Barrett’s algorithm the reduction can be performed after calculating the multiplication and the quotient. Hence, it requires temporary memory of 5 times the size of \(n \). Considering the scarceness of resources in the RFID systems, the required memory should be minimized.

In this paper, we propose a redundant representation based on the addition of a few guard bits for general modular operations, which is efficient and requires a small temporary memory as will be explained in detail in Sect. VI.

III. STARTING POINTS

In this section we describe two building blocks that are our starting points. The first one is the Montgomery ladder with the Lóz-Dahab algorithm. This approach allows an implementation that does not need the storage of the \(Y \)-coordinate. The second one is a compact arithmetic unit to perform the field operations.

A. Montgomery ladder with López-Dahab algorithm

The Montgomery ladder with López-Dahab’s algorithm shown by Alg. 3 uses a projective coordinate system. The point addition formulae of \((X_{Add}, Z_{Add}) \leftarrow \text{Madd}(X_1, Z_1, X_2, Z_2) \) are defined by Eq. (1).

\[
Z_{Add} = (X_1 \cdot Z_2 + X_2 \cdot Z_1)^2, \tag{1}
\]

\[
X_{Add} = x \cdot Z_{Add} + (X_1 \cdot Z_2) \cdot (X_2 \cdot Z_1).
\]
Algorithm 3 Montgomery ladder with López-Dahab algorithm [9]

Require: An elliptic curve \(y^2 + xy = x^3 + ax^2 + b \), a point \(P \), a \(r \)-bit integer \(k \), \(k = (1, k_{t-2}, \ldots, k_0) \), \(k_i \in \{0,1\} \)

Ensure: \(Q = kP \)

1. If \((k = 0 \text{ or } x = 0) \) then output \((0, 0)\) and stop;
2. \(X_1 \leftarrow x \), \(Z_1 \leftarrow 1 \), \(X_2 \leftarrow x^4 + b \), \(Z_2 \leftarrow x^2 \);
3. for \(i \) from \(t - 2 \) down to \(0 \) do
4. \(\text{ if } k_i = 1 \) then
5. \((X_1, Z_1) \leftarrow \text{Madd}(X_1, Z_1, X_2, Z_2) \),
6. \((X_2, Z_2) \leftarrow \text{Mdouble}(X_2, Z_2) \);
7. else \((X_2, Z_2) \leftarrow \text{Madd}(X_2, Z_2, X_1, Z_1) \),
8. \((X_1, Z_1) \leftarrow \text{Mdouble}(X_1, Z_1) \);
9. end for
10. Return \(Q \leftarrow \text{Mxy}(X_1, Z_1, X_2, Z_2) \);

The doubling formulae of \((X_{\text{Double}}, Z_{\text{Double}}) \leftarrow \text{Mdouble}(X_2, Z_2) \) for the case of \(k_i = 0 \) are defined by Eq. (2).

\[
\begin{align*}
Z_{\text{Double}} &= (X_2 \cdot Z_2)^2, \\
X_{\text{Double}} &= X_2^4 + b \cdot Z_2^4.
\end{align*}
\]

The squaring operation is done at the end of the computation.

In the MALU, the squaring operation uses the same logic as the multiplication by duplicating the operand. With a digit size of \(d \), the field multiplication and addition take \(\lceil \frac{163}{d} \rceil \) and one cycle respectively. The benefit of this architecture is that the multiplication and addition operations share the XOR array and by increasing the digit size, the MALU can be easily scaled. More explanation about the MALU is given in Sect. V.

IV. SYSTEM OVERVIEW

The RFID processor is composed of a micro controller, a bus manager and an EC processor (ECP). It is connected with a front end module, a random number generator (RNG), ROM and RAM as illustrated in Fig. 2. A front end module includes an antenna, an A/D (Analog to Digital) converter, a modulator and a demodulator, and provides an interface with the bus manager on a 8-bit bus. The solid lines are for data exchange, the dash lines with numbers are for addressing, and the dash lines without numbers are control signals.

![Fig. 2. Proposed RFID Processor Architecture](image)

B. Modular Arithmetic Logic Unit (MALU)

In order to perform the field operations, i.e. the multiplications, squarings and additions in Table I, we need a Modular Arithmetic Logic Unit so-called MALU. The MALU architecture is a compact architecture which performs the arithmetic field operations shown by Eq. (3) [12].

\[
\begin{align*}
A(x) &= B(x) \cdot C(x) \mod P(x) & \text{ if } \text{cmd} = 1, \\
A(x) &= A(x) + C(x) \mod P(x) & \text{ if } \text{cmd} = 0,
\end{align*}
\]

where \(A(x) = \sum a_i x^i \), \(B(x) = \sum b_i x^i \), \(C(x) = \sum c_i x^i \) and \(P(x) = x^{163} + x^2 + x^9 + x^3 + 1 \).
serial fashion. It also gives commands for the execution of the ECP via the bus manager.

The ECP loads a key \((k)\) and an EC point \(P\) from ROM or RAM and executes the EC scalar multiplication \((kP)\). After finishing the scalar multiplication, it stores the results in RAM.

The bus manager takes a role as the bridge for the data flow from/to outside of the RFID processor. It also arbitrates the memory access of the micro controller and the ECP. A higher priority is given on the ECP than the micro controller since the execution time is more critical in the former. For this priority setting, the ECP signals the bus manager in advance of memory access.

V. ELLIPTIC CURVE PROCESSOR

A. Implementation Considerations

If López-Dahab’s algorithm is implemented based on the MALU in a conventional way, the total number of registers is 9, i.e., 3 registers for the MALU plus 6 registers for the Montgomery ladder algorithm. In [13], 3 registers and 5 RAMs are used (8 memory elements in total). One register is reduced by modifying López-Dahab’s algorithm and assuming that constants can be loaded directly to the MALU without using a register. In our architecture, we are able to reduce the number of registers to 6 even without relying on these assumptions. As the registers occupy more than 80% of the gate area in a conventional architecture, reducing the number of the registers and the complexity of the register file are very effective to minimize the total gate area.

Accordingly, our compact architecture achieves two things: reducing the number of registers (one register reduction by using the common \(Z\) projective coordinate system and two registers reduction by register reuse) [14] and designing a compact register file architecture by limiting the access to the registers.

