Measurement of associated production of Z bosons with charm quark jets in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

We present the first measurements of the ratios of cross sections, \(\sigma(p\bar{p} \rightarrow Z + c \text{ jet})/\sigma(p\bar{p} \rightarrow Z + \text{jet}) \) and \(\sigma(p\bar{p} \rightarrow Z + c \text{ jet})/\sigma(p\bar{p} \rightarrow Z + b \text{ jet}) \) for the associated production of a Z boson with at least one charm or bottom quark jet. Jets have transverse momentum \(p_T > 20 \text{ GeV} \) and pseudorapidity \(|\eta| < 2.5 \). These cross section ratios are measured differentially as a function of jet and Z boson transverse momenta, based on 9.7 fb\(^{-1}\) of p\(\bar{p}\) collisions collected with the D0 detector at the Fermilab Tevatron Collider at \(\sqrt{s} = 1.96 \text{ TeV} \). The measurements show significant deviations from perturbative QCD calculations and predictions from various event generators.

PACS numbers: 12.38.Qk, 13.85.Qk, 14.65.Dw, 14.70.Hp

Studies of Z boson production in association with heavy flavor (HF) jets originating from b or c quarks provide important tests of perturbative quantum chromodynamics (pQCD) calculations [1]. A good theoretical description of these processes is essential since they form a major background for a variety of physics processes, including standard model Higgs boson production [2], but with a dedicated strategy for the extraction of the c-jet fraction. Events must contain a Z \(\rightarrow \ell\ell \) candidate with a dilepton invariant mass in the range 70 < \(M_{\ell\ell} < 110 \text{ GeV} \) (\(\ell = e, \mu \)).

Dielectron (ee) events are required to have two electrons, with no requirement on the sign of their transverse charge, with transverse momentum \(p_T > 15 \text{ GeV} \) identified through electromagnetic (EM) showers in the calorimeter. One electron must be identified in the central calorimeter (CC), within a pseudorapidity region \(|\eta| < 1.1 \), while the second electron can be reconstructed either in the CC or the endcap calorimeters, 1.5 < \(|\eta| < 2.5 \). Dimuon (\(\mu\mu \)) events are required to have two oppositely charged muons, with \(p_T > 15 \text{ GeV} \) and \(|\eta| < 2 \), detected in the muon spectrometer and matched to central tracker tracks. In addition, at least one hadronic jet must be reconstructed in the event us-
ing an iterative midpoint cone algorithm \cite{9} with a cone size of $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta y)^2} = 0.5$ where ϕ is the azimuthal angle and y is the rapidity. This jet must satisfy $p_T^{\text{jet}} > 20 \text{ GeV}$ and $|\eta^{\text{jet}}| < 2.5$.

Several processes can mimic the signature of $Z +$ jet events. Theseinclude top quark pair ($t\bar{t}$), diboson (WW, WZ, and ZZ), and multijet production. To suppress the contributions from $t\bar{t}$ production, events with significant imbalance in the measured transverse energy, E_T, due to undetected neutrinos from the W boson decay ($t \rightarrow Wb \rightarrow \ell \nu b$), are rejected if $E_T > 60 \text{ GeV}$. These selection criteria retain an inclusive sample of 176,498 $Z +$ jet event candidates in the ee and $\mu\mu$ channels.

To estimate acceptances, efficiencies, and backgrounds, the $Z +$ jet events (including HF jets) and $t\bar{t}$ events are modeled by ALPGEN \cite{12}, which generates sub-processes using higher-order QCD tree-level matrix elements (ME), interfaced with the PYTHIA Monte Carlo (MC) event generator \cite{13} for parton showering and hadronization and EVTGEN \cite{14} for modeling the decay of particles containing b and c quarks. Inclusive diboson production is simulated with PYTHIA. The CTEQ6L1 \cite{16} parton distribution functions (PDFs) are used in these simulations and the cross sections are scaled to the corresponding higher-order theoretical calculations. For the diboson and $Z +$ jet processes, including $Z + b\bar{b}$ and $Z + c\bar{c}$ production, next-to-leading order (NLO) cross section predictions are taken from MCFM \cite{17}. The $t\bar{t}$ cross section is determined from approximate next-to-NLO calculations \cite{18}. To improve the modeling of the p_T distribution of the Z boson, simulated $Z +$ jet events are also reweighted to be consistent with the measured p_T spectrum of Z bosons observed in data \cite{19}. The multijet background, where jets are misidentified as leptons, is determined using a data-driven method, as described in the recent D0 publication \cite{20}. The fractions of non-$Z +$ jet events in the ee and $\mu\mu$ samples are about 9.6% and 1.3%, respectively. These fractions are dominated by multijet production where a jet is either mis-reconstructed as a lepton in the electron channel, or a lepton from decays of hadrons in a jet that passes the isolation requirement, in the muon channel.

