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Boris Reljić5, Alison G. Compton1,2, Ann E. Frazier1,2, Damien L. Bruno1,6, John Christodoulou7,8,

Hitoshi Endo9, Michael T. Ryan5,10, Leo G. Nijtmans4, Martijn A. Huynen3*, David R. Thorburn1,2,6*

1 Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia, 2 Department of Paediatrics, University of Melbourne, Melbourne, Victoria,

Australia, 3 Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The

Netherlands, 4 Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands, 5 Department of Biochemistry, La Trobe

Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia, 6 Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, Victoria,

Australia, 7 Genetic Metabolic Disorders Research Unit, Children’s Hospital at Westmead, Westmead, New South Wales, Australia, 8 Disciplines of Paediatrics & Child Health

and Genetic Medicine, University of Sydney, Sydney, New South Wales, Australia, 9 Department of Biochemistry, Jichi Medical University, Tochigi, Japan, 10 ARC Centre of

Excellence for Coherent X-ray Science, La Trobe University, Melbourne, Australia

Abstract

Mitochondrial oxidative phosphorylation (OXPHOS) is responsible for generating the majority of cellular ATP. Complex III
(ubiquinol-cytochrome c oxidoreductase) is the third of five OXPHOS complexes. Complex III assembly relies on the
coordinated expression of the mitochondrial and nuclear genomes, with 10 subunits encoded by nuclear DNA and one by
mitochondrial DNA (mtDNA). Complex III deficiency is a debilitating and often fatal disorder that can arise from mutations in
complex III subunit genes or one of three known complex III assembly factors. The molecular cause for complex III
deficiency in about half of cases, however, is unknown and there are likely many complex III assembly factors yet to be
identified. Here, we used Massively Parallel Sequencing to identify a homozygous splicing mutation in the gene encoding
Ubiquinol-Cytochrome c Reductase Complex Assembly Factor 2 (UQCC2) in a consanguineous Lebanese patient displaying
complex III deficiency, severe intrauterine growth retardation, neonatal lactic acidosis and renal tubular dysfunction. We
prove causality of the mutation via lentiviral correction studies in patient fibroblasts. Sequence-profile based orthology
prediction shows UQCC2 is an ortholog of the Saccharomyces cerevisiae complex III assembly factor, Cbp6p, although its
sequence has diverged substantially. Co-purification studies show that UQCC2 interacts with UQCC1, the predicted ortholog
of the Cbp6p binding partner, Cbp3p. Fibroblasts from the patient with UQCC2 mutations have deficiency of UQCC1, while
UQCC1-depleted cells have reduced levels of UQCC2 and complex III. We show that UQCC1 binds the newly synthesized
mtDNA-encoded cytochrome b subunit of complex III and that UQCC2 patient fibroblasts have specific defects in the
synthesis or stability of cytochrome b. This work reveals a new cause for complex III deficiency that can assist future patient
diagnosis, and provides insight into human complex III assembly by establishing that UQCC1 and UQCC2 are complex III
assembly factors participating in cytochrome b biogenesis.
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Introduction

Mitochondrial disorders of ubiquinol-cytochrome c oxidoreduc-

tase (complex III, MIM 124000) represent a significant proportion

of patients with OXPHOS dysfunction [1,2]. Their identification

is challenging due to (a) the sheer number of candidate genes, (b)

their complicated interplay and (c) an incomplete understanding of

complex III assembly. To date, mutations in only eight human

genes have been identified as responsible for complex III

deficiency. The first mutation was identified in the only

mtDNA-encoded subunit of complex III, cytochrome b (MT-

CYB, MIM 516020), in an adult patient with progressive exercise

intolerance [3]. Patients with MT-CYB mutations have since been

reported with a range of phenotypes and symptoms including

Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-

like episodes (MELAS, MIM 540000), mitochondrial myopathy,

PLOS Genetics | www.plosgenetics.org 1 December 2013 | Volume 9 | Issue 12 | e1004034

¤ Current address: Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, Maastricht, The Netherlands.

¤



cardiomyopathy and multisystem failure [2,4]. While mtDNA

mutations are the most common identified cause of complex III

deficiency, mutations in nuclear genes can also be causative.

Mutations have been reported in four nuclear genes encoding

complex III subunits; the supernumerary subunits UQCRB (MIM

191330) [5] and UQCRQ (MIM 612080) [6] and more recently

the core subunit UQCRC2 (MIM 191329) [7] and the catalytic

subunit CYC1 (MIM 123980) [8]. Patients with UQCRB and

UQCRC2 mutations presented with hypoglycaemia and lactic

acidosis, the patient with UQCRQ mutations presented with severe

psychomotor retardation and patients with CYC1 mutations

presented with recurrent ketoacidosis and insulin-responsive

hyperglycemia [8]. In addition to complex III subunit genes,

mutations have also been identified in two complex III assembly

factor genes, BCS1L (MIM 603647) [9], TTC19 (MIM 613814)

[10] and recently LYRM7 [11]. BCS1L mutations were first

identified in 2001 [9] and since then more than 20 additional

mutations of the BCS1L gene have been reported [2]. The clinical

presentation of patients with BCS1L mutations varies greatly with

some mutations being associated with tubulopathy, encephalop-

athy and liver failure [9], others with GRACILE syndrome

(growth retardation, aminoaciduria, cholestasis, iron overload,

lactic acidosis and early death, MIM 603358) [12], with isolated

encephalopathy [13] or with Björnstad syndrome characterized by

sensorineural deafness associated with short brittle hair (MIM

262000) [14]. Mutations in TTC19 have been shown to cause

encephalopathy with variable age of onset and rate of progression,

which in some patients is associated with severe psychiatric

manifestations [10,15]. Mutations in LYRM7 are associated with

early onset encephalopathy [11]. Despite the discovery of

pathogenic mutations in eight different complex III-related genes,

the majority of patients with complex III deficiency remain

unsolved.

We aimed to identify new genes underpinning complex III

deficiency and to elucidate their role in the complex III assembly

process. We identified a causative homozygous UQCC2 (MIM

614461) splicing mutation in a patient with severe intrauterine

growth retardation, neonatal lactic acidosis and renal tubular

dysfunction associated with complex III deficiency. We established

the role of UQCC2 as a complex III assembly factor that

cooperates with UQCC1 (MIM 611797) to mediate cytochrome b

protein expression and subsequent complex III assembly.

Results

MitoExome sequencing identified a likely deleterious
homozygous mutation in UQCC2

