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ABSTRACT: Copy-number variations (CNVs) are a
common cause of intellectual disability and/or multiple
congenital anomalies (ID/MCA). However, the clinical
interpretation of CNVs remains challenging, especially
for inherited CNVs. Well-phenotyped patients (5,531)
with ID/MCA were screened for rare CNVs using a 250K
single-nucleotide polymorphism array platform in order to
improve the understanding of the contribution of CNVs
to a patients phenotype. We detected 1,663 rare CNVs in
1,388 patients (25.1%; range 0–5 per patient) of which
437 occurred de novo and 638 were inherited. The de-
tected CNVs were analyzed for various characteristics,
gene content, and genotype–phenotype correlations. Pa-
tients with severe phenotypes, including organ malforma-
tions, had more de novo CNVs (P < 0.001), whereas
patient groups with milder phenotypes, such as facial dys-
morphisms, were enriched for both de novo and inherited
CNVs (P < 0.001), indicating that not only de novo but
also inherited CNVs can be associated with a clinically rel-
evant phenotype. Moreover, patients with multiple CNVs
presented with a more severe phenotype than patients with
a single CNV (P < 0.001), pointing to a combinatorial ef-
fect of the additional CNVs. In addition, we identified
20 de novo single-gene CNVs that directly indicate novel
genes for ID/MCA, including ZFHX4, ANKH, DLG2,
MPP7, CEP89, TRIO, ASTN2, and PIK3C3.
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Introduction
Copy-number variations (CNVs) are a common type of genomic

variation, which can be detected routinely using genomic microar-
rays [Feuk et al., 2006]. These microarrays have now become first-
tier tests in the clinical evaluation of patients with intellectual dis-
ability/developmental delay (ID/DD) and/or multiple congenital
anomalies (MCA) [Cooper et al., 2011; Koolen et al., 2009; Miller
et al., 2010]. The diagnostic yield of microarray analysis in patients
with ID/MCA is estimated between 10% and 20% [Cooper et al.,
2011; Hochstenbach et al., 2009; Miller et al., 2010; Sagoo et al.,
2009], depending on a number of factors, such as the resolution and
probe distribution of the microarray platform [Hehir-Kwa et al.,
2007], the selection of the patient population, the pretesting per-
formed, and the CNV interpretation criteria used. These criteria
usually include:

(1) the frequency and overlap of CNVs present in healthy control
individuals [Iafrate et al., 2004; Pinto et al., 2007; Shaikh et al.,
2009];

(2) the inheritance pattern of the CNV. Especially for severe pheno-
types with reduced fecundity such as ID/MCA, de novo CNVs
are often considered likely causal, whereas CNVs inherited from
a healthy parent are more likely considered benign variants;

(3) the presence of overlapping aberrations in patients with similar
phenotypes. This requires reliable and detailed phenotype data
of patients to allow an accurate comparison. Databases that
collect detailed chromosomal and phenotype data of large pa-
tient cohorts such as ECARUCA (http://www.ecaruca.net) and
DECIPHER (http://decipher.sanger.ac.uk) are important to re-
liably determine the pathogenicity, especially for nonrecurrent
CNVs [Feenstra et al., 2006; Firth et al., 2009];

(4) the size, copy-number state (gain or loss), and gene content of
the CNV (especially regarding dosage sensitivity, function, ex-
pression pattern, and known disease association) can be helpful
in determining the pathogenicity of the CNV.

However, the clinical interpretation of CNVs identified in pa-
tients with ID/MCA still remains challenging as many pathogenic
CNVs are rare and nonrecurrent and CNVs also commonly occur
in the normal population, resulting in variability in the interpre-
tation and reporting of CNVs from different clinical laboratories
[Tsuchiya et al., 2009]. In particular, rare CNVs that are inherited
from healthy parents pose a challenge, as these may still be clinically
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Figure 1. CNV yield of microarray analysis in a cohort of 5,531 patients with ID/MCA. A: Results of SNP array analysis in 5,531 patients: a de
novo aberration was identified in 6.5% of patients, 0.5% had a inherited X-chromosomal CNV in a male, 8.9% had a inherited CNV, 9.2% had a CNV
of which the inheritance pattern could not be determined, and 74.9% had no rare CNVs. B: Size distribution of all 1,663 CNVs on logarithmic scale.
Dark gray represents losses; light gray represents gains. C: Size distribution of de novo (dark gray, N = 437) versus inherited (light gray, N = 638)
CNVs. D: Distribution of gene content of CNVs up to 24 genes. Dark gray represents losses; light gray represents gains.

relevant through, for example, variable expressivity and decreased
penetrance.

