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ABSTRACT: Copy number variation (CNV) is a common
source of genetic variation that has been implicated in many
genomic disorders. This has resulted in the widespread ap-
plication of genomic microarrays as a first-tier diagnostic
tool for CNV detection. More recently, whole-exome se-
quencing (WES) has been proven successful for the de-
tection of clinically relevant point mutations and small
insertion—deletions exome wide. We evaluate the utility of
short-read WES (SOLiD 5500xl) to detect clinically rel-
evant CNVs in DNA from 10 patients with intellectual
disability and compare these results to data from two in-
dependent high-resolution microarrays. Eleven of the 12
clinically relevant CN'Vs were detected via read-depth anal-
ysis of WES data; a heterozygous single-exon deletion re-
mained undetected by all algorithms evaluated. Although
the detection power of WES for small CNVs currently does
not match that of high-resolution microarray platforms, we
show that the majority (88%) of rare coding CNVs con-
taining three or more exons are successfully identified by
WES. These results show that the CNV detection reso-
lution of WES is comparable to that of medium-resolution
genomic microarrays commonly used as clinical assays. The
combined detection of point mutations, indels, and CNVs
makes WES a very attractive first-tier diagnostic test for
genetically heterogeneous disorders.
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Introduction

Whole-exome sequencing (WES) has revolutionized Mendelian
disease gene identification by providing a powerful tool for exome-
wide detection of single-nucleotide variants (SNVs) and small in-
sertions and deletions (InDels) [Bainbridge et al., 2013; Bamshad
et al., 2011; Gilissen et al., 2012; Hanchard et al., 2013; Ng et al.,
2010; O’Roak et al., 2012]. In addition, WES is being introduced as
a diagnostic procedure for genetically heterogeneous diseases in a
number of laboratories [de Ligt et al., 2012; Hanchard et al., 2013;
Rauch et al., 2012]. Structural variation such as copy number vari-
ants (CNVs), also contributes to these disorders [Cooper etal., 2011;
Lupski, 2009; Stankiewicz and Lupski, 2010], and is currently not
routinely assessed from WES data. The identification of CNVs, in
addition to SNVs and InDels, would increase the versatility of WES
as a genome-wide variant detection method in research and diag-
nostics. It would reduce the number of genomic assays required per
patient to reach a diagnosis and create new possibilities to analyze
the combined effects of SNVs and structural variation within an
individual [Kurotaki et al., 2005].

Genomic microarray platforms based on either single-nucleotide
polymorphisms (SNPs) or comparative genomic hybridization
(CGH) have proven highly successful as a robust, high-throughput
method for CNV detection [Boone et al., 2010; Pinkel et al., 1998;
Schaaf et al., 2011; Vissers et al., 2003]. Advances in technology have
resulted in an increase in the number of probes being included on
a single array from hundred thousands of probes (medium reso-
lution) to millions of probes (high resolution), resulting in both
increased detection power and accuracy. The implication of CNVs
in a wide range of congenital disorders including intellectual dis-
ability (ID) and developmental delay, as well as later onset com-
mon diseases such as schizophrenia and autism, has resulted in the
widespread application of genomic microarrays as a first-tier diag-
nostic tool [Lupski, 2012; Mefford and Eichler, 2009; Miller et al.,
2010; Vissers et al., 2010]. The resolution to detect CNVs using ge-
nomic microarrays is strongly governed by the spacing and number
of interrogating oligonucleotide probes, and the microarray design
[Boone et al., 2010; Hehir-Kwa et al., 2007; Pinto et al., 2011]. How-
ever, intragenic CNVs remain beyond the detection limit of most
clinical genomic microarray analysis, with the exception of custom
microarray designs with enhanced exonic coverage for selected dis-
ease genes [Boone et al., 2010].

In contrast to most available genome-wide microarrays, WES
specifically targets exonic regions and is mostly blinded to the
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remainder of the genome. The most widely applied massively par-
allel sequencing technologies sequence short reads (50-125 bp),
either as fragments or as paired ends [Bamshad et al., 2011]. The
most commonly applied methods for CNV detection in WES data
are based on the analysis of the read depth, utilizing the number
of fragments mapping within a genomic region as a measure of
the amount of DNA present at the locus. This measure is used
to determine a ratio between a test sample and reference samples
[Haraksingh etal., 2011; Klambauer et al., 2012; Krumm et al., 2012;
Plagnol et al.,, 2012], and results in an estimation of copy number
for a given genomic segment, similar to what is used for array based
platforms. Read count data can, however, be distorted by the capture
procedure used to isolate the coding portions of the genome and by
inaccurate alignment of sequencing reads to the reference genome.
For example, it is well documented that the percentage of Guanine
and Cytosine nucleotides in the region significantly influences the
binding affinity during capture and sequencing [Metzker, 2010]. In
addition, the presence of low copy repeats can negatively influence
alignment of sequence reads to the reference genome and thereby
distort copy number estimations of a region [Teo et al., 2012].