This analysis employs a two-step procedure to determine the HF content of jets in the selected $Z +$ jet events. We employ a HF tagging algorithm \cite{17} to enrich the sample in b and c jets. The b, c, and light jet composition of the data is then extracted via a template-based fit.

Jets considered for HF tagging are subject to a preselection requirement, known as taggability \cite{17} to decouple the intrinsic performance of the HF jet tagging algorithm from effects related to track reconstruction efficiency. For this purpose, the jet is required to have at least two associated tracks with $p_T > 0.5 \text{ GeV}$ and the highest-p_T track must have $p_T > 1 \text{ GeV}$. The efficiency of the taggability requirement is 90% for both c and b jets.

The HF tagging algorithm is based on a multivariate analysis (MVA) technique \cite{18} that provides an improved performance over the neural network HF tagging discriminant, described in Ref. \cite{17}, used in earlier D0 analyses. This new algorithm, known as MVA$_M$, also utilizes the relatively long lifetime of HF hadrons with respect to their lighter counterparts. Events with at least one jet passing the HF tagging selection are considered in the analysis.

To extract the fraction of different flavor jets in the data sample, a second discriminant, D_{MHL}, is employed, which offers improved flavor separation for jets passing our MVA$_M$ requirement \cite{20}. It is a combination of two discriminating variables, the secondary vertex mass (M_{SV}) and the jet lifetime impact parameter (JLIP) \cite{17}: $D_{MHL} = 0.5 \times (M_{SV}/5 \text{ GeV} - \ln(\text{JLIP})/20)$. The coefficients in this expression are chosen to optimize the separation of the HF and light quark components. Fig. (a) shows the D_{MHL} distributions (templates) obtained from simulations of all three considered jet flavors that pass an MVA$_M > 0.5$ requirement.

To measure the relative fraction of c jets in the HF enriched sample, the following two approaches were considered. The first is based on the methods used in Ref. \cite{20} where the composition of b, c, and light jets is extracted by fitting MC templates to the data. This approach yields a large uncertainty on the c-jet fraction since the D_{MHL} distributions of c and light jets are similar. The second approach is to suppress events with light jets by employing a more stringent MVA$_M$ requirement. The remaining small $Z +$ light jet contribution, as estimated with data-corrected simulations, is then subtracted from the data. This allows for the data to be fit with only

![FIG. 1: (color online) (a) The probability densities of the D_{MHL} discriminant for b, c, and light jets passing the final selection requirements. These templates are obtained from MC. (b) The D_{MHL} discriminant distribution of events in the combined sample after background subtraction. The distributions of the b and c jets are weighted by the fractions found from the fit. Uncertainties are statistical only.](image-url)
The ratios of cross sections using relevant detector acceptances and efficiencies to determine respectively. These fractions are combined with the relative uncertainties in percent. Bin centers, shown in parenthesis, are chosen using the prescription in Ref. 19.