We studied a consanguineous Lebanese patient presenting with

severe intrauterine growth retardation, neonatal lactic acidosis and

renal tubular dysfunction. Spectrophotometric enzyme assays

revealed a severe complex III deficiency with residual activity of

only 9% in skeletal muscle and 5% in skin fibroblasts when

normalized to citrate synthase activity (Figure 1A). Complex I

activity was reduced to 29% and 37% and complex IV activity was

reduced to 51% and 53% in muscle and fibroblasts respectively,

whereas complex II activity was normal. Secondary deficiency in

complex I and complex IV have been described in patients with

primary complex III deficiency previously [16–19]. In our own

experience, skeletal muscle from 4 previous patients with

pathogenic mutations in genes encoding complex III subunits or

assembly factors (CYC1, UQCRC2, and two BCS1L) had residual

activities for complexes I, II, III and IV of 54617, 117617, 1666

and 55613 (expressed as % of control mean relative to citrate

synthase; mean 6 S.E.M.). Given the severity of the complex III

defect in regard to the activities of complexes I and IV, we thus

regarded the patient as having a primary complex III defect. In

order to uncover the molecular basis for the complex III defect, we

performed ‘‘MitoExome’’ sequencing, involving the targeted

capture and massively parallel sequencing (MPS) of the mtDNA

and ,1000 nuclear genes predicted to encode the entire

mitochondrial proteome [20]. This approach identified 829 single

nucleotide variants or small insertion/deletions in the patient,

which were analyzed to select the disease gene (Figure 1B). Three

genes, TYMP, MTCH1 and UQCC2, harbored rare (allele

frequency ,0.005 in dbSNP version 132 [21] and the 1000

genomes project release 20100804 [22]) homozygous or com-

pound heterozygous variants that were predicted to potentially

impact protein function. Although TYMP is a known OXPHOS

‘‘disease gene’’, the clinical and biochemical presentation of the

patient, plus the consanguinity, suggested that the rare compound

heterozygous TYMP mutations (c.242G.A, c.148A.C) were not

causal. Patients with TYMP mutations typically present with

combined OXPHOS deficiency associated with mtDNA dele-

tions/depletion rather than a primary complex III deficiency, and

have mitochondrial neurogastrointestinal encephalomyopathy

(MNGIE, MIM 603041) as opposed to the primary lactic acidosis

and renal tubulopathy observed in our patient [23]. Although the

homozygous c.170C.T mutation in the pro-apoptotic MTCH1

was not reported in dbSNP version 132 [21] or the 1000 genomes

project release 20100804 [22], it was detected with a minor allele

frequency of 0.005526 in the Exome Variant Server (NHLBI GO

Exome Sequencing Project, http://evs.gs.washington.edu/EVS/

March 2013), suggesting it is likely to be too common to cause a

rare mitochondrial disorder. Computational analyses suggested

that the third candidate, UQCC2 (previously called MNF1, M19

or C6orf125) was likely causal based on 1) its orthology to the S.

cerevisiae complex III assembly factor Cbp6p, and 2) its co-

expression with complex III subunits (see below). Further

analyses indicated a wider conservation of complex III assembly

factors, as the interaction partner of S. cerevisiae Cbp6p, Cbp3p,

also had a mammalian homolog, UQCC1 (previously called

UQCC), which was co-expressed with UQCC2 and similarly co-

expressed with complex III subunit genes. The homozygous

c.214-3C.G UQCC2 (NM_032340) mutation fell within a

30.7 Mb long contiguous stretch of homozygosity (LCSH)

(Figure S1), consistent with both alleles being inherited from a

common ancestor. The mutation was verified via Sanger

Author Summary

Mitochondrial complex III deficiency is a devastating
disorder that impairs energy generation, and leads to
variable symptoms such as developmental regression,
seizures, kidney dysfunction and frequently death. The
genetic basis of complex III deficiency is not fully
understood, with around half of cases having no known
cause. This lack of genetic diagnosis is partly due to an
incomplete understanding of the genes required for
complex III assembly and function. We have identified
two key proteins required for complex III, UQCC1 and
UQCC2, and have elucidated the role of these inter-
dependent proteins in the biogenesis of cytochrome b, the
only complex III subunit that is encoded by mitochondrial
DNA. We have shown that mutations in UQCC2 cause
human complex III deficiency in a patient with neonatal
lactic acidosis and renal tubulopathy. This work contrib-
utes to an improved understanding of complex III
biogenesis, and will aid future molecular diagnoses of
complex III deficiency.

UQCC1 and UQCC2: Human Complex III Assembly Factors
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sequencing (Figure 1C) and was not reported in dbSNP version

132 [21], the 1000 genomes project release 20100804 [22] or the

Exome Variant Server. To investigate whether the c.214-3C.G

mutation might be a common variant found within the Lebanese

population, a Sequenom assay was developed to genotype 86

Lebanese controls. The c.214-3C.G variant was not detected,

suggesting it is rare in the ethnically-matched population. To see

if this gene might be the cause of complex III deficiency in other

patients, we sequenced the coding regions of UQCC2 in 11

patients with confirmed complex III deficiency who lacked a

molecular diagnosis. No potentially pathogenic changes were

identified.

The c.214-3C.G mutation causes a severe defect in
UQCC2 splicing

The c.214-3C.G UQCC2 mutation is found 3 bases upstream

of exon 3. The third base upstream of exons generally has only

moderate conservation, usually being a cytosine or a thymine and

never a guanine [24]. In keeping with this, the c.214-3C.G

UQCC2 site is moderately conserved, with no vertebrate having a

guanine at this position (Figure S2). To investigate whether the

c.214-3C.G mutation causes a splicing defect, Reverse Tran-

scriptase (RT)-PCR was performed using RNA extracted from

patient fibroblasts. Sequencing revealed aberrant mRNA splicing

in the patient, with two major mRNA splice variants (Figure 2A),

both of which were generated by the use of cryptic acceptor sites

(Figure 2B–C and Text S1). Patient fibroblasts had only 2%

residual wild-type UQCC2 expression (Figure 2D), as determined

by qRT-PCR, suggesting the c.214-3C.G mutation almost

completely abolishes wild-type splicing. In keeping with this, there

was no detectable UQCC2 protein observed by western blot

(Figure S3). The protein encoded by the alternative splice species is

likely unstable, as there was also no evidence of elongated or

truncated UQCC2 protein (Figure S3).

UQCC1 and UQCC2 are putative complex III assembly
factors

Human UQCC2 was previously postulated to have a role in

mtDNA maintenance and was found to associate with mitochon-

drial nucleoids [25], however, PicoGreen staining indicated

mitochondrial nucleoids were not disturbed in patient fibroblasts

(Figure S4A). The patient also had no significant mtDNA

depletion, having 78% mtDNA compared to the mean of 4

control fibroblast cell lines when estimated by qPCR analysis

(Figure S4B). Iterative orthology prediction using the Ortho-

Profile method [26] revealed that the UQCC2 gene is an ortholog

of the S. cerevisiae CBP6 gene that is required for complex III

assembly [27] (Figure 3A). We used the Ortho-Profile method to

investigate whether there was wider conservation of complex III

assembly factors and found that Cbp3p, which cooperates with

Cbp6p in complex III assembly, also has a predicted human

ortholog, UQCC1 (Figure 3B). Both orthologous groups have

diverged significantly among eukaryotes with UQCC2/Cbp6p

having an overall low amino acid conservation (Figure 3A), while

only the C-terminus of UQCC1/Cbp3p is conserved (human

residues 135–279) (Figure 3B). The N-terminal regions of

UQCC1/Cbp3p proteins (residues 1–134 in human and 1–144

in yeast) are highly divergent in both metazoa and fungi, with

homologous sequences recognizable only in closely related species

(vertebrates for the N-terminal fragment of UQCC1 and the

Saccharomyceta clade for Cbp3p). Interestingly, the amino acids

from positions 12 to 96 have been shown to be relatively

dispensable for Cbp3p function, explaining the lack of sequence

conservation [28]. To support the association of UQCC1 and

UQCC2 proteins with complex III in mammals, we investigated

the co-expression of the genes with complex III subunit genes in 91

mouse tissues and cell types. UQCC1 and UQCC2 genes co-express

highly with each other at the mRNA level (Pearson correlation

0.636). Genes for complex III subunits co-express significantly

Figure 1. MitoExome sequencing identifies a homozygous mutation in UQCC2 in a patient with complex III deficiency. (A) The activity
of complexes I–IV (CI-IV) as measured by spectrophotometric analysis and normalized to the activity of citrate synthase (CS), expressed as a
percentage of control. Values are the average of duplicate assays. (B) Prioritization of single nucleotide variants (SNVs) and small insertion/deletions
(indels) identified by MitoExome MPS. (C) Sequence chromatograms of UQCC2 in control and patient gDNA validating the c.214-3C.G mutation
detected by MitoExome sequencing.
doi:10.1371/journal.pgen.1004034.g001

UQCC1 and UQCC2: Human Complex III Assembly Factors
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with both UQCC2 (average 0.66, Figure 3C) and UQCC1 (average

0.66, Figure 3D). The co-expression of the two genes with complex

III subunits is, on average, 3-fold higher than with genes encoding

other mitochondrial proteins (two-sided Mann–Whitney test P-

value ,261025). Both genes are conserved in amoebozoa

indicating their ancient evolutionary origin, preceding the

divergence of human and fungi (Figure 3A and 3B). UQCC1 is

additionally conserved in distantly related eukaryotes that contain

mitochondria, including the stramenopile Phytophthora infestans. A

related stramenopile, Blastocystis hominis, has lost respiratory chain

complexes III, IV and V and congruently we did not identify

orthologs of the two complex III assembly factors in its genome.