To date, CNV detection in next generation sequencing data has
been largely limited to sporadic cases and healthy control popula-
tions in a research setting [Mills et al., 2011]. Here, we evaluate the
detection of clinically relevant, rare de novo CNVs of varying size and
copy number state via WES. We compare the performance of WES
for CNV detection with that of both commercially available as well as
custom designed, high-resolution array CGH enhanced for coding
regions using up to 4.2 million interrogating oligonucleotides.

Materials and Methods

Sample Selection

Ten samples were selected that had previously been diagnos-
tically reported as containing at least one clinically relevant, rare
de novo CNV associated with ID, detected by routine microarray-
based screening within the Department of Human Genetics,
Radboud University Medical Centre, Nijmegen. These CNVs were
chosen to represent a wide range of clinically relevant CNVs
detected by microarray based analysis in our Genome Diagnostics
division. The selected CNVs (1) contained at least one coding
region, (2) were validated de novo using the same microarray
platform on parental DNAs, (3) occurred across a variety of
chromosomes, (4) ranged in copy number state from zero to three,
and (5) ranged in genomic size from 15 kb to 24 Mb (Table 1).
Eleven of these de novo CNVs were detected using an Affymetrix
250 k NspI (Affymetrix, Santa Clara, CA) microarray and one, in
patient 1, with the Affymetrix 2.7 M microarray platform (Table 1).

WES and CNV Detection

WES was performed as described by de Ligt et al. (2012); in
brief, genomic DNA from these 10 samples was isolated from
blood using the QIAamp DNA Mini Kit (Qiagen, Venlo, The
Netherlands). Exomes were enriched using a SOLiD-Optimized
Agilent SureSelect Human Exome Kit, V2 (Agilent Technologies,
Santa Clara, CA), followed by SOLID sequencing using a 5500xl
System (Life Technologies, Carlsbad, CA) to a median read depth
of 67 across targeted regions. Read correction and mapping were
performed with Lifescope v1.3 (Life Technologies), using default
settings. The WES data were analyzed with four different published
CNV detection programs; (1) cn.MOPS v1.6.4 [Klambauer et al.,
1440
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2012], (2) CONTRA v2.0.3 [Li et al., 2012], (3) CoNIFER v0.2.0
[Krumm et al., 2012], and (4) ExomeDepth v0.8.4 [Plagnol et al.,
2012] (see Supp. Methods), with unique hgl9-based RefSeq gene
exon definitions as target regions in the analysis.

Additional Genomic Microarray Studies

All samples were also analyzed on two independent, microarray
platforms: (1) a high-resolution SNP microarray (Affymetrix Cy-
toScanHD with 2.6 million probes; “CytoScanHD”) (Affymetrix)
and (2) a high-density CGH microarray enhanced for exonic re-
gions (NimbleGen 4.2 million probe custom design; “ExonArray”)
(Roche NimbleGen, Madison, WI). Detailed experimental methods
and computational approaches/software parameters are described
in the Supp. Methods.

The aim of the ExonArray design was to cover each exon (Supp.
Methods), and flanking sequence, with at least eight oligonucleotide
probes. After testing and optimization (see Supp. Methods), the
ideal coverage of eight or more probes was achieved for over 135,000
(~86%) exons; 249 (0.16%) of the exons could not be targeted
at all. To test the sensitivity of the ExonArray, seven DNAs with
10 previously described CNVs (nine deletions and one duplication)
with a median size of 8.5 kb (size range 1.6 kb—1.7 Mb) [Boone
et al., 2013; Zhang et al.,, 2009] were analyzed (Supp. Fig. S1).
NimbleGen performed the microarray experiments in a blinded
fashion using mixed control DNAs. All the 10 CNVs were identified
successfully indicating 100% sensitivity for these events, which
were as small as 1.6 kb, five being smaller than 10 kb, and of which
four encompassed only a single exon (Supp. Fig. S1).