<table>
<thead>
<tr>
<th>p_T^{c} [GeV]</th>
<th>N</th>
<th>$R_{c/jet}$ [%]</th>
<th>Stat. Syst. [%]</th>
<th>$R_{c/b}$ [%]</th>
<th>Stat. Syst. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 – 30 (24.6)</td>
<td>741</td>
<td>0.0088</td>
<td>12</td>
<td>16</td>
<td>3.64</td>
</tr>
<tr>
<td>30 – 40 (34.3)</td>
<td>525</td>
<td>0.0084</td>
<td>11</td>
<td>12</td>
<td>3.97</td>
</tr>
<tr>
<td>40 – 60 (47.3)</td>
<td>474</td>
<td>0.0099</td>
<td>11</td>
<td>9.1</td>
<td>3.98</td>
</tr>
<tr>
<td>60 – 200 (78.0)</td>
<td>380</td>
<td>0.0085</td>
<td>13</td>
<td>11</td>
<td>4.30</td>
</tr>
<tr>
<td>p_T^b [GeV]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 – 20 (10.2)</td>
<td>285</td>
<td>0.041</td>
<td>29</td>
<td>22</td>
<td>1.15</td>
</tr>
<tr>
<td>20 – 40 (29.5)</td>
<td>763</td>
<td>0.073</td>
<td>8.2</td>
<td>12</td>
<td>6.10</td>
</tr>
<tr>
<td>40 – 60 (49.0)</td>
<td>588</td>
<td>0.104</td>
<td>10</td>
<td>11</td>
<td>5.06</td>
</tr>
<tr>
<td>60 – 200 (92.7)</td>
<td>487</td>
<td>0.108</td>
<td>13</td>
<td>8.3</td>
<td>3.41</td>
</tr>
</tbody>
</table>

4.00 ± 0.21 (stat.). These ratios have also been measured differentially as a function of p_T^c and p_T^b. For $R_{c/jet}$, the highest-p_T tagged jet from the HF enriched sample is used in the numerator, while the denominator uses the highest-p_T jet from the Z + jet sample. The selected bin sizes along with the corresponding statistics of data events are listed in Table I. In each case, all the uncertainties that enter into Eqs. 11 are determined in each bin separately.

Several systematic uncertainties cancel when the ratios are measured. These include uncertainties on the luminosity measurement, as well as trigger, lepton, and the jet reconstruction efficiencies. The remaining uncertainties are estimated separately for the integrated and differential results. For the two ratios the systematic uncertainties are estimated separately.

For the integrated $R_{c/jet}$ measurement, the largest systematic uncertainty of 8.1% comes from the estimation of the $Z +$ light jet background. This is quantified by comparing the value extracted from the data, using a three template (light, c, and b jet) fit, for various MVA$_{4l}$ selections. The next largest systematic uncertainty comes from the shape of the D_{MIL} templates used in the fit. A variety of different aspects can affect the shape of the templates: two HF jets being reconstructed as a single jet; models of b and c quark fragmentation; the background from the non-$Z +$ jet events; the difference in the shape of the light jet MC template and a template derived from a light jet enriched dijet data sample; and the uncertainty of shape of the templates due to MC statistics. These are all evaluated by varying the central values by the corresponding uncertainties, one at a time, and repeating the entire analysis chain, resulting in a 5.5% uncertainty. An additional uncertainty of 3.4% comes from jet energy calibration; it comprises the uncertainties on the jet energy resolution and the jet energy scale. An uncertainty is also associated with the c jet tagging efficiency (1.9%) 13. Finally, a
small contribution (< 0.1%) is coming from the dependence of the acceptance on modeling of the signal events. When summed in quadrature the total systematic uncertainty for the integrated $R_{c/jet}$ ratio is 10.6%. The corresponding total systematic uncertainty is 14.4% for $R_{c/b}$. Table I lists the total statistical and systematic uncertainties (added in quadrature) for the differential results. Finally, for the integrated ratios we obtain values of $R_{c/jet} = 0.0829 \pm 0.0052$ (stat.) ± 0.0089 (syst.) and $R_{c/b} = 4.00 \pm 0.21$ (stat.) ± 0.58 (syst.).