To improve the understanding of the contribution of de novo and
inherited CNVs to the patients’ phenotype, we performed detailed
genotype–phenotype correlation studies in a longitudinal cohort of
5,531 patients with ID/MCA. In addition, we studied the role of
multiple CNVs observed in individual patients and examined the
gene content of the CNVs, suggesting several novel candidate genes
that could be implicated in ID and/or MCA.

Materials and Methods

Study Population

This study consisted of a cohort of 5,531 consecutive pa-
tients whose DNA was tested by microarray using the Affymetrix
250K NspI single-nucleotide polymorphism (SNP) array platform
(Affymetrix, Inc., Santa Clara, CA) in a diagnostic setting in the
Department of Human Genetics in Nijmegen, The Netherlands,
between 2006 and 2011.

Microarray Analysis

DNA of all patients was analyzed on the Affymetrix 250K NspI
SNP array platform containing 262,264 SNPs (Affymetrix, Inc.),
which covers the whole genome (except the Y chromosome) with
a resolution of 200 kb [Hehir-Kwa et al., 2007]. DNA was obtained
from peripheral blood in the vast majority of cases, but also DNA
from buccal swabs and fibroblasts was used. The microarray anal-
ysis was performed as described elsewhere [de Leeuw et al., 2011].
CNVs were called when there were at least five or seven consec-
utive aberrant SNPs for losses and gains, respectively. The CNV
coordinates were mapped to NCBI Genome Build 36/hg18 using
the UCSC LiftOver tool (http://genome.ucsc.edu). Genes were as-
certained to the identified CNVs using the list of ENSEMBL genes
(http://www.ensembl.org) [Hubbard et al., 2002]. We mapped all
genes that had at least one protein-coding exon included within the
minimal affected region of the CNV.

Identified CNVs were compared with CNVs from healthy con-
trol individuals. CNVs that were present with a frequency of 1%
or more in the Database of Genomic Variants (http://projects.tcag.
ca/variation/project.html) [Iafrate et al., 2004] or in our in-house
database containing data from over 800 healthy controls were
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Figure 2. Distribution per chromosome of CNVs identified in 5,531 patients. A: Distribution of all CNVs across the genome (left represents
losses; right represents gains). B: The number of CNVs per chromosome correlates with the chromosome size after exclusion of known LCR-
mediated genomic disorders and CNVs in the pseudoautosomal region on the X chromosome (r = 0.874). C: Correlation between number of CNVs
per chromosome (corrected for chromosome size) and inverse of gene density. There is no clear correlation between the gene density of a
chromosome and the number of CNVs.

discarded [Franke et al., 2010]. All rare CNVs identified in this study
were submitted to dbVAR (http://www.ncbi.nlm.nih.gov/dbvar,
Study ID nstd85). Upon detection of a rare CNV, parental samples
were requested to determine the inheritance pattern of the CNV.

Objective Classification of CNVs

GeCCO (Genomic Classification of CNVs Objectively), a free
online available prediction tool, was used to aid distinguish ID-
associated CNVs from nonpathogenic CNVs [Hehir-Kwa et al.,
2010]. GeCCO gives a probability that a CNV belongs to the ID-
associated CNV class based on 13 genomic features. A probability
≥0.5 is considered pathogenic, whereas a probability <0.5 is consid-
ered benign. Validation on a set of 1,203 CNVs showed an accuracy
of 94% with a sensitivity of 88% and a specificity of 94%.