CNV Annotation

Prior to annotation and interpretation, CNV calls resulting from
both the WES approach and the ExonArray were subject to addi-
tional merging (Supp. Methods).

To facilitate interpretation, we annotated all CNVs for their gene
content, (UCSC hgl9 track GeneSymbols), the total number of
genes, and the number of unique coding exons within the region.
Since mapping artifacts can lead to false positive (FP) signals in
sequencing data, the CNVs were annotated for features related to
the uniqueness of the genomic region, the repeat content (simple
and complex), and the percentage of SelfChain alignment in the
region, based on the UCSC repeat tracks.

A reference set was generated to represent common CNV regions
detected by the different platforms (both high-resolution microar-
rays and WES) and algorithms used in this study to determine which
genomic regions were copy number variable (common CNVs). The
reference set contained all events observed in more than one individ-
ual, by any specific platform in this study, as well as CNVs identified
in our in-house set of control samples. This in-house dataset con-
tains CNVs identified in 1,200 healthy individuals analyzed with
the Affymetrix 6.0 SNP microarray platform [Franke et al., 2010]
and 650 individuals analyzed with the Affymetrix CytoScanHD. The
combined dataset included in total 23,125 gains and 56,066 losses.

Overall CNV Detection Power of WES

The false negative (FN) detection rate of WES was calculated
by measuring the number of CNV events detected using the high-
resolution microarray platforms that were missed by WES. To pre-
vent overestimation due to platform design (exon targeted vs. whole
genome), we accounted for both the exome enrichment targets and
the detection power of WES. We selected CNVs that were identified



Table 1.

Overview of the Detection of 12 Clinically Relevant De Novo CNVs

Discovery microarray

'WES read-depth algorithms

Estimated start Estimated end CNV size Copy number

Patient Chromosome position (kb) position (kb) (kb) state Nr. genes CONTRA cn.MOPS ExomeDepth CoNIFER
1 chr10 89,642.6 89,657.5 14.9 1 1? - - - -
2 chr19 33,371.1 33,394.2 23.0 0 1 - - \Y% \Y%
3 chr8 77,745.6 77,795.2 49.6 1 1 - - \% \%
4 chr17 1,203.6 1,516.5 312.9 3 8 - - \Y% \Y%
5 chrl6 29,673.2 29,988.3 315.1 1 16 - - \Y% \Y%
6 chr15 43,759.8 44,862.9 1,103.2 1 24 - - - \Y%
7 chr2 233,166.3 233,886.7 720.5 3 16 - - \Y% \Y%
8 chrX 6,495.3 7,951.7 1,456.4 0 5 - - \% \%
9 chr2 239,952.7 241,373.1 1,420.5 3 14 - - \Y% \%

chr2 241,442.7 243,001.9 1,559.2 1 31 - - A% \%

chr15 60,489.7 62,906.5 24,603.6 3 210 - - \Y% \Y%
10 chr20 77,771.0 102,374.6 2,416.8 3 91 - \Y% \Y%

CNVs as detected by the discovery microarray (hgl9), genomic location, size, predicted copy number state and the number of genes in the region.

2A single exon deletion.

Detection by the different WES approaches; —, CNV is not detected with a minimum overlap of 30%, V, detected with a minimum overlap of 30%.

by at least two independent microarray platforms (minimum over-
lap of 30% of the CNV region, to allow for breakpoint inaccuracies
due to the large differences in probe densities) and the CNV had to
encompass at least three exons. For each CNV, the largest region,
detected by the CytoScanHD or the ExonArray, was used for further
analysis. After applying these selection criteria to the total set of
6,074 CNV identified by the different microarray experiments, the
resulting consensus dataset contained 97 CNVs. Of these 97 consen-
sus CNVs, 25 did not occur in the common CNV dataset and were
considered rare CNVs. Consensus CNVs were only considered as
positively detected by WES if a CNV was called in the same region
and overlapped the consensus CNV region for at least 30%.

Breakpoint Analysis

To study the differences in detected CNV breakpoints across
detection platforms, an overlap analysis was performed on the
11 clinically relevant CNVs. CNVs overlapping the discovery region
were merged into a maximum confirmation CNV, and breakpoint
differences were calculated based on the genomic coordinates of
the two CNVs. The difference in genomic location was measured
for each breakpoint by subtracting the genomic location as defined
by the high-resolution array consensus from the location identified
by the confirmation platform.