The UQCC2 mutation is responsible for complex III
deficiency

To verify that the UQCC2 mutation was indeed responsible for

the complex III defect, patient fibroblasts were transduced with a

lentiviral construct expressing wild-type UQCC2 mRNA to

examine whether it could restore complex III assembly. Lentiviral

transduction caused UQCC2 expression in PUQCC2 to increase to

a level comparable to controls (Figure 4A). To assess complex III

restoration, western blotting for the complex III subunit

UQCRFS1 was performed as this subunit was clearly degraded

in patient fibroblasts (Figure 4). As a negative control, fibroblasts

with a mutation in a complex III subunit (manuscript in

preparation) but wild-type UQCC2 were transduced in parallel.

Lentiviral transduction of UQCC2 caused a significant increase in

UQCRFS1 protein expression in the patient with UQCC2

mutations (p,0.05, Two-Way ANOVA), but caused no significant

change in the normal control or the complex III deficient patient

with mutations in a complex III subunit gene. After transduction,

the level of UQCRFS1 protein expression in PUQCC2 was no

longer significantly different from control cells. We also measured

complex III activity in fibroblasts before and after transduction

with UQCC2. There was a clear increase in complex III activity

after transduction with UQCC2 in PUQCC2 from 29% to 73% of

control (Figure S5A). These results prove that the complex III

deficiency is due to a lack of UQCC2, and that the mutations in

other candidate genes in the patient, TYMP and MTCH1, are not

causative.

UQCC2 deficiency is associated with disturbed complex
III assembly

To further characterize the biochemical consequence of

UQCC2 deficiency, protein levels and complex assembly were

analyzed by sodium dodecyl sulphate (SDS)-polyacrylamide gel

electrophoresis (PAGE) and Blue Native (BN)-PAGE using patient

fibroblasts. BN-PAGE and immunoblot analysis of mitochondria

lysed with Triton X-100 revealed that PUQCC2 had a severe

complex III defect, with a markedly reduced amount of complex

III holocomplex but normal levels of complex II (Figure 5A and

Figure S6A). Consistent with enzyme analysis, there was a

Figure 2. The c.214-3C.G mutation causes a severe UQCC2 splicing defect. (A) Gel electrophoresis of full-length UQCC2 RT-PCR products
from fibroblasts grown in the absence of cycloheximide. Two prominent bands are seen in PUQCC2 whereas only one is observed in the control. (B)
Schematic diagram shows the wild-type (WT) mRNA structure and the two splice variants (1 and 2) observed in PUQCC2. (C) Sequence chromatograms
of cloned RT-PCR products show that the upper product in PUQCC2 retains 108 bases of intronic sequence due to the use of a cryptic acceptor site, and
that the lower product in PUQCC2 lacks 14 bases of exonic sequence due to the use of an alternative cryptic acceptor site. Splice site prediction scores
are from Human Splicing Finder v2.4.1 (http://www.umd.be/HSF/). (D) qRT-PCR analysis using an assay that detects the exon 2/3 junction of UQCC2
(normalized to the endogenous control HPRT1) demonstrates PUQCC2 fibroblasts have only 2% wild-type UQCC2 expression relative to controls
(C1–C4). PUQCC2(1) and PUQCC2(2) represent separate fibroblast subcultures.
doi:10.1371/journal.pgen.1004034.g002
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moderate reduction in complex I holocomplex, likely due to

instability of complex I due to complex III deficiency [17].

Interestingly, despite mildly reduced complex IV activity in patient

fibroblasts (Figure 1A), the level of complex IV holoenzyme

appeared increased (Figure 5A and Figure S6A). We also analyzed

patient complexes by BN-PAGE of mitochondria lysed with

digitonin, which allows visualization of OXPHOS supercom-

plexes. Prior to transduction, the small amount of complex III

detectable in PUQCC2 appears to be in the supercomplex form with

little or no complex III dimer (Figure S5B). However, transduction

with UQCC2 restores the relative amounts of complex III in

PUQCC2 in the dimer and supercomplex forms to ratios similar to

control (Figure S5B), further confirming UQCC2 as the causative

gene. SDS-PAGE analysis demonstrated that fibroblasts from

PUQCC2 had a mild defect in the level of the complex III subunit,

UQCRC2, and a more pronounced deficiency of the UQCRFS1

and UQCRC1 subunits (Figure 5B and Figure S6B). The UQCC2

binding partner, UQCC1, was barely detectable by western blot,

suggesting UQCC2 is required for its stability. We confirmed that

the lack of UQCC1 is due to the UQCC2 deficiency, by repeating

SDS-PAGE analysis on fibroblasts transduced with UQCC2

(Figure S5C). We also transfected HEK293 cells with an siRNA

targeting UQCC2 that resulted in a 40% knockdown of the

UQCC2 protein and 60% reduction in UQCC1 protein,

supporting the requirement of UQCC2 for UQCC1 stability

(Figure 5C and Figure S7A). In contrast to patient fibroblasts, no

obvious defect in complex III subunit levels was observed in cells

with UQCC2 knockdown. This is likely a consequence of the less

severe UQCC2 deficiency achieved in knockdown experiments,

with 60% residual protein compared to no detectable protein in

patient fibroblasts.

UQCC1 and UQCC2 interact
Given that UQCC2 deficiency was associated with loss of

UQCC1, we further investigated the relationship between these

proteins. We first confirmed that human UQCC1 is a mitochon-

drial protein by cellular fractionation and SDS-PAGE (Figure 6A).

Proteinase K digestion indicated that UQCC1 localizes to the

inner mitochondrial membrane (Figure 6B). In S. cerevisiae, the

UQCC1 ortholog Cbp3p interacts with the UQCC2 ortholog,

Cbp6p, and together they activate translation of mtDNA-encoded

cytochrome b, bind and stabilize the newly synthesized protein and

deliver it to an early complex III assembly intermediate [29,30].