B. Common \(Z\) Projective Coordinate System

We propose new formulae for the common \(Z\) projective coordinate system where the \(Z\) values of two elliptic curve points in the Montgomery ladder algorithm are kept the same during the process. New formulae for the common \(Z\) projective coordinate system have been proposed over prime fields in [10]. However, this work is different from ours. First, they made new formulae over a prime field while ours is over a binary field. Second, they made new formulae to reduce the computation in a special addition chain while our formulae slightly increase the computation amount in order to reduce the number of the registers. Again, note that reducing even one register decreases the total gate area considerably.

Since in López-Dahab’s algorithm, two EC points must be maintained during EC scalar multiplication, the required number of registers is 4 \((X_1, Z_1, X_2, Z_2)\) and including 2 registers for intermediate values \((T_1)\) and \((T_2)\), the total number of registers is 6. The idea of the common \(Z\) projective coordinate system is to make sure that \(Z_1 = Z_2\) at each iteration of López-Dahab’s algorithm. This condition is satisfied at the beginning of the iterations since the algorithm starts from \(Z_1 = Z_2 = 1\). Even if \(Z_1 ≠ Z_2\), we can satisfy this condition using three extra field multiplications as shown by Eq. (4) where the resulting coordinate set is \((X_1, X_2, Z)\).

\[
\begin{align*}
X_1 & \leftarrow X_1 \cdot Z_2, \\
X_2 & \leftarrow X_2 \cdot Z_1, \\
Z & \leftarrow Z_1 \cdot Z_2.
\end{align*}
\]

Since we now assume \(Z_1 = Z_2\), we can start the point addition algorithm with the common \(Z\) projective coordinate system. With \(Z = Z_1 = Z_2\), Eq. (1) is rewritten as shown by Eq. (5). Now \(Z_{Add}\) and \(X_{Add}\) have a common factor of \(Z^2\).

\[
\begin{align*}
Z_{Add} & = (X_1 \cdot Z_2 + X_2 \cdot Z_1)^2 = (X_1 + X_2)^2 \cdot Z^2, \\
X_{Add} & = x \cdot Z_{Add} + (X_1 \cdot Z_2) \cdot (X_2 \cdot Z_1) \\
& = x \cdot Z_{Add} + (X_1 \cdot X_2 \cdot Z^2).
\end{align*}
\]

Due to the property of projective coordinate systems, we can divide \(Z_{Add}\) and \(X_{Add}\) by the common factor \(Z^2\). The comparison of the original equation with the modified equation is summarized in Table II. Note that the new formula of the point addition algorithm is independent of the previous \(Z\)-coordinate value.

<table>
<thead>
<tr>
<th>The original equation</th>
<th>The new equation assuming (Z = Z_1 = Z_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z_{Add} = (X_1 Z_2 + X_2 Z_1)^2)</td>
<td>(Z_{Add} = (X_1 + X_2)^2)</td>
</tr>
<tr>
<td>(X_{Add} = x Z_{Add} + X_1 Z_2 X_2 Z_1)</td>
<td>(X_{Add} = x Z_{Add} + X_1 X_2)</td>
</tr>
</tbody>
</table>

In the point doubling algorithm, there is no such reduction since it deals with only one EC point. Nevertheless, we can simplify the point doubling algorithm by noticing that \(T_1^2 + X^2 ≡ (T_1 + X)^2\) at the steps 6, 7 and 8 in Table I. One field multiplication can be reduced using this mathematical equality. Eq. (2) is rewritten as Eq. (6) where \(c^2 = b\).

\[
Z_{Double} = (X_2 \cdot Z)^2, \\
X_{Double} = (X_2^2 + c \cdot Z^2)^2.
\]

Note that the resulting \(Z\)-coordinate values are different between the point addition and doubling formulae. In order to maintain a common \(Z\)-coordinate value, extra steps similar to Eq. (4) are required. These extra steps must follow every pair of the point addition and doubling algorithms. The final mathematical expression and its algorithm are shown by Eq. (7) and Table III respectively.

\[
\begin{align*}
X_1 & \leftarrow X_{Add} Z_{Double} = \{x(X_1 + X_2)^2 + X_1 X_2\} (X_2 Z)^2, \\
X_2 & \leftarrow X_{Double} Z_{Add} = (X_2^2 + c Z^2)^2 (X_1 + X_2)^2, \\
Z & \leftarrow Z_{Add} Z_{Double} = (X_1 + X_2)^2 (X_2 Z)^2.
\end{align*}
\]

In Table III the mark of \((T_1)\) at each squaring operation indicates that the \(T_1\) register is free to store some other value. The reason for this will be explained in this section. The comparison of the amount of field operations between López-Dahab’s algorithm and our algorithm is shown in Table IV.

Noting that the multiplication and the squaring are equivalent in the MALU operation, the workload of our algorithm is the same as that of López-Dahab’s algorithm and we still
reduce the storage by one register. Moreover, if an elliptic curve with \(b = 1 \) is chosen in \(y^2 + xy = x^3 + ax^2 + b \), one additional multiplication can be saved in the point doubling algorithm. In our work, \(a \) is randomly selected and \(b = 1 \).

C. ECP’s MALU Architecture

The MALU architecture of the ECP, which reuses the MALU in [12], is shown in Fig. 3. The registers in the MALU are combined with the external registers to reduce the number of registers. At the completion of the multiplication or addition operation, only register RegA is updated while registers RegB and RegC hold the same data as at the beginning of the operations. Therefore, RegB and RegC can be used not only to store field operands but also to store some intermediate values of the proposed point addition and doubling algorithm where we need five registers for \(X_1, X_2, Z, T_1 \), and \(T_2 \) in Table III.

An extra care should be taken at this point since the same value must be placed in both of RegB and RegC for squaring. Therefore, during squaring, only one register can be reused. This fact would conflict with our purpose to reuse each of RegB and RegC as a storage of the point addition and doubling algorithms. Fortunately, it is possible to free one of the registers to hold another value during squaring. As shown in Table III, \(T_1 \) can be reused whenever a squaring operation is required.