Phenotype Data

Clinical data were collected from all patients prior to SNP array
analysis using a uniform clinical form and standardized using the
Human Phenotype Ontology (HPO) [Robinson et al., 2008]. Each

patient was scored according to a modified version of the 5-item De
Vries score, which includes ID, growth abnormalities (prenatal and
postnatal), facial dysmorphisms, and congenital anomalies allow-
ing a score from zero to 10 (Supp. Table S1) [Baralle, 2001; de Vries
et al., 2001; Feenstra et al., 2011]. Genotype–phenotype compar-
isons were performed for specific malformations that were divided
into mild and severe (Supp. Table S2). MCA were defined as major
organ malformations affecting the central nervous system, heart,
urogenitalia, anus, skeleton, and/or orofacial clefting. The De Vries
score was used as a measure of the general severity of the phenotype.

Enrichment Analysis for Haploinsufficient Genes

Enrichments of CNV gene sets for haploinsufficient genes were
determined by comparing against a background of randomly gen-
erated CNVs controlling for gene number and adjacency. Sets of
random CNVs were generated by randomly placing an equivalent
number of CNVs within the genome and extending the boundaries
until they contained the same number of genes as the original set.
Enrichments were determined as the increase in haploinsufficient
genes overlapped in the real data set as compared with the median
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Table 1. De Novo Single-Gene CNVs

Gene name
Copy

number Pat ID Phenotype
Other genetic
aberrations Protein function Disease association Reference

CRYL1 0 5,493 Mild ID, SS, HL – Glucose metabolism – –
ISPD 0 5,078 Walker–Warburg syndrome – Glycosylation of

alpha-dystroglycan
Walker–Warburg syndrome [Roscioli et al.,

2012]
ANKH 0 4,500;

5,527
Sibs with ID, HL, joint pain,
band keratopathy

– Pyrophosphate regulation Previous report same
phenotype

–

CEP89 0 68 Severe ID, SS, ataxia, B,
cataract, contractures, HL

– Mitochondrial metabolism – [van Bon et al.,
2013]

ASTN2 1 3,338 ID, E – Neuronal migration Associated with B –
CHL1 1 364 Severe ID, atrial septum

defect, E, tetraplegia,
cryptorchidism, D

23 Mb dn dup
Xpterp22

Nervous system
development

In 3p deletion syndrome –

DLG2 1 1,339 Mild ID, A, E 5 Mb dn dup
15q11q13

Synapse formation – –

DPYD 1 1,452 Mild ID, A, O, D – Pyrimidine metabolism Dihydropyrimidine
dehydrogenase deficiency,
miR-137 deletions same
phenotype

[Willemsen
et al., 2011]

EYS 1 2,622 – – Retinal formation AR retinitis pigmentosa –
SOGA2 1 3,620 – 430 kb inh del

16p13
? – –

NCKAP5 1 3,221 E, hypomyelinization – ? – –
NRXN1 1 221 ID, A, tall stature 900 kb inh dup

12q24
Neuronal cell adhesion Associated with ID –

PIK3C3 1 3,746 Mild ID, agenesis left
cerebellum

730 kb inh del
4q35

Endocytic trafficking,
neurodegeneration

– –

SMARCA2 1 2,424 ID, SS, D – Chromatin remodeling Nicolaides–Baraitser
syndrome

–

SNTG1 1 1,229 Mild ID, CP, HL, D 1.1 Mb dn del
8q11

Subcellular localization
organization

– [Ockeloen et al.,
2010]

TCF4 1 388 Severe ID, D – Transcription regulation Pitt–Hopkins syndrome –
TRIO 1 1,748 Mild ID, B, D – Rho–GEF, axon guidance Mutations in ID –
ZFHX4 1 1,791 DD, macrocephaly,

ventriculomegaly,
hypermetropia, recurrent
infections, D

– Transcription regulation 8q21.1 deletion syndrome –

MELK 3 4,386 Mild ID, CL, skeletal
anomalies, D

– Cell cycle regulation – –

MPP7 4a 1,798 Moderate ID, E, B, O,
micropenis, D

150 kb inh hmz
dup 7p15

Synapse formation – –

aShown by fluorescence in situ hybridization not to be due to an insertion elsewhere in the genome.
A, autism; AR, autosomal recessive; B, behavioral problems; CL/P, cleft lip/palate; D, dysmorphisms; del, deletion; dn, de novo; dup, duplication; E, epilepsy; HL, hearing loss;
hmz, homozygous; inh, inherited; O, obesity; SS, short stature.

obtained from 10,000 randomizations. The investigated haploinsuf-
ficient gene set included 299 known human haploinsufficient genes
[Dang et al., 2008].