To address a possible association between UQCC1 and UQCC2,

HEK293 cells expressing C-terminal TAP-tagged UQCC1 or

UQCC2 under the control of a doxycycline-inducible promo-

ter were generated and subjected to single step affinity purifica-

tions. Subsequent SDS-PAGE and western blot analysis of the

Figure 3. UQCC2 and UQCC1 are orthologous to the fungal complex III assembly factors Cbp6p and Cbp3p. Alignment between fungal
and human complex III assembly factors was inferred using iterative orthology pipeline Ortho-Profile [26] and visualized using JalView with the
ClustalX color scheme [65]. (A) Alignment of conserved regions among the orthologs of human UQCC2 and fungal Cbp6p. The S. cerevisiae-specific
insertion between residues 47 and 96 is replaced with a letter X. The sequences do not have a recognizable targeting signal or additional conserved
motifs. Domains were annotated according to PFAM [66]. (B) Alignment of UQCC1 (human) and Cbp3p (yeast) with orthologs in other eukaryotes.
Only the conserved part of the sequence is shown in the alignment. Proteins contain the UQCC1-specific domain PF03981. (C and D) Mouse mRNA
co-expression of UQCC2 (C) and UQCC1 (D) with other genes across 91 murine cell types and tissues. Black bars represent genes encoding
mitochondrial proteins and white bars represent the remaining human genes. Below the chart the co-expression values of complex III subunits are
indicated with black dots.
doi:10.1371/journal.pgen.1004034.g003

UQCC1 and UQCC2: Human Complex III Assembly Factors
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UQCC2-TAP purification revealed efficient co-isolation of

UQCC1 (Figure 6C). The complex III subunits UQCRC1,

UQCRC2, UQCRFS1 and the mitochondrial ribosomal subunits

MRPL12 and MRPS22 did not co-elute with UQCC2-TAP

(Figure 6C). Using a UQCC1-TAP tagged construct we confirmed

the interaction with UQCC2 (Figure 6D).

UQCC1 deficiency is associated with disturbed complex
III assembly

To investigate whether UQCC1-deficient cells exhibit a similar

biochemical phenotype to UQCC2-deficient cells, we transfected

HEK293 cells with siRNA targeting UQCC1 or cyclophilin B, which,

along with mock-transfected cells, served as a negative control.

The knockdown led to disappearance of UQCC1 protein in

mitochondrial lysates and a concurrent loss of UQCC2

(Figure 7A). Although UQCC2 stability appears to depend on

UQCC1, we did not observe that over-expression of either

UQCC2-TAP or UQCC1-TAP led to an increase of UQCC1 or

UQCC2 respectively (Figure 6C and Figure 6D). Knockdown of

UQCC1 led to reduced levels of the UQCRFS1, UQCRC1 and

UQCRC2 subunits of complex III (Figure 7A and Figure S7B).

With respect to the presence of individual subunits, the impact of

UQCC1 knockdown appears to be limited to complex III, as

subunits from complexes I, II, IV and V were unaffected

(Figure 7A, Figure 7B and Figure S8). Nevertheless, with respect

to the presence of complete OXPHOS complexes, as measured

with BN-PAGE analysis, we do observe besides a marked

reduction of complex III, also a reduction of complex I

(Figure 7B and Figure S7C). The UQCC1 knockdown profile is

thus similar to UQCC2 deficiency in PUQCC2, with reduced levels

of complex III subunits, a reduced level of complex III and, to a

lesser extent, a reduced level of complex I (Figure 5A, 5B).

Two-dimensional BN-PAGE experiments confirmed lower

levels of mature complex III and additionally showed the

accumulation of a partially assembled subcomplex containing

UQCRC1. This subcomplex was not detected in the cyclophilin B

knockdown control cells (Figure 7C). Subsequent OXPHOS

enzyme activity measurements of UQCC1-depleted cells showed

reduced complex III, a reduced combined complex II/III activity

(SCC) and a slight but considerable reduction in complex I,

compared to the mock control (Figure 7D).

UQCC1 and UQCC2 are required for cytochrome b
protein expression

Having established that UQCC1 and UQCC2 are involved in

complex III assembly, we next investigated whether they are

involved specifically in cytochrome b biogenesis. Mitochondrial

translation products from patient and control fibroblasts were

subjected to a 35S-pulse-chase assay and analyzed by SDS-PAGE.

Even at zero hours chase, a striking and specific defect in

cytochrome b protein levels was observed; other mtDNA-encoded

subunits were present in normal amounts or, in the case of COX2

and COX3, an increased amount (Figure 8A). qRT-PCR analysis

revealed that MT-CYB mRNA levels were unaffected in patient

cells (Figure 8B). To determine whether UQCC1 is involved in the

stabilization of newly synthesized cytochrome b, the UQCC1-TAP

purification was carried out with 35S metabolically labeled

mitochondrial translation products. UQCC1 specifically associat-

ed with newly synthesized cytochrome b and not with other newly-

translated mtDNA-encoded subunits (Figure 8C). Moreover,

inhibition of mitochondrial translation with chloramphenicol for

72 h predictably led to the disappearance of mtDNA-encoded

COX1, but also UQCC1 and UQCC2 proteins, suggesting that

UQCC1 and UQCC2 may be stabilized by cytochrome b

(Figure 8D). In contrast, SDHA, a nuclear-encoded subunit of

complex II, was not affected. We conclude that UQCC1 and

UQCC2 are critical factors required for the expression of

cytochrome b and complex III biogenesis.

Discussion

Here we report the first case of complex III deficiency due to

UQCC2 mutations. MitoExome MPS identified 3 genes with

potentially pathogenic recessive-type variants, of which UQCC2

was strongly linked to complex III by evolutionary and compu-

tational analyses. We demonstrated a UQCC2 splicing defect

resulting in a lack of UQCC2 protein and verified that this gene

was causal by restoring complex III protein and activity levels in

patient fibroblasts with lentiviral transduction of UQCC2. This

Figure 4. UQCC2 mutations are responsible for the complex III
defect in PUQCC2. Fibroblasts from Control, PUQCC2 with mutations in
UQCC2 and PCONTROL with mutations in a complex III subunit gene (and
no UQCC2 mutation) were transduced with wild-type UQCC2 mRNA. (A)
Representative SDS-PAGE western blot shows reduced UQCC2 in PUQCC2

and increased UQCC2 expression following UQCC2 transduction. VDAC1
acts as a loading control. UQCRFS1 protein is reduced in both complex
III deficient patients and restored in PUQCC2, but not PCONTROL, with
UQCC2 transduction. VDAC1 acts as a loading control. (B) The intensity
of immunostained UQCRFS1 relative to VDAC1 before and after
transduction with UQCC2 was quantified by densitometry. Error bars
indicate 1 s.e.m. for 3 independent transductions and the asterisk
indicates p,0.05, two way ANOVA.
doi:10.1371/journal.pgen.1004034.g004
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patient was a singleton from a consanguineous family, and would

have been slower to solve using only traditional methods such as

homozygosity mapping, which identified 1894 candidate genes in

regions of LCSH, at least 86 of which have a putative role in the

mitochondria [31]. MitoExome sequencing has already shown

promise for the molecular diagnosis of patients with mitochondrial

disease [20,32,33] and is likely to aid diagnoses in years to come.

Patients with complex III deficiency present with great clinical

heterogeneity. Symptoms typically provide little insight into the

underlying genetic cause. Our patient shared some of the clinical

features of previously reported complex III deficient patients such

as tubulopathy and primary lactic acidosis with BCS1L patients [9]

but only identification of other pathogenic UQCC2 mutations in

unrelated individuals will provide a complete picture of the clinical

spectrum of patients with UQCC2 dysfunction.

Complex III deficiencies are commonly accompanied by a

reduction in complex I and sometimes complex IV activity [16–

18]. We also observed reduced presence and activity of complex I

in muscle and fibroblasts from PUQCC2, which prompted us to

provide additional evidence that both UQCC1 and UQCC2 are

in fact assembly factors specific to complex III. One type of

evidence comes from the analysis of the presence-absence patterns

of the two genes among sequenced genomes. The presence and

function of CBP3 and CBP6 and their orthologs in fungi that

encode complex III but have lost complex I (S. cerevisiae,

Schizosaccharomyces pombe) substantiate their role in complex III

biogenesis. Conversely, orthologs of these assembly factors are

absent in B. hominis, a species that has lost complexes III–V but still

encodes complexes I and II. A relative of B. hominis, Phytophthora

infestans, which encodes complex III also encodes an ortholog of

Cbp3p/UQCC1 (Figure 3). Coevolution of orthologs of UQCC1

and UQCC2 with complex III and not with complex I indicates

that these assembly proteins function primarily in the assembly of

complex III.