In Fig. 3, \(\text{cmd} \) signals the command to perform multiplication or addition as shown by Eq. (3). When the MALU performs a multiplication, each digit of \(d \) bits of RegB must be provided to the MALU. Instead of addressing each digit of the 163 bit word, the most significant digit (MSD) is provided and a circular shift is performed by \(d \) bits. The shift operation must be circular and the last shift must be the remainder of 163/\(d \) since the value must be kept as the initial value at the end of the operation. During the MALU operation, an intermediate result is stored in RegA.

D. Circular Shift Register File Architecture

By reusing the MALU registers for the Montgomery ladder algorithm, we reduce two of the registers as discussed in the previous subsection. This means that all the registers of the MALU and the Montgomery ladder algorithm should be organized in a single register file. Therefore, the register file of our system consists of six registers. We use a circular shift register file to reduce the complexity of the multiplexer. The area complexity of a multiplexer in a randomly accessible register file increases as the square of the number of registers. On the other hand, the area complexity of the multiplexer in a circular shift register file is a constant. As a result, this model reduces about 30% of the gate area of the register file.

Although the register file in Fig. 4 is a circular shift register file, each register is independently controlled for the efficient management. RegA is the only register that gets values from outside of the register file. Data_in is for the data from a memory unit. This data can be either a scalar \(k \) or a point \(P \) for EC point multiplications of \(k \cdot P \). Since the data is input as 8 bits, RegA performs 8-bit shifts to keep the previously loaded data. The signal ‘1’ is for the initialization of the \(Z \)-coordinate value. In the multiplexer for RegB, the shift of ‘d’ positions is a circular shift so that RegB goes back to the original value after finishing the field multiplication. Except for RegA and RegB, all the registers can be updated only by the preceding register. Note that the multiplexers for RegC, RegD, RegE and RegF are not implemented since the enable signals of flip-flops can be utilized to indicate whether to update with new values or to keep their previous values.

With the given multiplexers, any replacement or reordering of the register values can be achieved. Since only RegA and RegB get multiple inputs, only two fixed-sized multiplexers are necessary. Note that RegA, RegB and RegC in Fig. 4 are used as the three registers for the MALU in Fig. 3.

E. EC Processor (ECP) Architecture

The ECP architecture is shown in Fig. 5. EC point add and doubler (EC Add&Doubler) consists of Control1, the MALU and the register file. Control1 receives the EC parameters and gives the result of EC scalar multiplication through Control2. Control2 conveys the data from/to Control1 and reads a key (or a scalar) through the bus manager. The key is read in
Fig. 3. ECP’s MALU Architecture

Fig. 4. Register File Architecture

bytes and stored in one byte buffer in Control2. Control2 also controls the EC Add&Doubler according to the Montgomery algorithm in Alg. 3.

In our system, we assume that the coordinate conversion to the affine coordinate system and the calculation of \(Y \)-coordinate value are performed on a tag reader or a back-end system.

F. Register File Management for Algorithm Implementation

The register file management for the point addition algorithm is shown in Table V. Each step requires one cycle except for the field multiplications and the read operation of \(x \) (step 14). The read operation of \(x \) requires 28 cycles, which is composed of 7 cycles for the synchronization with the bus manager and 21 cycles for the reading of 21 bytes.

For the field multiplication, only the final results are shown. At the beginning of the operation, we assume that \(X_2, X_1 \) and \(Z \) are stored in RegA, RegB and RegC respectively. RegD, RegE and RegF are marked with ‘-’ since meaningful values are not stored yet. On each step of the register file management, each register value is updated according to the architecture in Fig. 4. While RegA can be updated by either RegB or RegF, the other registers can be updated only by their preceding registers. During the procedure, registers are marked with ‘-’ whenever the previous values are not used any more. The field addition and multiplication are performed as RegA ← RegB × RegC and RegA ← RegA + RegC respectively. The register file management for other parts can be similarly described.

The use of this register file increases the number of cycles
due to the control overhead. However, considering that a field multiplication takes a large number of cycles, the number of overhead cycles is relatively small. One thing that we need to consider is the peak power consumption. If all the registers are updated at the same time, the large peak power consumption can be a problem. In the proposed architecture, at most 4 registers are updated at a time. This number can be reduced up to 2 by introducing more overhead cycles, but it cannot be less than 2, since the field multiplication in the MALU updates 2 registers.

VI. Micro Controller

In general, modular additions and multiplications are needed in protocols. Because they are not part of the critical calculations and thus do not contribute to the latency, we decided to perform these modular operations on the 8-bit micro-controller in a byte-serial fashion. In order to reduce the computation amount of modular reductions, we use a form of redundant representation by using 5 extra guard bits.

A. General Modular Arithmetic Operation

All the scalar values are 163 bits long, so a scalar needs 21 bytes (168 bits) in an 8-bit controller. Therefore, we can utilize the extra 5 bits as bits for computation efficiency without extra overhead. In the redundant modular operation, a scalar is not reduced to the fully minimized form of 163 bits but it is allowed to have a length of 168 bits. Those extra guard bits make the computation efficient.

1) Modular Addition with 8-bit ALU: We start the modular operations assuming that all the scalars have a length of 168 bits. The modular addition is described in Alg. 4.