Statistical Analyses

All statistical analyses were performed using SPSS version 20 (IBM
Corp., Armonk, NY). CNV sizes and gene content were described
with medians and interquartile ranges (IQR). Survival curves were
created to study CNV size. Other CNV characteristics were given
as percentages of the total number of CNVs or patients. Phenotype
data were described as percentages of the total number of patients
for whom phenotype data were available. As the clinical significance
of X chromosomal CNVs is gender specific and thereby different
from that of autosomal CNVs, these were excluded for all further
analyses. The Mann–Whitney U test was used to compare CNV
sizes and gene content. Fisher’s exact test was performed to study
the relation between the genotype and the phenotype, as well as to
compare CNV characteristics. Spearman’s correlation analysis was
used to study the association between the chromosome size and
the number of CNVs per chromosomes, as well as the association

between the CNV size, gene content, and CNV number with the
severity of the phenotype. We repeated all analyses after exclusion
of low copy repeat (LCR)-mediated genomic disorders. All P values
were calculated two-sided and to control the false discovery rate at
0.05 the Benjamini–Hochberg method was used for the genotype–
phenotype correlations [Benjamini and Hochberg, 1995].

Results

Yield of Microarray Analysis

DNA samples from 5,531 consecutive ID/MCA patients were an-
alyzed with a 250K SNP array. In this cohort, we identified a total
of 1,663 rare CNVs in 1,388 patients (25.1% of the cohort) (Fig. 1A
and Supp. Table S3). The 1,663 CNVs consisted of 825 copy-number
losses (49.6%) and 838 copy-number gains (50.4%) and ranged in
size from 5.4 kb to 158.4 Mb with a median size of 1.0 Mb (IQR 0.4–
2.7 Mb) (Fig. 1B). We identified 242 patients (17.4%) with more
than one CNV (517 CNVs in total, range 2–5 per patient, Supp.
Table S4).
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Table 2. Cohort Description

Patient characteristics N = 4,297
Age (years): median (IQR) 7 (3–17)
Gender

Male 2,497 (58.1%)
Female 1,800 (41.9%)

Seen by clinical geneticist 2,827 (65.8%)

Phenotype data
HPO features

Total 34,433
Features per patient: median (IQR) 6 (2–11)

Frequencies
Neurologic

ID/DD 3,215 (74.8%)
Behavioral problems 1,350 (31.4%)
Epilepsy 605 (14.1%)
Hypotonia 610 (14.2%)
Microcephaly 495 (11.5%)
Macrocephaly 197 (4.6%)
CNS malformations 424 (9.9%)

Craniofacial
Facial dysmorphisms 1,431 (33.3%)
Cleft lip/palate 168 (3.9%)
Hearing loss 236 (5.5%)

Organ malformations
Cardiac malformations 359 (8.4%)
Urogenital malformations 483 (11.2%)

Growth
Prenatal growth retardation 331 (7.7%)
Short stature 688 (16.0%)
Tall stature 108 (2.5%)

Combined criteria
MCA 1,391 (32.4%)
De Vries score: median (IQR) 2 (1–4)

CNS, central nervous system.

The CNVs showed a nonrandom distribution across chromo-
somes (Fig. 2A). The CNVs occurred more often near the telomeric
regions. In addition, specific regions such as the 1q21.1, 7q11.23,
15q13.11, 16p11.2, and 17q21.31 regions showed recurrent CNVs,
which are known to be due to nonallelic homologous recombina-
tion between LCRs (Supp. Table S5). After exclusion of these known
LCR-mediated genomic disorders (N = 276) and aberrations of the
pseudoautosomal region on the X chromosome (N = 25), the num-
ber of CNVs per chromosome was positively correlated with the
chromosome size (P < 0.001, r = 0.874; Spearman’s correlation;
Fig. 2B). There was no clear correlation between the gene density of
a chromosome and the number of CNVs observed on the chromo-
some (Fig. 2C).