We elucidated the role of UQCC2, in cooperation with

UQCC1, in human cytochrome b biogenesis and subsequent

complex III assembly and function. No direct link between these

proteins and human complex III has previously been described.

Previous studies of human UQCC2 suggested that the protein

localizes to mitochondrial nucleoids [25] and that it modulates

respiratory chain activity in skeletal muscle and pancreatic cells

[34]. However, we found no disturbance of mitochondrial

nucleoids or mtDNA copy number in patient fibroblasts. Previous

studies of human UQCC1 have all focused on variation at this

locus being associated with human height [35–37]. Our data

suggest that UQCC1 and UQCC2 are interacting and interde-

pendent proteins, with the stability of UQCC2 depending on

UQCC1, and vice versa. We also show that UQCC1 plays an

important role in early complex III biogenesis via interaction with

newly synthesized cytochrome b and recruitment of this mtDNA-

encoded subunit into a complex III assembly intermediate

(Figure 9).

The direct effect of UQCC1 and UQCC2 dysfunction is an

immediate lack of cytochrome b leading to disruption of the

downstream complex III assembly process. Mutations in UQCC2

(Figure 5) and UQCC1 depletion (Figure 7) both lead to reduced

levels of the complex III subunits UQCRFS1, UQCRC1 and

UQCRC2. A subcomplex containing UQCRC1 but not

Figure 5. Lack of UQCC2 is associated with aberrant complex III assembly, subunit expression and UQCC1 stability. (A) BN-PAGE
immunoblotting of mitochondria lysed in 1% Triton X-100, using antibodies against the NDUFA9 subunit of complex I, the SDHA subunit of complex
II, the UQCRC1 subunit of complex III and the COX1 subunit of complex IV shows reduced complex III assembly in PUQCC2. See Figure S6A for
quantification of immunoreactive bands. (B) SDS-PAGE and western blotting of mitochondrial lysates from patient fibroblasts demonstrate a marked
deficiency of UQCC2 and UQCC1, a mild deficiency in the UQCRC2 subunit of complex III, and a more pronounced deficiency of the UQCRC1 and
UQCRFS1 subunits of complex III. The PCONTROL cell line with mutations in a complex III subunit gene showed a similar profile of complex III subunit
instability but had levels of UQCC2 and UQCC1 comparable to the wild-type control. The complex II subunit SDHB and mitochondrial VDAC1 protein
act as loading controls. Vertical bars indicate immunoblots performed using the same membrane. See Figure S6A for quantification of
immunoreactive bands. (C) Mitochondrial lysates of HEK293 cells transfected with siRNA targeting UQCC2 analyzed by SDS-PAGE and western
blotting showed reduced levels of UQCC2 and UQCC1 proteins. As control, cyclophilin B knockdown and mock transfected cells were used. The
asterisk indicates a non-specific, cross-reactive species. See Figure S7A for quantification of immunoreactive bands.
doi:10.1371/journal.pgen.1004034.g005
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UQCRFS1 accumulates upon UQCC1 knockdown, consistent with

a defect early in CIII assembly before incorporation of the

UQCRFS1 subunit (Figure 9). The role of UQCC1:UQCC2 in

the initial stages of complex III assembly is further supported by

the UQCC1 binding to newly synthesized cytochrome b

(Figure 8C), although we have not shown that UQCC1 and

UQCC2 bind to cytochrome b together.

Interestingly, in S. cerevisiae, Cbp3p and Cbp6p have been shown

to provide a feedback loop modulating cytochrome b expression in

response to complex III assembly [30]. Cbp6p and Cbp3p, bind

to MT-CYB mRNA to activate its translation and then deliver

newly-synthesized cytochrome b to a complex III assembly

intermediate. When early complex III assembly is disrupted,

cytochrome b cannot be deposited by the Cbp3p:Cbp6p complex

and so these factors remain bound to the cytochrome b protein.

While bound in an assembly intermediate, the Cbp3p:Cbp6p

complex is unable to activate further cytochrome b translation,

thus modulating cytochrome b synthesis in response to complex III

assembly. Such coordination between mtDNA translation and

nuclear gene expression prevents the build-up of mtDNA-encoded

proteins in the absence of functional complexes. It will be

interesting to investigate whether UQCC1 and UQCC2 provide

a similar feedback loop between cytochrome b translation and

complex III assembly in mammalian mitochondria.

The role of UQCC1 and UQCC2 in cytochrome b expression

like their S. cerevisiae orthologs Cbp3p and Cbp6p, is supported by

the fact that no cytochrome b synthesis is detected in PUQCC2 via a

mitochondrial translation assay (Figure 8A). Furthermore, mito-

chondrial translation is a prerequisite for the stability and function

of both proteins (Figure 8D). The previously reported co-

localization of UQCC2 with mitochondrial nucleoids would be

consistent with a role in mitochondrial translation, as factors

required for mitochondrial protein synthesis, such as ATAD3 and

PHB, are often found to associate with mitochondrial nucleoids

[38]. Nevertheless, whether UQCC1 and UQCC2 are directly

required for translation activation of MT-CYB remains to be

established, specifically because the 59 UTRs of mitochondrial

mRNAs to which translational activators in S. cerevisiae bind are

absent from human mitochondrial mRNAs. Furthermore, in the

fungus S. pombe the function of the Cbp6p ortholog appears to be

only post-translational [39]. One can speculate that the lack of

sequence conservation of the N-terminus of the Cbp3p orthologs,

even among fungi, could explain the lack of conservation of

translation activation. Nevertheless, there is currently no informa-

tion about which region of S. cerevisiae Cbp3p is required for

translation activation and the N-terminus of Cbp3p appears to be

relatively dispensable for its function, even in S. cerevisiae itself [28].

To date, only one putative human mitochondrial translational

activator, TACO1, which is required for the translational

activation of the COX1 subunit of complex IV, has been

described [40].

In summary, here we have used MitoExome MPS in

combination with computational and experimental analyses to

identify the first case of complex III deficiency due to UQCC2

mutation. We demonstrate that UQCC2 and its binding partner

UQCC1 are required for early complex III assembly by mediating

the synthesis, stability and/or assembly of the mtDNA-encoded

complex III subunit, cytochrome b.

Materials and Methods

Ethics statement
Investigations were performed with ethics approval by the

Human Research Ethics Committee of the Royal Children’s

Hospital, Melbourne.