<table>
<thead>
<tr>
<th>Step</th>
<th>Field Operation</th>
<th>RegA</th>
<th>RegB</th>
<th>RegC</th>
<th>RegD</th>
<th>RegE</th>
<th>RegF</th>
<th>cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Initial</td>
<td>X_2</td>
<td>X_1</td>
<td>Z</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td>X_2</td>
<td>X_2</td>
<td>X_1</td>
<td>Z</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>(3)</td>
<td>$T_2 \leftarrow X_1 + X_2$</td>
<td>T_2</td>
<td>X_2</td>
<td>X_1</td>
<td>Z</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>(4)</td>
<td></td>
<td>T_2</td>
<td>T_2</td>
<td>X_2</td>
<td>X_1</td>
<td>Z</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>(5)</td>
<td></td>
<td>T_2</td>
<td>T_2</td>
<td>T_2</td>
<td>X_2</td>
<td>X_1</td>
<td>Z</td>
<td>$-$</td>
</tr>
<tr>
<td>(6)</td>
<td>$2 \cdot T_2 \leftarrow T_2'$</td>
<td>T_2</td>
<td>$-$</td>
<td>$-$</td>
<td>X_2</td>
<td>X_1</td>
<td>Z</td>
<td>$163/d$</td>
</tr>
<tr>
<td>(7)</td>
<td></td>
<td>Z</td>
<td>T_2</td>
<td>$-$</td>
<td>X_2</td>
<td>X_1</td>
<td>Z</td>
<td>$-$</td>
</tr>
<tr>
<td>(8)</td>
<td></td>
<td>X_2</td>
<td>X_2</td>
<td>T_2</td>
<td>X_2</td>
<td>X_2</td>
<td>Z</td>
<td>$-$</td>
</tr>
<tr>
<td>(9)</td>
<td></td>
<td>X_2</td>
<td>X_1</td>
<td>Z</td>
<td>T_2</td>
<td>X_2</td>
<td>X_2</td>
<td>$-$</td>
</tr>
<tr>
<td>(10)</td>
<td></td>
<td>X_2</td>
<td>X_2</td>
<td>X_1</td>
<td>Z</td>
<td>T_2</td>
<td>X_2</td>
<td>$-$</td>
</tr>
<tr>
<td>(11)</td>
<td>$3 \cdot T_1 \leftarrow X_1 \times X_2$</td>
<td>T_1</td>
<td>X_2</td>
<td>$-$</td>
<td>Z</td>
<td>T_2</td>
<td>X_2</td>
<td>$163/d$</td>
</tr>
<tr>
<td>(12)</td>
<td></td>
<td>T_1</td>
<td>T_1</td>
<td>$-$</td>
<td>Z</td>
<td>Z</td>
<td>T_2</td>
<td>$-$</td>
</tr>
<tr>
<td>(13)</td>
<td></td>
<td>T_2</td>
<td>X_1</td>
<td>X_2</td>
<td>T_1</td>
<td>Z</td>
<td>Z</td>
<td>T_2</td>
</tr>
<tr>
<td>(14)</td>
<td>$4 \cdot X_1 \leftarrow x$</td>
<td>X_1</td>
<td>X_2</td>
<td>T_1</td>
<td>Z</td>
<td>T_2</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>(15)</td>
<td></td>
<td>T_2</td>
<td>X_1</td>
<td>X_2</td>
<td>T_1</td>
<td>T_1</td>
<td>Z</td>
<td>$-$</td>
</tr>
<tr>
<td>(16)</td>
<td></td>
<td>T_2</td>
<td>T_2</td>
<td>X_1</td>
<td>X_2</td>
<td>T_1</td>
<td>T_1</td>
<td>Z</td>
</tr>
<tr>
<td>(17)</td>
<td></td>
<td>X_1</td>
<td>T_2</td>
<td>$-$</td>
<td>X_2</td>
<td>T_1</td>
<td>Z</td>
<td>$163/d$</td>
</tr>
<tr>
<td>(18)</td>
<td>$5 \cdot X_1 \leftarrow T_2 \times X_1$</td>
<td>X_1</td>
<td>T_2</td>
<td>$-$</td>
<td>X_2</td>
<td>T_1</td>
<td>T_1</td>
<td>Z</td>
</tr>
<tr>
<td>(19)</td>
<td></td>
<td>Z</td>
<td>X_1</td>
<td>T_2</td>
<td>X_2</td>
<td>T_1</td>
<td>T_1</td>
<td>Z</td>
</tr>
<tr>
<td>(20)</td>
<td></td>
<td>X_1</td>
<td>Z</td>
<td>T_2</td>
<td>X_2</td>
<td>T_1</td>
<td>T_1</td>
<td>Z</td>
</tr>
<tr>
<td>(21)</td>
<td></td>
<td>T_1</td>
<td>X_1</td>
<td>Z</td>
<td>T_2</td>
<td>X_2</td>
<td>T_1</td>
<td>T_1</td>
</tr>
<tr>
<td>(22)</td>
<td></td>
<td>T_1</td>
<td>X_1</td>
<td>Z</td>
<td>T_2</td>
<td>X_2</td>
<td>T_1</td>
<td>T_1</td>
</tr>
<tr>
<td>(23)</td>
<td>$6 \cdot X_1 \leftarrow X_1 + T_1$</td>
<td>X_1</td>
<td>$-$</td>
<td>$-$</td>
<td>T_2</td>
<td>T_2</td>
<td>T_2</td>
<td>T_2</td>
</tr>
</tbody>
</table>

Algorithm 4 Modular Addition with 8-bit ALU

Require: $A = \sum_{k=0}^{167} a_k 2^k$, $B = \sum_{k=0}^{167} b_k 2^k$
Ensure: $C = A + B \mod n$
1: $C \leftarrow \text{Add}(A, B)$;
2: $C_0 \leftarrow \sum_{k=0}^{166} c_k 2^k$, $D \leftarrow \sum_{k=0}^{167} c_k 2^k$,
3: $C \leftarrow \text{Multiply}(N_1, D)$;
4: Return C;

The step 1 is for addition and the step 2 and 3 are for reduction where $N_1 = 2^{167} \mod n$. To provide the validity of the reduction, we consider Eq. (8).

$$C \mod n = \left(\sum_{k=0}^{168} c_k 2^k \right) \mod n \quad (8)$$

$$= \left(\sum_{k=0}^{166} c_k 2^k + 2^{167} \sum_{k=0}^{1} c_k 2^k \right) \mod n$$

$$= \left(\sum_{k=0}^{166} c_k 2^k + N_1 \cdot \sum_{k=0}^{1} c_k 2^k \right) \mod n.$$
of A. In Alg. 6 $Carry_{Byte}$ is a one-byte variable which stores the most significant byte of the multiplication of two one-byte values. M_0 is the least significant byte and M_1 is the most significant byte of $A(i) \times D$.