DNA of both parents could be analyzed for 63.6% of the patients,
revealing 437 CNVs (40.7% of the CNVs for which parental DNA
was available) occurred de novo, 638 CNVs were inherited, and for
588 CNVs, the inheritance pattern could not be determined. We in-
vestigated the relationship between the characteristics of autosomal
CNVs and their inheritance pattern. De novo CNVs were signifi-
cantly larger in size (median 2.6 Mb; IQR 1.0–7.3 Mb) than inherited
CNVs (median 0.5 Mb; IQR 0.3–1.1 Mb) (P < 0.001; Mann–Whitney
U test) (Fig. 1C). Losses were more frequently de novo (52.5%) than
gains (28.7%) (P < 0.001, Fisher’s exact test), also after the exclusion
of known LCR-mediated genomic disorders (P < 0.001, Fisher’s ex-
act test, Supp. Table S6). The inherited CNVs were more often from
maternal (56.5%) than paternal origin (43.5%) (P = 0.002, Binomial
test). The classifier GeCCO (Hehir-Kwa et al., 2010) classified 510
(30.7%) of all CNVs as benign and 1,153 (69.3%) as pathogenic
(Supp. Table S3 and Supp. Fig. S1). Comparison by inheritance pat-
tern revealed that 17.6% of the de novo CNVs were classified as

benign, whereas 42.6% of the inherited CNVs were predicted to be
benign (P < 0.001, Fisher’s exact test).

Gene Content

The total set of 1,663 CNVs contained a median of seven EN-
SEMBLE genes (IQR 2–27; Fig. 1D). De novo CNVs contained
more genes (median 24; IQR 9–58) than inherited CNVs (median
3; IQR 1–8) (P < 0.001; Mann–Whitney U test) as expected due to
their larger sizes. However, the gene density of de novo CNVs (me-
dian 8.0 genes/Mb; IQR 4.6–14.7) was also higher than inherited
CNVs (median 6.6 genes/Mb; IQR 2.6–12.3) (P < 0.001; Mann–
Whitney U test). We examined the gene content of de novo and
inherited CNVs for the presence of known haploinsufficient genes
[Dang et al., 2008]. Genes within de novo losses were enriched for
known human haploinsufficient genes (+41.3%; P < 0.001) (Supp.
Fig. S2). However, this enrichment was no longer present when
known LCR-mediated genomic disorders were removed from the
analysis, indicating that especially these LCR-mediated CNVs were
enriched for known human haploinsufficient genes (Supp. Table S6).
We observed no enrichment in haploinsufficient genes for inherited
CNVs or de novo gain CNVs (Supp. Fig. S2).

De novo or homozygously inherited single-gene CNVs were iden-
tified in 20 families (four homozygous losses, 14 heterozygous losses,
one heterozygous gain, and one homozygous gain) (Table 1). These
include three deletions of genes previously associated with ID syn-
dromes, namely TCF4 (MIM #602272; http://www.omim.org) im-
plicated in Pitt–Hopkins syndrome (MIM #610954) [Amiel et al.,
2007; Zweier et al., 2007], SMARCA2 (MIM #600014) implicated in
Nicolaides–Baraitser (MIM #601358) [Van Houdt et al., 2012], and
ISPD (MIM #614631) implicated in Walker–Warburg syndrome
(MIM #614643) [Roscioli et al., 2012], in patients with pheno-
type features overlapping these syndromes. Two genes were pre-
viously indicated as candidate genes for ID/MCA, namely ANKH
(MIM #605145) [Morava et al., 2011] and ZFHX4 (MIM #606940)
[Palomares et al., 2011].