Patient clinical summary
The proband was the first child of first cousin Lebanese parents

and was patient P12 in [20]. The pregnancy was complicated by

intrauterine growth retardation, and he was born at 36 weeks

gestation by emergency caesarean section because of placental

compromise. Birth weight was 1280 gm, length 41 cm and head

circumference 29 cm. He had good Apgar scores (9 and 9 at one

and five minutes respectively), but by 12 hours of age he became

lethargic and had loose stools. He was found to have severe

Figure 6. UQCC2 interacts with mitochondrial protein UQCC1.
(A) SDS-PAGE analysis of HEK293 cellular fractions shows that UQCC1 is
enriched in the mitochondrial fraction, similar to the mitochondrial
protein TOM20. A cytosolic marker creatine kinase B-type (CK-B) was
used. TC: Total Cell, Cyt: Cytoplasmic fraction, Mit: Mitochondrial
fraction. (B) Proteinase K protection assay performed using mitochon-
dria with digitonin-permeabilized outer membranes shows localization
of UQCC1 within the mitochondrial inner membrane. UQCC1, unlike
outer membrane localized TOM20 and the inter-membrane localized
part of OXA1L, is protected from proteolysis and degraded only after
the inner membrane is dissolved with Triton X-100. Western blot
analysis of single step affinity purified (C) UQCC2- and (D) UQCC1-TAP
from doxycycline-induced HEK293 cells shows that UQCC1 co-purifies
with UQCC2-TAP and UQCC2 co-purifies with UQCC1-TAP. Additional
probing of the membranes for the complex III structural subunits
UQCRC1, UQCRC2, UQCRFS1 and mitochondrial ribosomal subunits
MRPS22 and MRPL12 did not reveal co-elution of these proteins.
Asterisks with these subunits, including the one with UQCRFS1,
correspond to bands at different heights that result from previous
incubations. Complex II subunit SDHA was used to rule out non-specific
protein binding. Non-induced cells were used as control. Antibodies
used are indicated at the left. Arrowheads indicate endogenous UQCC1
and UQCC2.
doi:10.1371/journal.pgen.1004034.g006
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metabolic acidosis (pH 7.16, lactate 9.6 mmol/L; normal range

0.7–2.0), and CSF lactate at around that time was 3.8 mmol/L

(normal ,2.0). His blood electrolytes suggested he had a proximal

renal tubular acidosis. His condition improved with rehydration

and bicarbonate supplementation, but blood lactate remained

high (5–14 mmol/L) even when well. In addition, he was mildly

dysmorphic with synophrys, epicanthic folds, upward slanting

palpebral fissures, a depressed nasal bridge and flattened nose, and

had a unilateral undescended testis. He also had unilateral

postaxial polydactyly, the skin tag being removed in the newborn

period. His father had a similar facial appearance and had a

history of a cleft palate. Seizures were effectively treated with

phenobarbitone for 6 months, after which it was ceased. A CT and

MRI scan of the brain revealed no abnormality. A vitamin cocktail

including riboflavin, thiamine, vitamin C, biotin and coenzyme Q

did not appear to have an effect on his blood lactate levels or

clinical condition.

He developed acute gastroenteritis at 5 months of age, at which

time severe metabolic acidosis again developed, which again

resolved with rehydration. Afebrile seizures recurred at two years

of age, and were treated with sodium valproate and later with

lamotrigine. EEG was normal at this time.

Developmental milestones were delayed: he sat unaided at six

months, crawled at 10 months, could cruise around furniture at 13

months, walked unaided at 15 months, but still had no formal

speech by 2 years 3 months. By that age he could walk unaided,

but frequently fell. Stamina was normal. Formal neuropsycholog-

ical review at two years nine months revealed severe delay in fine

motor and visuo-spatial performance, self-care skills and social

play, with gross motor skills being only mildly impaired. There

were no concerns with vision, but he had a mild sensorineural

hearing impairment. Despite speech therapy, at six years of age he

still had only several words in Arabic but no meaningful speech.

He went on to develop a number of autistic features, including

impulsivity, limited eye contact, extreme hyperactivity, aggressive

behaviour, night time roaming, and continued to have no real

expressive language, although he was felt to have reasonable

receptive language. He required two minders at school because of

concerns of his lack of regard for his physical safety. Ritalin caused

him to become even more agitated, whereas clonidine appeared to

be of some benefit. He was lost to follow up at nine years of age.

General methods
Unless otherwise described below, cell culture, DNA isolation,

RNA isolation, cDNA synthesis and sequencing of PCR products

were performed as described previously [41]. To sequence unique

splice variants, RT-PCR products were first cloned into a pTOPO

vector using the TOPO TA Cloning Kit (Invitrogen) as per

manufacturer’s protocol. For mitochondrial nucleoid staining,

patient fibroblasts and control cell lines were grown on coverslips

and stained with 3 ml/ml PicoGreen [42] (Invitrogen) for 1 hour

and 10 nM MitoTracker Red CMXRos (Invitrogen) for 30 min at

Figure 7. Depletion of the UQCC2 binding partner, UQCC1, affects complex III assembly. (A) SDS-PAGE and western blot analysis of
mitochondrial extracts from HEK293 cells transfected with UQCC1 siRNA shows lower levels of complex III subunits UQCRFS1, UQCRC1 and UQCRC2.
Subunits of complex I (ND1), complex II (SDHA), complex IV (COX1) and complex V (ATP5a) are not affected by UQCC1 knockdown. (B) BN-PAGE of
HEK293 cells transfected with UQCC1 siRNA show reduced levels of holocomplex III (UQCRC2) and a mild effect on complex I in gel activity (IGA) and
complex I holocomplex levels (NDUFA9). Levels of other OXPHOS complexes, complex II (SDHB), complex IV (COX2) and complex V (ATP5a) are not
affected. Mock transfected cells were used as control). See Figure S7B-C for the quantification of the immunoreactive bands. (C) 2D BN-PAGE of
HEK293 cells depleted of UQCC1 or cyclophilin B with indicated antibodies. The holocomplex III dimer is indicated with a line labeled CIII2. To the
right are lower molecular weight subcomplexes: UQCRC1-containing subcomplex (1) and, likely, monomeric UQCRFS1 (2). Lauryl maltoside was used
to solubilize OXPHOS complexes in parts B and C. (D) Respiratory chain enzyme activity measurements of HEK293 cells transfected with UQCC1 and
cyclophilin B siRNAs. Mock transfected cells were set at 100%. Error bars indicate one standard deviation. Complex I ubiquinone reducing part (CI-Q),
complexes II–V (CII-V) and combined activity of complex II and III (SCC) were measured relative to the activity of citrate synthase (CS).
doi:10.1371/journal.pgen.1004034.g007

Figure 8. UQCC2 and UQCC1 are involved in cytochrome b translation and/or stability. (A) SDS-PAGE analysis of 35S-methionine-labeled
mtDNA-encoded proteins in patient fibroblasts shows a lack of cytochrome b (MTCYB) protein (even at zero hours chase) suggesting a defect in
cytochrome b synthesis or its immediate stability. (B) qRT-PCR shows normal expression of cytochrome b (MTCYB) mRNA in patient fibroblasts. (C)
Autoradiogram of single step affinity purified UQCC1-TAP with 35S metabolically labeled mitochondrial translation products shows UQCC1 specifically
associates with newly synthesized cytochrome b in HEK293 cells. (D) Inhibition of mitochondrial translation in HEK293 cells results in diminished
levels of UQCC1, UQCC2, mtDNA-encoded COX1, but does not affect the SDHA subunit of the nuclear encoded complex II.
doi:10.1371/journal.pgen.1004034.g008
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37uC, 5% CO2. Coverslips were washed with PBS, then mounted

on slides for live cell imaging using a Zeiss AxioImager.M1

epifluorescence microscope.

MitoExome sequencing
Genes encoding the entire predicted mitochondrial proteome

(1381 nuclear genes and the mtDNA) were captured and

sequenced on an Illumina Genome Analyzer II as described

previously [20]. Variant prioritization used previously established

criteria for likely pathogenicity [20,41].

Biochemical analysis
Spectrophotometric enzyme assays assessing mitochondrial

OXPHOS activity were performed as described previously for

patient samples (muscle post-nuclear supernatants and fibroblast

mitochondria) [43] and for functional studies in mitochondria

from HEK293 cells, see [44] and references therein.