Algorithm 6 Multiplication of 21-byte value by 1-byte value: $C \leftarrow \text{Multiply}(A, B)$

Require: $A = \sum_{k=0}^{167} a_k 2^k$, $D = \sum_{k=0}^{7} d_k 2^k$
Ensure: $C = A \cdot D$
1: $Carry_{Byte} \leftarrow 0$; $Carry_{Bit} \leftarrow 0$;
2: for i from 0 to 20 do
3: $A^{(i)} \leftarrow \sum_{k=0}^{7} a_{8i+k} 2^k$;
4: $\{M_0, M_1\} \leftarrow A^{(i)} \cdot D$;
5: $\{C^{(i)}, Carry_{Bit}\} \leftarrow M_0 + Carry_{Byte} + Carry_{Bit}$;
6: $Carry_{Byte} \leftarrow M_1$;
7: end for
8: $C^{(21)} \leftarrow Carry_{Byte} + Carry_{Bit}$;
9: Return C;

2) Modular Multiplication with 8-bit ALU: The algorithm of byte-serial modular multiplication is described in Alg. 7.

Algorithm 7 Modular Multiplication with 8-bit ALU

Require: $A = \sum_{k=0}^{167} a_k 2^k$, $B = \sum_{k=0}^{167} b_k 2^k$
Ensure: $C = A \cdot B \mod n$
1: for i from 20 down to 0 do
2: $C_0 \leftarrow 2^i \cdot C_0$;
3: $D \leftarrow \sum_{k=0}^{7} b_{8i+k} 2^k$;
4: $C_1 \leftarrow \text{Multiply}(A, D)$;
5: $C_0 \leftarrow \sum_{k=0}^{169} c_k 2^k$;
6: $C_1 \leftarrow \text{Add}(C_0, C_1)$;
7: $C_0 \leftarrow \sum_{k=0}^{166} c_k 2^k$;
8: $C_1 \leftarrow \text{Multiply}(N_2, D)$;
9: End for
10: Return C;

The steps 2–4 are for 1-byte shift, multiplication by one byte and accumulation. The remainder steps 5–8 are for the reduction, whose validity is described by Eq. (9) and (10) where $N_1 = 2^{167} \mod n$ and $N_2 = 2^{170} \mod n$. The size of C before the reduction, i.e. in the step 4, is 177 bits since the both of C_0 and C_1 are 176 bits long and the addition of the two will produce up to 177 bits. Eq. (9) describes the steps 5 and 6, and Eq. (10) describes the steps 7 and 8 in Alg. 7.

$$C \mod n = \left(\sum_{k=0}^{167} c_k 2^k\right) \mod n$$
(9)

$$= \left(\sum_{k=0}^{169} c_k 2^k + 2^{170} \sum_{k=0}^{6} c_k + 170 2^k\right) \mod n$$
$$= \left(\sum_{k=0}^{166} c_k 2^k + N_2 \cdot \sum_{k=0}^{6} c_k + 170 2^k\right) \mod n = C'.$$

In Eq. (9), since the size of N_2 is 163 bits and the size of $N_2 \cdot \sum_{k=0}^{6} c_k + 170 2^k$ is 170 bits, the size of C' is at most 171 bits. C' can be reduced again according to Eq. (10).

$$C' \mod n = \left(\sum_{k=0}^{167} c'_k 2^k\right) \mod n$$
(10)

$$= \left(\sum_{k=0}^{166} c'_k 2^k + 2^{167} \sum_{k=0}^{3} c'_k + 167 2^k\right) \mod n$$
$$= \left(\sum_{k=0}^{163} c'_k 2^k + N_1 \cdot \sum_{k=0}^{3} c'_k + 167 2^k\right) \mod n.$$

Since the size of N_1 is 163 bits and the size of $N_1 \cdot \sum_{k=0}^{3} c'_k + 167 2^k$ is 167 bits, the size of the final result is at most 168 bits. Therefore, the reduced C (i.e. C' after finishing the step 8 in Alg. 7) can be used for the next iteration.

3) Comparison with Barrett’s Modular Reduction in modular multiplication: Barrett’s algorithm [8] is one of the most efficient modular reduction algorithms for a general number n.

Let the size of n is t bits and $M = A \times B$ where we calculate $A \times B \mod n$. The Barrett’s reduction can be expressed by Eq. (11).

$$\mu = \left\lfloor \frac{2^t}{n} \right\rfloor,$$
$$q' = \left\lfloor \frac{M}{2^t} \cdot \frac{\mu}{2^t} \right\rfloor,$$
$$R = M - q' \cdot n.$$

μ can be pre-calculated and hence it does not contribute to the computation amount. Since R is congruent to $M \mod n$ and $R < 3n$, the final result requires at most two t-bit subtractions after calculating R. Therefore, the required computation in the worst case is two t-bit multiplications, one 2t-bit subtraction and two t-bit subtractions. For the calculation, it requires 5t-bit temporary memory since M requires 2t-bit memory, q' requires t-bit memory and the result of $q' \cdot n$ needs to be stored in separate 2t-bit memory. Therefore the required memory is 105 bytes if t is 163 and the unit of memory is 8 bits (each t bits will need 21 bytes).

In the proposed modular multiplication of Alg. 7, the steps 3–4 are for the multiplications and steps 5–8 are for the reduction. The complexity of the reduction is exactly two n-bit multiplication and the required temporary memory is 44 bytes. Therefore, the proposed modular reduction is more efficient in both computation and memory. The comparison between two algorithms is summarized in Table VII.
TABLE VI
RAM USAGE FOR MODULAR MULTIPLICATION

<table>
<thead>
<tr>
<th>Block #</th>
<th>Initial</th>
<th>2)</th>
<th>3)</th>
<th>4)</th>
<th>5)</th>
<th>6)</th>
<th>7)</th>
<th>8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C(168)</td>
<td>C_0(176)</td>
<td>C_0(176)</td>
<td>C(177)</td>
<td>C_0(170)</td>
<td>C_0(170)</td>
<td>C(171)</td>
<td>C_0(167)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>C_1(176)</td>
<td>C_1(176)</td>
<td></td>
<td></td>
<td></td>
<td>C_1(167)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B(168)</td>
<td>B(168)</td>
<td>B(168)</td>
<td>B(168)</td>
<td>B(168)</td>
<td>B(168)</td>
<td>B(168)</td>
<td>B(168)</td>
</tr>
</tbody>
</table>