Genotype–Phenotype Correlations

Detailed clinical information was available for 4,297 patients
(77.7% of the entire cohort). These patients had a median age of
7 years (IQR 3–17 years), and 2,497 (58.1%) were male (Table 2). In
total, we registered 34,433 HPO features (median 6 per patient, IQR
2–11). We summarized the most important features of all patients
in Table 2 and Supp. Table S7. The patients had a median De Vries
score of 2 (IQR 1–4) (Fig. 3A and Supp. Table S7).

The cohort was divided into three subsets to compare differ-
ences in phenotypes, (1) patients with de novo CNVs, (2) patients
with only inherited CNVs, and (3) patients in whom no CNVs
were detected (Fig. 4). Eight of the 10 phenotype categories tested
were significantly more prevalent in patients with de novo CNVs as
compared with patients without CNVs, namely ID/DD (corrected
P = 0.020; Fisher’s exact test), MCA (P < 0.001), facial dysmorphisms
(P < 0.001), abnormal head circumference (P = 0.005), central ner-
vous system anomalies (P = 0.001), heart anomalies (P = 0.003),
urogenital anomalies (P = 0.001), and De Vries score ≥3 (P < 0.001;
see also Fig. 3C). No significant differences were seen for stature and
convulsions. Five of these phenotype categories were also signifi-
cantly more frequent in patients with de novo CNVs in comparison
to patients with only inherited CNVs. Similarly, a trend for in-
creased urogenital and heart anomalies was observed (P = 0.102 and
P = 0.066, respectively). Interestingly, patients with inherited CNVs
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 10981004, 2013, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hum

u.22442 by R
adboud U

niversity N
ijm

egen, W
iley O

nline L
ibrary on [08/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Figure 3. Clinical severity, defined by the De Vries score, and CNV characteristics. A: Distribution of the De Vries scores in the total study
population (median 2; IQR 1–4). B: Comparison of the De Vries scores with number of affected genes in de novo CNVs. CNVs containing an
increasing amount of genes are associated with a higher De Vries score (P = 0.030, r = 0.134; Spearman’s correlation). See Supp. Figure S5 for the
same comparison for all CNVs and inherited CNVs, and the comparisons with CNV size. C: De Vries scores in patients with inherited versus patients
with de novo CNVs. Patients with de novo CNVs have a higher De Vries score (median 3; IQR 2–5) than patients with only inherited CNVs (median
2; IQR 1–4) (P < 0.001, Mann–Whitney U test). See also Supp. Figure S4A. D: De Vries scores in patients per number of CNVs identified. Patients
with multiple CNVs have a higher De Vries score (median 3; IQR 2–5) than patients with a single CNV (median 2; IQR 1–4) (P = 0.001, Mann–Whitney
U test, P = 0.001, r = 0.106; Spearman’s correlation). See also Supp. Figure S4B. E: De Vries scores in patients with copy-number losses versus
patients with copy-number gains. Patients with losses have a higher De Vries score (median 3; IQR 1–5) than patients with gains (median 2; IQR
1–4) (P = 0.012 Mann–Whitney U test). See also Supp. Figure S4C.

showed a higher De Vries score (P = 0.010) and significantly more
facial dysmorphisms (P < 0.001) than patients without CNVs. A sim-
ilar trend could also be observed for abnormal height (P = 0.075).
Similar patterns for all phenotypes were observed after exclusion of
known LCR-mediated genomic disorders (Supp. Fig. S3).

We then investigated whether there was a significant correlation
between various CNV characteristics and the severity of the phe-
notype. The De Vries score was first compared with the direction
of the CNV (gain or loss). We observed a higher De Vries score
in patients with losses (median 3; IQR 1–5) compared with gains
(median 2; IQR 1–4) (P = 0.007; Mann–Whitney U test; Fig. 3E and
Supp. Fig. S4C). The CNV size, and especially the number of genes
affected by the CNVs, showed a positive correlation with the severity
of the patients phenotype (P = 0.014, r = 0.077; Spearman’s corre-
lation; Supp. Fig. S5A and B). This effect was mediated by de novo
CNVs (P = 0.030, r = 0.134, Spearman’s correlation; Fig. 3B), as no
correlation was seen for the inherited CNVs (P = 0.815, r = –0.011;

Spearman’s correlation; Supp. Fig. S5C and D). In addition, we ob-
served a higher De Vries score (median 3.5; IQR 2–5) in patients
with multiple CNVs compared with patients with a single CNV
(median 2; IQR 1–4) (P = 0.001; Mann–Whitney U test/P = 0.001,
r = 0.106; Spearman’s correlation; Fig. 3D and Supp. Fig. S4B).