Iterative orthology prediction
An orthology identification pipeline that uses sequences,

sequence-based profiles as well as profile-derived Hidden Markov

Models [26] was applied to identify human orthologs of fungal

Cpb3p and Cbp6p proteins. As a negative control for the

orthology prediction method, sequence-based profiles of the

orthologs were also used to search for orthologs in the genome

nucleotide sequence of B. hominis [45], a species with mitochon-

dria-like organelles but without complex III. No orthologs were

found in the B. hominis genome despite using sensitive PSI-tblastn

[46] to circumvent possible gene annotation errors.

mRNA co-expression analysis
To calculate the Pearson correlation of mRNA expression in

murine tissues and cell types, 182 microarray sample measure-

ments with Affymetrix Mouse Genome 430 2.0 Array [47] were

used. The data (GNF Mouse GeneAtlas V3) were downloaded

from Gene Expression Omnibus, record GSE10246 [47]. The

data were transformed as described previously [48].

qRT-PCR
Quantitative expression analysis of UQCC2 was performed as

previously described [49], using the MNF1 Hs00942667_m1 gene

expression assay (Life Technologies) that detects the exon 2/3

junction of UQCC2 (MNF1) with the HPRT1 Endogenous Control

Gene Expression Assay (Life Technologies) for normalization, and

the Cytb (MT-CYB) Hs02596867_s1 gene expression assay (Life

Technologies) with the previously described ND1 assay [50] for

normalization. Because the Cytb and ND1 assays cannot distinguish

cDNA from mtDNA, an additional DNAse-treatment was

performed prior to qRT-PCR using the Turbo DNA-free kit

(Ambion) as per manufacturer’s protocol.

Quantitative analysis of mtDNA copy number was performed

with a probe targeting ND1 to represent mtDNA and a probe

targeting CFTR as the nuclear reference, as described previously

[51].

SNP analysis
Molecular karyotyping of patient DNA was performed with the

Illumina HumanCytoSNP-12 array (version 2.1) as previously

described [52]. Automated LCSH detection was performed with

the CNVPartition v3.1.6 algorithm in KaryoStudio software. SNP

genotypes were generated in GenomeStudio software (Illumina)

with data from a set of 102 intra-run samples.

Sequenom genotyping
A Sequenom assay using multi-plexed MALDI-TOF mass

spectrometry was designed to genotype 86 Lebanese controls for

the c.214-3C.G mutation. The forward, reverse and extension

primers were as follows: 59ACGTTGGATGCTTCACTTC-

CTTTCTGCCCC39, 59ACGTTGGATGTGTACTCTTCCA-

ACGACAGG39, 59CACTTCCTTTCTGCCCCGGTGAC39.

Figure 9. Proposed model of CIII assembly. Complex III assembly begins with the translation activation and/or stabilization of cytochrome b
(MTCYB) by UQCC1:UQCC2, which then delivers MTCYB to an assembly intermediate containing UQCRQ and UQCRB. This module combines with a
module containing CYC1, UQCRH and UQCR10 and a module containing UQCRC2 and UQCRC1. The resulting subcomplex then dimerizes. UQCRFS1
is bound and stabilized by the CIII assembly factor LYRM7, before being incorporated into CIII with the aid of the assembly factor, BCS1L. Finally
UQCR11 is added, forming the complete CIII2. Assembly factors are indicated in gray. Proteins in which mutations are associated with complex III
deficiency are bordered in red. The role of TTC19 is yet to be elucidated, although it is likely to be involved in early complex III assembly. Model
adapted and updated from [67].
doi:10.1371/journal.pgen.1004034.g009
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Genotypes were called using the MassARRAY System Typer

version 4.0 (Sequenom).

Viral particle production and transduction
Full length UQCC2 was amplified from cDNA using high-

fidelity Phusion Taq (Finnzymes) with a forward primer

incorporating a 59 BamHI recognition site (59CGGGATCCAC-

CATGGCGGCCAGCCGGTACCGGCGTT39) and a reverse

primer incorporating a 39 XbaI recognition site (59GCTCTA-

GATTATCAGGCCTTATGATCCTCCTCAGGAC39). The

resulting RT-PCR product was cloned into the 4-

hydroxytamoxifen-inducible lentiviral vector,

pF_5x_UAS_MCS_SV40_puroGEV16-W [53]. UQCC2 viral

particles were generated and patient fibroblasts were transduced

as described previously [41]. Three independent transductions

were performed and cells were harvested 12–18 days after

selection with 1 mg/ml puromycin.

SDS-PAGE and BN-PAGE
One-dimensional 5–15% BN gradient and two-dimensional

(2D) SDS gradient PAGE were done as described previously

[54,55]. Whole cell or tissue samples were used for SDS-PAGE

and isolated mitochondria were used for BN-PAGE. SDS-

PAGE with 10% NuPage gels (Invitrogen) and immunoblotting

was performed as described previously [41]. Proteins were

detected with the following antibodies: a-MNF1 (ATLAS

antibodies or as previously described [25] for detection of

UQCC2), Total OXPHOS Human WB Antibody Cocktail

containing a-ATP5A1, a-UQCRC2, a-SDHB, a-COX2 and a-

NDUFB8 (MitoSciences), a-NDUFA9 (as previously described

[55]), a-UQCC (Atlas Antibodies), a-CBP (GenScript), a-ND1

(kindly provided by A Lombes [56]), a-cyclophilin B (Affinity

Bioreagents), a-OXA1L (Central Animal Facility Nijmegen), a-

SDHA, a-SDHB, a-COX1, a-UQCRC1, a-UQCRC2, a-

UQCRFS1 and a-ATP5a (all MitoSciences), a-TOM20 (BD

transduction laboratories), a-CK-B 21E10 (kindly provided by

the Department of Cell Biology Nijmegen [57]), a-MRPL12

(Abcam), a-MRPS22 (Proteintech) and a-VDAC1 (Calbio-

chem). Secondary antibodies were goat a-mouse or swine a-

rabbit IgG horseradish peroxidase (HRP, DakoCytomation),

goat a-mouse or a-rabbit IgG HRP antibodies (Invitrogen).

Quantification of western blots was performed by densitometry

using ImageJ software or the Chemidoc XRS+ system (Biorad)

software.

Mitochondrial translation assay
zMitochondrial translation assays were performed as described

previously [58,59]. Briefly, fibroblasts were cultured with cyclo-

heximide to inhibit cytoplasmic translation and mtDNA-encoded

proteins were labeled with a 2-hour pulse of 35S-methionine/35S-

cysteine (EXPRE35S35S Protein Labeling Mix; Perkin Elmer Life

Sciences) prior to washing and a chase with cold methionine for 0

to 24 hours. Mitochondria were then isolated and translation

products were analyzed by SDS-PAGE and autoradiography.

HEK293 cells were cultured and labeled in the same way, except

that labeling was done for 1 hour, emetine was used instead of

cycloheximide and Tran35S-Label (MP Biomedicals) was used for

labeling.

Statistics
Two-way repeated-measures analysis of variance (ANOVA) was

used for comparisons of groups followed by post hoc analysis with

a Bonferroni correction to account for multiple comparisons.

Cloning and generation of UQCC1 and UQCC2
expression plasmids

The UQCC2 open reading frame was PCR amplified without

the stop codon from HEK293 cDNA adding Attb recombination

sites (underlined) using the following primers: forward 59-AA

AAAGCAGGCTTCGCCACC ATGGCGGCCAGCCGGTAC-

CGGCG-39 and reverse 59-GAAAGCTGGGTG GGCCTTAT-

GATCCTCCTCAGG-39. After the first PCR, the specific

product was used in a second PCR using this primer set: forward

59-GGGGACAAGTTTGTACAAAAAAGCAGGCT-39 and re-

verse 59-GGGGACCACTTTGTACAAGAAAGCTGGGT-39 to

complete the recombination sites and allow the cloning in the

pDONR201 vector using BP clonase enzyme mix (Invitrogen).