TABLE VII
RAM USAGE FOR MODULAR MULTIPLICATION

<table>
<thead>
<tr>
<th>Reduction Algorithm</th>
<th>Computation Complexity</th>
<th>Memory Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrett’s Algorithm</td>
<td>two t-bit multiplications, one 2t-bit subtraction</td>
<td>105 bytes</td>
</tr>
<tr>
<td>Proposed Algorithm</td>
<td>two t-bit multiplications</td>
<td>44 bytes</td>
</tr>
</tbody>
</table>

TABLE IX
RAM USAGE FOR MODULAR ADDITION

<table>
<thead>
<tr>
<th>Block #</th>
<th>Initial</th>
<th>1)</th>
<th>2)</th>
<th>3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C(169)</td>
<td>C_0(167)</td>
<td>C(168)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>C_1(167)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A(168)</td>
<td>A(168)</td>
<td>A(168)</td>
<td>A(168)</td>
</tr>
<tr>
<td>3</td>
<td>B(168)</td>
<td>B(168)</td>
<td>B(168)</td>
<td>B(168)</td>
</tr>
</tbody>
</table>

B. 8-bit ALU

ALU has an 8-bit adder and an 8-bit multiplier. The detailed algorithms for general modular operations are implemented in hardware and performed using these two blocks.

C. Addressing and Memory Management

C.1 Physical Memory Address Map

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID(4)</td>
<td>Block Address(4)</td>
<td>Byte Address(5)</td>
<td></td>
</tr>
</tbody>
</table>

The addressing is composed of 13 bits where the first two 4-bits are used for a device ID and a block address, and the last 5 bits for a byte address. The device ID indicates ROM for the program, ROM for data, RAM, RNG, the front end module and the ECP. The block address and the byte address are used only for ROM and RAM. Even the non-memory devices are memory mapped so that the micro controller gives an input or gets an output.

Since all the scalar values are 21 bytes long, each block is composed of 21 bytes. All the basic data managements are based on blocks. This makes the program and the control very simple. For example, the program needs to specify only the block address for the general modular operations.

The process of intermediate value storage for the modular addition is described in Table IX where we assume the operands of the modular addition are stored in Block 2 and Block 3. The numbering of 1), 2) and 3) indicate the steps of Alg. 4 and the numbers inside of the parentheses are the size of the variables in bit. For the modular addition, two blocks of RAM must be reserved to hold intermediate values and the final result.

The process of intermediate value storage for the modular multiplication is described in Table VI where we assume the operands are stored in Block 2 and Block 3, and the steps 1), 2) and etc. represent the steps of Alg. 7.

For the reduction, n is not used but N_1 and N_2 are used, which should be pre-calculated and stored in ROM. The modular multiplication also needs to reserve the first two memory blocks in RAM, so they should not store meaningful values before starting modular operations. Note that the size of Block 0 and Block 1 is 22 bytes which is one byte larger than the other blocks. Though the results of the modular operations are not fully reduced in tags, such reduction can be taken care of in the reader or the server.

D. ROM for Data

There are some data which should be stored in tags for their processing. The data may include the private key of a tag, the public key of the reader and system parameters. If this kind of data is hardwired, the architecture can be simplified since tags do not need to access the memory and the hardwired data is simpler than any other memory structure. However, the hardwired data can not be changed if the architecture is once produced as an ASIC. Therefore, some of the data should be stored in non-volatile memory. Table X shows the ROM usage of Schnorr protocol as an example where N_1 and N_2 are used for general modular operations, k is the private key of a tag and x(P) is the X-coordinate value of the base point P.

E. Instructions of the micro controller

The instructions must be carefully designed since they are directly related to the system performance and the program size. If the instructions are designed at a lower level, the memory for a program will grow and the performance will be degraded since most of the control must be done in software. Instructions are at a high level to reduce the control overhead. Programmability is still required as we want to use the device for multiple protocols.

In the proposed architectures, the program is stored in ROM starting from the address 0. Each instruction is composed of 1, 2 or 3 bytes, where the first byte is for a command and
TABLE XI
INSTRUCTIONS OF THE PROCESSOR

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
<th>Number of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block_Mov (A, B)</td>
<td>Move one block of memory from the block address A to the block address B.</td>
<td>121</td>
</tr>
<tr>
<td>Block_Add (A, B)</td>
<td>Add the block A and the block B, and store in RAM[0].</td>
<td>574</td>
</tr>
<tr>
<td>Block_Mul (A, B)</td>
<td>Multiply the block A by the block B, and store in RAM[0].</td>
<td>25,486</td>
</tr>
<tr>
<td>Activate_ECP (A)</td>
<td>(When the ECP finishes, the result is stored in RAM[2] and RAM[3])</td>
<td>≥ 11</td>
</tr>
<tr>
<td>Wait_for_ECP</td>
<td>The processor waits until the ECP completes its computation.</td>
<td>≥ 10</td>
</tr>
<tr>
<td>End_of_code</td>
<td>The end of the program.</td>
<td>6</td>
</tr>
</tbody>
</table>

the remainder bytes are for block addressing. Since most of the data is constructed in blocks and the designed instructions manipulate data in blocks, the program is significantly simplified and the programmer does not have to care about the detail of the computation. Since the block-level instructions are implemented in hardware, the processor runs fast and efficiently. Tab XI summarizes some important commands where each of the instructions and operands is one byte and RAM[i] is the i-th block of RAM.

Table XII shows an example program for the Schnorr protocol of Fig. 1.