Discussion
In this large, well-phenotyped cohort of 5,531 patients with

ID/MCA, we identified rare CNVs in 25.1% of the individuals.
Segregation analysis in the parents revealed that 40.7% of the tested
CNVs occurred de novo. We showed that severe phenotypes, in-
cluding abnormal head circumference and organ malformations,
were enriched in patients with de novo CNVs, both in comparison
to patients without CNVs as well as patients with inherited CNVs.
Remarkably, patients with inherited CNVs had significantly more
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Figure 4. Genotype–phenotype correlations. Frequency of phenotype features in patients with de novo (dark gray), inherited (middle gray), and
without CNVs (light gray). Frequencies were compared by Fisher’s exact test. ∗P < 0.05, corrected for multiple testing using the method by Benjamini
and Hochberg [Benjamini and Hochberg, 1995]. ID, intellectual disability; MCA, multiple congenital anomalies; Head circ, head circumference.

facial dysmorphisms and a higher De Vries score compared with
patients without CNVs. Abnormal height also tended to be more
prevalent in patients with inherited CNVs, whereas abnormal head
circumference, structural brain anomalies, heart anomalies, and
urogenital anomalies occurred similarly in patients with inherited
CNVs and patients without CNVs. This suggests that the milder
clinical features can also be related to the presence of inherited
CNVs. Furthermore, computational classification of the inherited
CNVs using GeCCO, predicted 56.7% of the inherited CNVs as
pathogenic. It has previously been reported that some recurrent
LCR-mediated CNVs (e.g., 15q13.3 and 16p11.2) may cause a phe-
notype, despite their presence in a carrying parent [van Bon et al.,
2009; Zufferey et al., 2012]. However, for non-LCR-mediated CNVs,
this remains difficult to establish in clinical practice and therefore
they are usually considered benign variants or variants of unknown
significance [Buysse et al., 2009; Filges et al., 2012]. Our results also
indicate that nonrecurrent inherited CNVs may be associated with
a clinically significant phenotype.

Our result confirms that severe phenotypes are significantly influ-
enced by the presence of de novo CNVs. It has been shown previously
that congenital anomalies, particularly heart defects, were signifi-
cantly more frequent in patients with clinically significant CNVs as
compared with patients with a normal microarray result, although
this was based on a study of only 342 patients [Shoukier et al., 2013].
Furthermore, we show that de novo CNVs, especially de novo losses,
are significantly enriched for haploinsufficient genes and the classi-
fier GeCCO predicts de novo CNVs more often as pathogenic than
inherited CNVs.

The De Vries score was used to ascertain the severity of the phe-
notype (Supp. Table S1) [Baralle, 2001; de Vries et al., 2001; Feenstra
et al., 2011]. The patients in this study had a median De Vries score

of 2 (IQR 1–4) (Fig. 3A and Supp. Table S7), indicating that they
were milder affected than those tested by microarray analysis in
previous studies [de Vries et al., 2005; Fan et al., 2007; Hoyer et al.,
2007; Koolen et al., 2009; Newman et al., 2007; Rauch et al., 2006;
Schoumans et al., 2005]. Using the De Vries score as an overall mea-
sure for the severity of the phenotype, we confirmed that losses were
more likely to result in severe phenotypes than gains and that the
CNV size was correlated with the severity of the phenotype [Brewer
et al., 1998]. In addition, we show that the number of CNVs identi-
fied in a patient was correlated with the severity of the phenotype,
indicating a combinatorial effect of the additional CNVs. A similar
effect was previously observed for a number of genomic disorders,
wherein the presence of a second-site variant was associated with a
more severe phenotype [Girirajan et al., 2010; Girirajan et al., 2012].