Data Availability

CNVsidentified in this study by the different platforms have been
submitted to dbVar under nstd84; sample identifiers correspond to
those used in this paper. Detailed information on clinical presenta-
tion and the pathogenic event is available through ECARUCA for
all patients under the following accession numbers (patient 1-10):
5042, 5045, 4785, 5044, 4545, 4487, 4581, 5043, 4452, and 4685,
respectively. Raw data of the discovery microarray experiments are
available in the Gene Expression Omnibus (GSE46060); sample
identifiers correspond to those used in this paper.

Results

Our study aimed to investigate the diagnostic potential of CNV
identification from short-read WES (SOLiD 5500xl) data. For
this, we selected a set of 12 clinically relevant and validated, rare

de novo CNVs detected using either an Affymetrix 250 k Nspl or
2.7 M microarray, in 10 individuals with ID. This set of CNVs
varied in genomic size and copy number state and incorporated
both autosomal and X-linked CNVs (Table 1). WES was performed
on all 10 samples and CNVs were called using four published CNV
detection algorithms. In addition, high-resolution microarray
experiments were performed using two independent platforms to
experimentally assess the genome-wide true positive (TP), FP, and
FN CNV detection rates of WES.

Detection of the Clinically Relevant CNVs

The four different WES CNV identification algorithms varied in
their ability to correctly identify the 12 clinically relevant CNVs
(Table 1). ExomeDepth and CoNIFER performed best, correctly
identifying 10 and 11 of the 12 clinically relevant CNVs, respec-
tively (Table 1, Fig. 1, for examples of WES-based CNV detection
using CoNIFER). Of note, all WES algorithms failed to detect a
clinically relevant single exon deletion (15 kb in size) in patient
1, which was originally detected using the Affymetrix 2.7 M mi-
croarray. While CONTRA and cn.MOPS often called a CNV in the
relevant CNV region, the identified CNV was small and overlapped
less than 30% (cut off threshold used for successful detection) with
the interval identified by the discovery microarray. The copy num-
ber state reported by the WES-based CNV algorithms matched the
copy number estimated by the microarrays for all CNVs.

Genome-Wide CNV Detection Using WES

The four different CNV WES detection algorithms varied widely
in the total number of CNVs detected across the 10 samples; CON-
TRA identified 1,464 CNVs, ExomeDepth 1,482 CNVs, cn.MOPS
329 CNVs, and CoNIFER 65 CNVs in total (Supp. Table S1). All but
one (99.9%) of the CNV events identified by CONTRA contained
three or fewer coding exons. Similarly, many CNVs identified by
cn.MOPS (56%) and ExomeDepth (58%) also contained three or
fewer coding exons; in contrast, CONIFER focuses more on detect-
ing larger and rare CNVs, and detected only six (9%) such small
CNVs (Supp. Fig. S2).

To evaluate the reliability of CNV identification using WES, we
compared the results to CNVs detected by the different microar-
ray platforms used in this study (Affymetrix 250 k Nspl/2.7 M,
1441
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Figure 1. Detection of clinically relevant CNVs by WES. Black circles represent test over reference ratio values generated from WES data using
CoNIFER; singular value decomposition (SVD) and Z-score adjusted read count per million (ZRPKM). Gray boxes indicate RefSeq gene exons; boxes
above the ratio values represent CNV gains and below CNV deletions. A: A 1.1 Mb deletion including 24 genes. B: A 720 kb duplication including 17
genes. C: A 23 kb deletion containing two genes.
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Table 2. Performance of WES CNV Detection Algorithms

Algorithm Array confirmation of all WES CNVs Array confirmation of rare WES CNV's
TP rate

cn.MOPS (1 = 329) 163 (49.5%) 33 (44.7%)

CoNIFER (n = 65) 38 (58.5%) 28 (53.9%)

CONTRA (n=1,464)
ExomeDepth (n = 1,482)

248 (16.9%)
234 (15.8%)

75 (11.0%)
48 (6.6%)

Algorithm Failed to confirm by WES of all array Failed to confirm by WES of rare array
consensus CNVs n =97 consensus CNVs n =25
FN rate
cn.MOPS 83 (86%) 23 (92%)
CoNIFER 69 (71%) 3 (12%)
CONTRA 97 (100%) 25 (100%)
ExomeDepth 66 (68%) 10 (40%)

CoNIFER has the highest TP rate and the lowest FN rate both for rare CNVs across the 10 patients. The TP rate measures the number of CNVs identified by each WES-based
algorithm that were confirmed by a CNV called on a high-resolution microarray platform. The FN rate is calculated by creating a consensus of CNVs identified with the microarray
platforms (Materials and Methods) and determining the number of CNVs not reliably detected by each WES-based algorithms. The best performing algorithm is highlighted in

bold.