TABLE XII
PROGRAM FOR SCHNORR PROTOCOL

<table>
<thead>
<tr>
<th>Program Code</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block_Mov (RNG, RAM[4])</td>
<td>Generate a block of random data and store in RAM[4].</td>
</tr>
<tr>
<td>Activate_ECP (ROM[3])</td>
<td>Start the ECP with X-coordinate value of ROM[3].</td>
</tr>
<tr>
<td>Wait_for_ECP</td>
<td>Wait until the ECP finishes.</td>
</tr>
<tr>
<td>Block_Mov (RAM[2], Tran.)</td>
<td>Transmit RAM[2].</td>
</tr>
<tr>
<td>Block_Mov (RAM[3], Tran.)</td>
<td>Transmit RAM[3].</td>
</tr>
<tr>
<td>Block_Mov (Recv., RAM[2])</td>
<td>Receive a block and store in RAM[2].</td>
</tr>
<tr>
<td>Block_Mul (ROM[2], RAM[2])</td>
<td>Do modular multiplication of ROM[2] and RAM[2], and store in RAM[0].</td>
</tr>
<tr>
<td>Block_Add (ROM[0], RAM[4])</td>
<td>Do Modular addition of ROM[0] and RAM[4], and store in RAM[0].</td>
</tr>
<tr>
<td>Block_Mov (RAM[0], Tran.)</td>
<td>Transmit RAM[0].</td>
</tr>
<tr>
<td>End_of_code</td>
<td>The end of the program.</td>
</tr>
</tbody>
</table>

VII. SYNTHESIS RESULTS AND PERFORMANCE ANALYSIS

TABLE XIV
EC PROCESSOR TYPES

<table>
<thead>
<tr>
<th>Type</th>
<th>An extra buffer register</th>
<th>The register file type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>No</td>
<td>Circular Shift Register File</td>
</tr>
<tr>
<td>Type 2</td>
<td>Yes</td>
<td>Circular Shift Register File</td>
</tr>
<tr>
<td>Type 3</td>
<td>Yes</td>
<td>Randomly Accessible Register File</td>
</tr>
</tbody>
</table>

In order to find the best tradeoffs, we have designed three different architectures of the ECP as shown in Table XIV. Type 1 is the minimal version described so far. Type 2 uses an extra register to hold the X-coordinate value of the base EC point (i.e. \(P \) at the EC scalar multiplication of \(k \cdot P \)), say \(x(P) \). Therefore, this extra register makes the ECP load \(x(P) \) only once and use for the whole calculation of an EC scalar multiplication. Otherwise, the ECP has to load \(x(P) \) at every iteration in the Montgomery algorithm, which means that the ECP has to load 163 times for a 163-bit key. Type 3 has an extra register and a randomly accessible register file. The use of the extra register and the randomly accessible register file increase the gate area while reduce the number of cycles. Therefore, the ECP Type 1 has the least gate area and the most number of cycles and Type 3 has the most gate area and the least number of cycles in the same digit size.

The proposed architectures are synthesized using a low leakage power library of UMC’s 0.13 µm (iseful_d_sc_tc.db). The synthesized architectures include the micro controller, the bus manager and the ECP corresponding to everything within the dashed lines in Fig. 2. Some samples of the synthesis results and the performances are shown in Table XIII. The number of cycles is to finish the Schnorr protocol, which includes one EC scalar multiplication, some general modular operations, the random number generation and the data transmission/reception.

The clock frequency is chosen to finish the Schnorr protocol within 250 msec and to be a factor of 13.56 MHz, i.e. the carrier frequency of a reader in our system. Therefore, tags can use a simple division logic of the carrier frequency for their internal clock frequency so that a separate pulse generator is not needed. Though the Schnorr protocol requires only one EC scalar multiplication, some other protocols such as the Okamoto protocol [5] requires two EC scalar multiplications. We expect one EC scalar multiplication to finish in 250 msec so that even the protocols that have two EC scalar multiplications can finish in 500 msec. 500 msec is a very reasonable response time though it is too much delay for sequential accesses of multiple tags. However, it is possible to solve the throughput problem by applying a multiple access protocol that can handle multiple tags in parallel. This is possible because the most of the time taken in the processor is caused by the calculation inside of tags and therefore, if we can make multiple tags start the authentication in parallel and the radio communication of each tag exclusive, the overall throughput can be effectively increased.

The gate area is dominated by the register file. In order to minimize the gate area, we minimize the flip-flops. The UMC standard cell library of 0.13 µm offers a very compact D flip-flop combined with a multiplexer, which can be implemented in 6.25 gate area. In the case of Type 1 and the digit size of 1, the register file occupies 7.53 K gates. This is around 7.7 gates per bit including the multiplexer.

The trade-offs of the gate area and the number of cycles depending on the digit size are shown in Fig. 6 where each of three line graphs represents each of different types. On each graph the most left side dot is for the digit size of 1 and the
digit size grows one by one through the most right side dot until the digit size of 10. The most compact architecture is Type 1 with the digit size of 1. If the digit size is increased to more than 5, Type 2 shows better performance than Type 1 in terms of the cycle number and area product. Again if the digit size of Type 2 is increased enough, Type 3 will show better performance. This result is due to a constant factor in the number of cycles which is independent of the digit size in Type 1. Note that Type 1 has to perform some register file management operations due to its special architecture of the shift register file and also has to load the X-coordinate value of the base EC point at each iteration in the Montgomery algorithm. Type 2 also has some constant factor of the cycles due to the shift register file management but it is smaller than Type 1. Since Type 3 does not have such constant factors, the number of cycles can be more effectively decreased by increasing the digit size.

One of the most important factors in RFID tags is the power consumption especially if tags are passive. In order to get the average power estimation in the gate level, we used Design Vision and ModelSim SE. We generated VCD (Value Change Dump) files in ModelSim using a test bench data. Then, VCD files are translated to SAIF (Switching Activity Interchange Format) files, which are used in Design Vision to get average power consumptions. Since we used a low leakage power library of UMC, the leakage power is negligible as shown in Table XIII.

Fig. 7 shows the synthesis results for the power consumption. According to the synthesis results, while increasing the digit size is an effective way to reduce the dynamic power consumption, it increases the leakage power. Since the leakage power is negligible, we get lower total power consumption as we increase the digit size. However, considering the gate area, we should limit the digit size. Although Type 2 and Type 3 show lower power consumptions than Type 1 when the digit size is increased, since the gate area is larger, increasing the digit size of Type 1 would be better choice rather than choosing Type 2 or Type 3.

According to Zhou et al. [17], the maximal allowed power for tags is less than 100 µW, and in [19], the author presents 30 µW for a security processor. ISO 18000-3 (13.56 MHz) [18] requires the power consumption of less than 15 µW at 1.5 V to guarantee 1 m operating range. In our synthesis results, if we increase the digit size, the power consumption becomes close to 10 µW. This power consumption would be low enough for even a passive tag.