The pDONR201 vector containing the UQCC1 open reading

frame without stop codon was obtained from the Harvard Medical

School (clone ID: HsCD00081684) [60]. Next, mammalian

expression vectors under the control of a tetracycline-inducible

promoter adding a tandem affinity purification (TAP) tag at the C-

terminus were generated by recombining the pDONR201 vectors

with the appropriate expression vector with the aid of LR clonase

enzyme mix. All vectors were checked with sequence analysis

before further use.

Cell culture
T-REx Flp-In Human Embryonic Kidney 293 cells (HEK293;

Invitrogen) were grown and maintained in Dulbecco’s Modified

Eagles Medium (DMEM; Biowhitaker) supplemented with 10%

FCS, 1% [v/v] penicillin/streptomycin, zeocin (300 mg/ml,

Invitrogen) and 5 mg/ml blasticidin (Calbiochem). To generate

stable cell lines expressing TAP fusion proteins, cells were

transfected with the corresponding construct using Superfect

transfection reagent (Qiagen) and selected for stable transfectants

by replacing the zeocine in the culture medium with hygromycin

(200 mg/ml, Calbiochem). Gene expression was induced by

adding 1 mg/ml doxycycline (Sigma) to the culture medium for

a minimum of 24 h. Mitochondrial translation was inhibited with

40 mg/ml chloramphenicol (CAP) for a minimum of 72 h.

siRNA design and transfections
siRNAs were designed using the online available software from

the Whitehead Institute for Biomedical Research [61] and

synthesized by Biolegio (Nijmegen). The following siRNAs were

used: UQCC2 antisense 59-AGUAGUUUGAAUGGAGUCG

dTdT-39; UQCC1 antisense 59-UAUGAUACGACACAUGUAC

dTdT-39 as well as control cyclophilin B targeting siRNA (Thermo

Scientific). For transfection HEK293 cells were plated in

antibiotic-free culture medium and transfected the next day with

10 nM siRNAs using Dharmafect 1 transfection reagent (Dhar-

macon). At day 3, cells were split 1:4 and transfected again the

next day. Cells were harvested 96 hours after the first transfection

and analyzed with SDS and/or BN-PAGE.

Cellular fractionation and proteinase K protection assay
The cellular fractionation of HEK293 cells was done as

previously described [62]. For determining the submitochondrial

localization a proteinase K protection assay was performed as

previously described [63].

Isolation of mitoplasts and determination of protein
concentrations

Mitoplasts were pelleted by centrifugation as described before

[64]. The supernatants containing the solubilized proteins were

used for further analysis. Protein concentrations of the samples
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were determined with the microBCA protein kit (Thermo

Scientific).

Single step affinity purifications
HEK293 cells were induced with doxycycline for 24 h to

express UQCC1-TAP or UQCC2-TAP fusion proteins before

being harvested and processed for a single step affinity purification

using the Interplay Mammalian TAP kit (Agilent Technologies) as

per manufacturer’s protocol.

Supporting Information

Figure S1 Analysis of a 300K Illumina SNP array showing long

contiguous stretches of homozygosity (LCSH) on chromosome 6.

The position of the UQCC2 gene in a 30.7 kb region of LCSH is

indicated by a dashed line. These data support the mutation being

homozygous due to identity by descent i.e., inheritance of both

alleles from a common ancestor.

(PDF)

Figure S2 The c.214-3C.G UQCC2 site has moderate

conservation in vertebrates. Alignment of vertebrate UQCC2

gDNA sequence around the site of the c.214-3C.G UQCC2

mutation (bordered in red). The consensus AG acceptor site is

bordered in black.

(PDF)

Figure S3 The c.214-3C.G mutation results in no detectable

UQCC2 protein. Western blot shows a lack of UQCC2 protein in

PUQCC2, and no truncated or elongated protein that might be

encoded by the alternative splice species (predicted sizes of

11.3 kDa and 18.7 kDa respectively). Asterisk indicates a non-

specific band.

(PDF)

Figure S4 Mitochondrial nucleoids and mtDNA are undis-

turbed in PUQCC2. (A) Fibroblasts from Controls (C1–C2), PUQCC2

and PPOLG, were stained with PicoGreen to visualize mitochon-

drial nucleoids and cellular nuclei (top panels), and MitoTracker

Red (middle panels) to visualize mitochondrial networks. Merged

images (bottom panels) indicate alignment of nucleoids with

mitochondrial networks. Nucleoids from PPOLG are poorly stained

and few in number or absent from cells, whereas nucleoids from

PUQCC2 are similar in number and distribution to control cells. (B)

MtDNA copy number was determined using qPCR targeting ND1

on mtDNA and CFTR as the nuclear reference. Three

independent assays were performed, each in triplicate. Bars

represent average ND1:CFTR ratios relative to 4 control

fibroblast lines 61 s.e.m.

(PDF)

Figure S5 Additional evidence of complex III restoration in

PUQCC2 with UQCC2 transduction. (A) Spectrophotometric

enzyme analysis shows a clear increase in CIII activity in PUQCC2

but not in wild-type control cells, following transduction with

Lv-UQCC2. (B) BN-PAGE of digitonin-lysed mitochondria shows a

lack of complex III dimer and minimal complex III bound in

supercomplexes, and restoration of normal ratios following

UQCC2 transduction. (C) SDS-PAGE immunoblotting shows a

lack of UQCC1 protein in PUQCC2 and restoration following

transduction with UQCC2.

(PDF)

Figure S6 Quantification of protein expression in patient

fibroblasts. Protein expression was visualized with immunoblots

and quantified by densitometry. Y-axis shows relative intensities of

proteins of interest normalized to loading controls, expressed as a

percentage of the control. (A) BN-PAGE immunoblot analysis of

holocomplexes from Figure 5A. (B) SDS-PAGE immunoblot

analysis of complex III subunits, UQCC1 and UQCC2 from

Figure 5B.

(PDF)

Figure S7 Quantification of protein/complex expression in

UQCC1 and UQCC2 knockdown experiments. Y-axis shows

relative intensities of the immunoreactive bands compared to

mock transfection (100 = no change). (A) SDS-PAGE immunoblot

analysis of UQCC2 knockdown from Figure 5C. (B) SDS-PAGE

immunoblot analysis of UQCC1 knockdown from Figure 7A. (C)

Blue Native PAGE immunoblot analysis of UQCC1 knockdown

from Figure 7B.

(PDF)

Figure S8 Additional biochemical analysis of UQCC1 depleted

cells. (A) SDS-PAGE and Western blot analysis of mitochondrial

extracts from HEK293 cells transfected with siRNAs targeting

UQCC1, with a separate set of antibodies than were used for

Figure 7A. Cyclophilin B and mock transfected cells were used as

control. Loss of UQCC1 results in depletion of UQCC2 and

reduced levels of UQCRC2 protein levels. Subunit levels of other

OXPHOS-complexes: NDUFB8 (complex I), SDHB (complex II),

COX2 (complex IV) and ATP5a (complex V) are not affected by

UQCC1 knock-down. Antibodies used are indicated at the left. (B)

Quantification of the immunoreactive bands is shown at the right.

(PDF)

Text S1 Detailed analysis of the splice variants in PUQCC2.

(DOCX)
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