Affymetrix CytoScanHD and the NimbleGen 4.2 M ExonArray). In
total, 38 of the 65 (59%) CNVs identified using CoNIFER were sup-
ported by one (7= 10) or more (# = 28) of the microarray platforms
(Table 2). The confirmed events were larger (median 63.7 kb) and
contained more exons (median 21.5) compared to the unsupported
CNVs (median size 16.3 kb, median number of exons is 7). Simi-
larly, 50% of the CNVs identified by cn.MOPS were supported by a
microarray CNV, whereas a much smaller proportion of CNVs iden-
tified by CONTRA (17%) and ExomeDepth (16%) was supported
by one or more microarray platforms (Table 2).

While genome-wide accuracy measures are an important indica-
tion of algorithm performance, in a clinical setting, it is important
to consider the number of missed rare, genic events. To evaluate the
FN rate of WES CNV detection, we investigated the detection of
a CNV consensus set containing 25 rare coding CNVs detected by
the two highest resolution microarray platforms used (ExonArray
and CytoscanHD, see Materials and Methods). The overlap analysis
showed the best detection rate for CONIFER (88%), missing three
of the 25 rare, genic events (Table 2). In general, the CNV events not
detected by the WES approach using CoNIFER contained fewer ex-
ons (three, four, and 17 exons) than those CNVs that were detected
(median 27 exons).

Overall, CoNIFER proved to be the most reliable CNV detection
program for diagnostic applications based on a number of features:
(1) most of the clinically relevant CNVs were detected (11 out of 12);
(2) the highest percentage of CNVs were supported by an indepen-
dent method (59%); and (3) the lowest number of rare consensus
CNVs were missed (12%). All of the other algorithms had high FP
rates and missed large numbers of rare CNVs, as well as the clinically
relevant CNVs (Tables 1 and 2), making them unsuitable for diag-
nostic applications. Further analyses of WES CNV identification
were based on the calls made by CoNIFER.

Determining the Accuracy of CNV Identification

The experimental design of WES leads to a nonuniform distri-
bution of data points, focused only on the coding regions, whereas
most genomic microarrays have a probe distribution containing a
backbone covering the entire genome. To assess the effect of the
unequal probe distribution of WES on the accuracy of CNV identi-
fication, we compared the breakpoints of the 11 clinically relevant
CNVs detected across all four experimental platforms (discovery
microarray, WES, CytoScanHD, and the ExonArray).

We generated consensus breakpoints based on the results from the
highest resolution microarray platforms (CytoScanHD and ExonAr-
ray). The breakpoints of the WES CNV detection mapped within
200 kb of the consensus breakpoints for 18 of the 22 breakpoints
(Table 3, Fig. 2, for example plots of CNV detection on different
platforms). Three of the four breakpoints, which deviated more
than 200 kb, occurred in regions with a much lower exon density as
compared with the well mapped breakpoints (mean of 1.83 vs. 59.5
exons within 500 kb of the breakpoint region).

Predicting the Diagnostic Yield of CNV Identification Using
WES

After determining the power to detect CNVs in WES data, we
estimated the impact of using WES CNV detection on a larger set of
samples within a clinical setting. For this, we compiled a list of 470
clinically relevant de novo CNVs detected by diagnostic microarray
analysis in our center using a combination of Affymetrix 250 k
Nspl, 2.7 M and CytoScanHD microarray platforms. For each de
novo CNV, the number of exons present in the sequencing capture
set was calculated to determine if the CNV could be detected via
WES. In total, 97% of the CNVs contained three or more exons,
the minimum number required for WES-based CNV calling by
CoNIFER. The majority of CNVs in this larger set of clinically
relevant CNVs were larger than 200 kb in size (96%), whereas only
half of CNVs from the rare consensus set (13/25) were in this size
range. WES achieved a detection rate of 75% for CNVs smaller
than 200 kb, and 100% for CNVs larger than 200 kb. When we
apply these detection rates to the clinically relevant CNVs, it is
predicted that 96% (453 CNVs) of these CNVs would have been
successfully identified by WES. Based on the limited number of
CNVs included in this study, this theoretical detection rate is in line
with the observed experimental detection rate of 92% (i.e., 11 of the
12 clinically relevant CNVs being successfully detected).