A. Parallelism in ECP and general modular operations

The operations in the ECP are most critical in the number of cycles, and afterwards come general modular operations. For efficiency, the system is designed to run the EC operations and the general modular operations in parallel. In the Schnorr protocol, this parallelism is not useful since the general modular operations must be performed after the EC operations are finished. However, depending on the protocol, this parallelism can effectively reduce the number of cycles.

B. Required memory space of ROM and RAM

The required memory amount is dependent on the cryptographic protocol. In the case of Schnorr protocol, the required memories are summarized in Table XV. Note that one block of memory is 21 bytes, and two extra bytes are required in RAM which are used for modular operations. During the modular operations, the block 0 and the block 1 of RAM require an extra byte each (refer to Table VI).

<table>
<thead>
<tr>
<th>Memory</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM for program</td>
<td>25 bytes</td>
</tr>
<tr>
<td>ROM for data</td>
<td>4 blocks = 84 bytes</td>
</tr>
<tr>
<td>RAM</td>
<td>5 blocks + 2 bytes = 107 bytes</td>
</tr>
</tbody>
</table>
Fig. 6. The trade-offs of gate area and number of cycles for three different types

![Graph showing trade-offs of gate area and number of cycles for three different types]

Fig. 7. The trade-offs of digit size and power consumption for three different types

![Graph showing trade-offs of digit size and power consumption for three different types]

C. Memory Access

The synthesis results do not include ROM and RAM and hence the power consumption should be considered separately. The number of memory access for Schnorr protocol is summarized in Table XVI to give an idea for the estimation of power consumption in memory. Note that the number of memory accesses is independent of the digit size of the ECP. Type 1 reads ROM more than Type 2 and Type 3 since it does not have a register for the EC base point (it has to read the base point every time it is needed). There is no difference between Type 2 and Type 3 except in the register file type in the ECP.

<table>
<thead>
<tr>
<th>Memory</th>
<th>Read</th>
<th>Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>ROM</td>
<td>4,330 times</td>
</tr>
<tr>
<td></td>
<td>RAM</td>
<td>3,911 times</td>
</tr>
<tr>
<td>Type 2</td>
<td>ROM</td>
<td>928 times</td>
</tr>
<tr>
<td></td>
<td>RAM</td>
<td>3,911 times</td>
</tr>
<tr>
<td>Type 3</td>
<td>ROM</td>
<td>928 times</td>
</tr>
<tr>
<td></td>
<td>RAM</td>
<td>3,911 times</td>
</tr>
</tbody>
</table>

* One byte is accessed on each time.

D. Comparison with Related Work

Table XVII shows the comparison with related work. Even though the key size of [20] is much smaller than ours, it has a larger gate area and a larger number of cycles (when the digit size is more than one). The result of [21] shows 15,094 gates which is still larger than the digit size of 3 of our proposal and requires more than three times cycles. The results of [22] also show a larger gate area and a larger number of cycles. Among related work (except for our designs), [19] has the least power consumption. Though the power consumption is smaller than our design of the digit size 1, the delay is much larger. Moreover, in our design the power consumption can be effectively reduced by increasing the digit size. One notable thing is that only our designs can perform the general modular operations. Based on this comparison, our designs require small gate areas and small numbers of cycles, and consume small power and energy.

VIII. Conclusion

We propose a compact architecture of an EC based security processor for RFID. For a compact ECP, we introduced several techniques such as the common Z-coordinate system,
TABLE XVII

<table>
<thead>
<tr>
<th>Ref.</th>
<th>PKC</th>
<th>Digit Size</th>
<th>Area (gates)</th>
<th>Cycles</th>
<th>CMOS (µm)</th>
<th>Freq. (KHz)</th>
<th>Perf. (ms/sec)</th>
<th>Power (µW)</th>
<th>Energy per op. (µJ)</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>[20]</td>
<td>ECC GF(p), p = (2^101) + 1/3</td>
<td>N/A</td>
<td>18.720</td>
<td>205.225</td>
<td>0.13</td>
<td>500</td>
<td>410</td>
<td>394</td>
<td>161.5</td>
<td>ECDSA</td>
</tr>
<tr>
<td>[21]</td>
<td>ECC GF(2^{128})</td>
<td>N/A</td>
<td>15.094</td>
<td>376.864</td>
<td>0.35</td>
<td>13,560</td>
<td>31.8</td>
<td>N/A</td>
<td>N/A</td>
<td>Point Multi.</td>
</tr>
<tr>
<td>[22]</td>
<td>ECC GF(p_160)</td>
<td>N/A</td>
<td>19.000</td>
<td>362.000</td>
<td>0.35</td>
<td>N/A</td>
<td>83.333</td>
<td>N/A</td>
<td>6</td>
<td>N/A</td>
</tr>
<tr>
<td>[19]</td>
<td>ECC GF(2^{191})</td>
<td>N/A</td>
<td>23.818</td>
<td>N/A</td>
<td>0.35</td>
<td>60</td>
<td>7,100</td>
<td>30</td>
<td>30</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* All the results are based on one EC scalar multiplication.

(1) This work is a unified solution with GF(p_{192}).

the register reuse and a circular shift register file. We also proposed an algorithm for general modular operations with a redundant representation using a few extra guard bits. By utilizing the remainder bits of long scalars, we designed an efficient modular operation algorithm without overhead. The designed modular operations are not only computationally efficient but also reduce memory requirement compared to conventional modular algorithms. Moreover the ECP and the modular operation, which are the most two critical operations, can be performed in parallel so that the number of cycles can be effectively reduced depending on the cryptographic protocol.

We synthesized the proposed architectures with 0.13 µm CMOS technology for three different types and for different digit sizes of the ECP to show trade-offs for the number of cycle number, gate area and power consumption. Compared to other reported results, our architecture not only minimizes the gate area and power consumption but also shows better performance. According to the synthesis results, the power consumption can be reduced to near to 10 µW which would be low enough even for a passive RFID tag.

ACKNOWLEDGMENTS

This work is supported by NSF CCF-0541472, SRC, FWO, IUAP BCRYPT and funds from the Katholieke Universiteit Leuven.

REFERENCES