Once a likely pathogenic CNV is detected, the genes contribut-
ing to the various phenotypes can be determined. This gene iden-
tification process is simplified when the CNV is disrupting only
a single gene. In our cohort of 5,531 patients with ID/MCA, we
identified 20 de novo single-gene CNVs of which three contained
known ID genes (TCF4, SMARCA2, and ISPD) and two previously
postulated candidate genes (ANKH and ZFHX4). The homozygous
deletion of ANKH is the first confirmation of this gene in autosomal-
recessive ID, in combination with deafness, joint abnormalities, and
hypophosphatemia. Previously, a homozygous missense mutation
in this gene was described in a consanguineous family with a similar
phenotype, and also ank mouse mutants show joint abnormalities,
abnormal bone metabolism, and hearing loss [Morava et al., 2011].
The deletion that disrupted the last seven exons of ZFHX4 is situated
within the critical region of the 8q21.11 microdeletion syndrome,
which has been associated with ID and a characteristic facial phe-
notype [Palomares et al., 2011]. Clinical comparison of this patient
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with the previously described patients showed striking overlap in
clinical features (Table 1), including typical facial dysmorphisms
(high forehead, downslanting palpebral fissures, ptosis, and promi-
nent low-set ears), underscoring that ZFHX4 is the underlying gene
for this microdeletion syndrome.

The other 15 single-gene CNVs contain six other potential candi-
date genes for ID based on their role in neuronal development and
function. DLG2 (MIM #603583), also known as PSD93, is deleted in
a patient with ID, an autism spectrum disorder and epilepsy. DLG2 is
a member of the membrane-associated guanylate kinase (MAGUK)
protein family, which plays an important role in synapse forma-
tion and trafficking of glutamate receptors, especially N-methyl-
D-aspartate (NMDA) receptors [Oliva et al., 2012]. Interestingly,
DLG3 (MIM #300189) [Tarpey et al., 2004] and two of the NMDA
receptors, GRIN2A (MIM #138253) and GRIN2B (MIM #138252)
[Endele et al., 2010], have already been implicated in ID. A double
duplication in MPP7 (MIM #610973), identified in a patient with
mild ID, an autism spectrum disorder and epilepsy, would disrupt
the open reading frame of MPP7, another member of the MAGUK
protein family, shown to interact with DLG1 and LIN7 [Bohl et al.,
2007]. A homozygous loss of CEP89 was found in a patient with a
complex phenotype including mitochondrial dysfunction. Knock-
down of this gene in Drosophila supported the role of CEP89 in mi-
tochondrial metabolism and neuronal functioning [van Bon et al.,
2013]. The TRIO gene (MIM #601893), partially included in the
deletion in a patient with DD and facial dysmorphisms, is a Rho–
guanine exchange factor that regulates axon guidance during ner-
vous system [van Rijssel and van Buul, 2012]. Two de novo missense
mutations in TRIO were previously identified in patients with ID.
However, both patients also carried a mutation in another known
ID gene (TCF4 and PDHA1, respectively) [de Ligt et al., 2012]. A de
novo deletion of ASTN2 (MIM #612856) was found in a patient with
ID and seizures. This gene has been associated with attention deficit
hyperactivity disorder, autism spectrum disorders, and schizophre-
nia in various studies [Glessner et al., 2009; Lesch et al., 2008; Vri-
jenhoek et al., 2008] and functions together with ASTN1 (MIM
#600904) in glial-guided neuronal migration [Wilson et al., 2010].
PIK3C3 (MIM #602609), deleted in a patient with ID and cerebel-
lum agenesis, is involved in endocytic trafficking and disruption in
mice leads to neuronal degeneration and gliosis [Wang et al., 2011].

Conclusion
We show in a unique cohort of 5,531 phenotypically well-

characterized patients that not only de novo but also inherited CNVs
can be associated with a clinically relevant phenotype. Description
of additional cohorts with detailed phenotype information of both
patients and their parents will further elucidate the role of inherited
CNVs in disease. In addition, we show that multiple CNVs within a
single patient were associated with a more severe phenotype point-
ing to a combinatorial effect of the additional CNVs and we propose
several novel candidate ID genes.
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