Discussion

CNV is a common source of genetic variation that has been impli-
cated in many genomic disorders [Cooper et al., 2011; Lupski, 2009;
Stankiewicz and Lupski, 2010]. This has resulted in the widespread
application of genomic microarrays as a first-tier diagnostic tool
for CNV detection [Mefford and Eichler, 2009; Miller et al., 2010;
Stankiewicz and Beaudet, 2007; Vissers et al., 2010]. The intro-
duction of massive parallel sequencing approaches has provided

1443
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Table 3. Breakpoint Accuracy of WES CNV Detection

High-resolution microarray consensus WES detection®
Start position Stop position Size Nr. genes Start difference  Stop difference  Size difference Nr.

Patient Chromosome  (deviation) (kb) (deviation) (kb) (kb) (min—-max) (kb) (kb) (kb) genes
1 chr10 X X X X X X X X
2 chr19 33,352 (17) 33,396 (1) 44 2 -88.6 13.0 101.5 3
3 chr8 77,720 (0.4) 77,808 (0.3) 88 1 -100.6 1770.2 1870.8
4 chr17 1,142 (2.2) 1,494 (2.7) 351 9 -147.2 24.8 172.0 10
5 chrl6 29,640 (11.6) 30,189 (11.3) 548 27-28 -92.9 10.9 103.7 30
6 chrl5 43,714 (1.6) 44,863 (0.1) 1,150 24 -5.9 2.6 8.5 24
7 chr2 233,149 (1.1) 233,898 (2.0) 749 16-17 -34.7 1.7 36.4 17
8 chrX 6,453 (3.4) 8,001 (1.1) 1,548 5-6 -626.0 500.4 1126.4 12
9 chr2 239,945 (1.5) 241,423 (0.5) 1,478 18 71.6 -15.3 -86.9 15

chr2 241,428 (5.0) 242,918 (134.5) 1,490 29-32 11.1 139.0 127.9 32

chr15 77,765 (1.1) 102,415 (13.9) 24,650 200-211 5.7 80.3 74.6 213
10 chr20 60,463 (0) 62,940 (24.6) 2,478 91-92 1602.4 -40.8 -1643.2 43
Median difference (stdev) 88.5(313) 24.7 (326) 103.7 (578) 3 (8)

The difference in breakpoints for the 11 clinically relevant CNVs detected on all platforms, compared with the average breakpoint positions detected by the two highest resolution

platforms (CytoScanHD and ExonArray).
*WES CNV detection by CONIFER.

Nr. genes, the number of genes based on RefSeq gene definitions (UCSC hg19); differences in breakpoint positions = WES — high-resolution microarray consensus; + indicates a
higher genomic position; — indicates a lower genomic position. For size differences, — indicates undercalling of the CNV size by WES.

stdev, standard deviation.

a valuable tool for mutation identification in rare and genetically
heterogeneous disorders [Bamshad et al., 2011; de Ligt et al., 2012;
Gilissen et al., 2012; Gonzaga-Jauregui et al., 2012; Hanchard et al.,
2013; Ng et al., 2010; O’Roak et al., 2012; Rauch et al., 2012]. For
example, in a genetically heterogeneous disorder such as ID, a causal
or candidate (de novo) mutation was identified in up to 38% of cases
[de Ligt et al., 2012; Rauch et al., 2012], and it has been reported that
an additional 10%—20% of ID cases can be explained by clinically
relevant de novo CNVs [Mefford et al., 2012]. Therefore, the addi-
tion of CNV detection from WES data could achieve a diagnostic
yield up to 58%, with a single test, for ID. This would represent
the highest diagnostic yield of any current clinical genetic screen-
ing method for this disorder. A single genomic assay, which detects
all forms of genomic variation, could decrease the time to obtain
a molecular diagnosis, and reduce the diagnostic odyssey faced by
patients and families.