The measurements are compared to predictions from an MCFM NLO pQCD calculation and three MC event generators, SHERPA 20, PYTHIA, and ALPGEN. The NLO predictions are based on MCFM 1, version 6.3, with the MSTW2008 PDFs 21 and the renormalization and factorization scales set at $\mu_R = \mu_F = M_Z^2 + p_{T,\text{total}}^2$. Here, M_Z is the Z boson mass and $p_{T,\text{total}}$ is the scalar sum of the transverse momentum for all the jets with $p_T^\text{jet} > 20$ GeV and $|\eta| < 2.5$ in the event. Corrections are applied to account for non-perturbative effects, on the order of 5%, estimated using the ALPGEN+PYTHIA simulation. The NLO pQCD predictions of $R_{c/jet} = 0.0368$ and $R_{c/b} = 1.64$ disagree significantly with the measurements. In the case where the intrinsic charm of the proton is enhanced, as suggested in the cteq6.6c PDF sets 13, MCFM yields ratios of $R_{c/jet} = 0.0425$ and $R_{c/b} = 2.23$, which are still in disagreement with our data.

The uncertainty on the $R_{c/jet}$ theoretical predictions are evaluated by simultaneously changing the μ_R and μ_F scales up and down by a factor of two, yielding an uncertainty of up to 11% on $R_{c/jet}$, while this uncertainty cancels in $R_{c/b}$. However, this uncertainty is smaller than the effect due to the intrinsic charm enhancement, which is 15% and 36% for $R_{c/jet}$ and $R_{c/b}$, respectively.

ALPGEN generates multi-parton final states using tree-level MEs. When interfaced with PYTHIA, it employs the MLM scheme 22 to match ME partons with those after showering in PYTHIA, resulting in an improvement over leading-logarithmic accuracy.
SHERPA uses the CKKW matching scheme between the leading-order ME partons and the parton-shower jets following the prescription given in Ref. [23]. This effectively allows for a consistent combination of the ME and parton shower.

PYTHIA includes only 2 → 2 MEs with $gQ \rightarrow ZQ$ and $qq \rightarrow Zg$ scatterings followed by $g \rightarrow Q\bar{Q}$ splitting, where Q is either a b or c quark. The Perugia0 tune [24] and the CTEQ6L1 PDF set are used for the PYTHIA predictions.

The ratios of differential cross sections as a function of p_T^{jet} and p_T^{Z} are compared to various predictions in Fig. 4. On average, the NLO predictions significantly underestimate the data, by a factor of 2.5 for the integrated results. As for the MC event generators, PYTHIA predictions are closer to data. An improved description can be achieved by enhancing the default rate of $g \rightarrow c\bar{c}$ in PYTHIA by a factor of 1.7, motivated by the $c + c$ jet production measurements at the Tevatron [25, 26].

The largest discrepancy between data and predictions, in particular for the shape of the differential distributions, is for $R_{c/b}$ as a function of p_T^{Z} (Fig. 2(d)). The level of disagreement in shape is quantified for the MCFM NLO prediction when its integrated result is scaled up to match the data. We generated a large number of pseudo-experiments and found the p-value for the four bins in p_T^{Z} to simultaneously fluctuate to the observed $R_{c/b}$ values (or beyond) to be 2%.

We have presented the first measurements of the ratios of integrated cross sections, $\sigma(p\bar{p} \rightarrow Z + c\text{ jet})/\sigma(p\bar{p} \rightarrow Z + \text{ jet})$ and $\sigma(p\bar{p} \rightarrow Z + c\text{ jet})/\sigma(p\bar{p} \rightarrow Z + b\text{ jet})$, as well as the ratios of the differential cross sections in bins of p_T^{jet} and p_T^{Z}, for events with a Z boson decaying to electrons or muons and at least one jet in the final state. Measurements are based on the data sample collected by the D0 experiment in Run II of the Tevatron, corresponding to an integrated luminosity of 9.7 fb$^{-1}$ at a center-of-mass energy of 1.96 TeV. For jets with $p_T^{\text{jet}} > 20$ GeV and $|\eta| < 2.5$, the measured integrated ratios are $R_{c/b} = 0.0829 \pm 0.0052$ (stat.) ± 0.0089 (syst.), and $R_{c/b} = 4.00 \pm 0.21$ (stat.) ± 0.58 (syst.). The NLO pQCD predictions disagree significantly with the results. PYTHIA agrees better with the measured ratios, especially when the gluon splitting to $c\bar{c}$ pairs is enhanced.

We thank the authors of Refs. [1, 20] for valuable discussions, and the staffs at Fermilab, and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, NRC KI and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACYT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).