Here, we evaluated the utility of WES to detect known clinically
relevant CNVs in 10 patients. We tested four different CNV detec-
tion algorithms for WES data and compared their results to CNVs
detected by three different genomic microarray platforms. These
results provide insights into the possibilities and limitations of CNV
detection using different experimental platforms currently available,
as well as the performance of CNV identification algorithms with
both WES data and high-resolution genomic microarrays.

Of the four algorithms tested in this study, CONIFER was found to
perform best with the highest TP rate and the lowest FN rate for the
detection of rare coding CNVs. It is likely that CONIFER performs
especially well for rare CNVs due to the rigorous correction for
systematic fluctuation, as well as enrichment, sequencing, and
mapping biases, by singular value decomposition and the use of a
Z-score approach, which corrects for positional fluctuation across
samples. The FN rate of CoONIFER was greater for common CNVs,
which is likely due to the Z-score approach applied for copy number
estimation. The Z-score corrects for the fluctuation of a data point
in the reference set; as a result, CNVs occurring in a region where
reference samples are variable will have a lower Z-score compared
with the same CNVs in a copy number stable region. Additionally,
we limited our analysis to read algorithms suitable for short
(50 bp) single-end reads as sequenced by SOLiD chemistry because
read-depth algorithms are applicable to most WES approaches
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[Bamshad et al., 2011]. When longer reads or read pairs are
available, more sophisticated methods can be used to increase the
detection power for CNVs by combining different lines of evidence
such as split read and clustering of discordant pairs [Teo et al.,
2012] with a wider range of available programs [Duan et al., 2013].

Identifying CNVs in WES data is subject to a number of limi-
tations due to the uneven spacing of exons, and thus data points,
across the genome [Teo et al., 2012]. This affected the identifica-
tion of the CNV segments, which in four cases were oversegmented
and reported as several smaller CNVs, requiring merging during
post-processing. Likewise, the unequal spacing of the genomic data
points also influenced the identification of the CNV breakpoints.
In general, the maximum possible size of the CNVs was reported;
and in the absence of data points, segments were continued un-
til a normal copy number signal was detected. Alternatively, CNV
breakpoints can be identified based on the last occurrence of an
aberrant copy number signal, the minimum CNV size. The differ-
ence between the maximum and minimum predicted CNV size as
called by WES varied between 2.8 and 542.8 kb across the 11 de
novo CNVs. Reporting both the maximum and minimum possible
CNV size provides useful insights into the uncertainty of breakpoint
predictions.

Most clinically relevant CNVs currently detected by routine
screening are large (Supp. Fig. S2) and often contain multiple genes.
Likewise, the CNVs identified in this study using WES were biased
to larger CNVs containing multiple exons. However, our results us-
ing high-resolution microarrays indicate a large number of smaller
single exon CNVs may exist within these samples (Supp. Table S2).
Likewise, data from personal genomes [Wheeler et al., 2008], high-
resolution CGH arrays [Conrad et al., 2010], and WES [Mills et al.,
2011] indicate that the genomes of healthy individuals harbor 600—
900 [Korbel et al., 2008; Levy et al., 2007] CNVs with a median
size of 0.7 kb. Validation experiments of the 4.2 M NimbleGen mi-
croarray (ExonArray) showed that this platform has the potential
to reliably detect known single exon deletions, and screening for
exon level CNVs in a clinical setting has revealed multiple small,
causal events [Boone et al., 2010; Whibley et al., 2010]. These small
CNV events have been largely invisible to commercial genome-wide
microarrays and remain challenging to detect through WES. While
the detection specificity and sensitivity of the platforms used in this
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study is unclear for these small CNVs, it is apparent that these events
occur frequently and could contribute to the patient’s phenotype.
Thorough validation studies of these very small CNVs are required
to establish their frequency and possible contribution to disease.

While the current detection power of WES, especially for single-
exon CNVs, does not match that of high-resolution microarray
platforms, we show that WES data are suited for the detection of
large, rare, genic events that represent the majority of currently
reported clinically relevant CNVs. A likely reason why the single
exon 15 kb deletion included in this study was difficult to detect
is that each exon represents a single data point. Detecting the dif-
ference between signal and experimental noise based on one data
point requires very little fluctuation or noise. Possible solutions for
larger exons include subdivision of exons into smaller regions to
create multiple data points, or in the case of deletions, to include
homozygosity data from SNVs into the detection algorithm. Ongo-
ing developments in CNV identification algorithms will likely result
in further performance improvements [Amarasinghe et al., 2013;
Fromer et al., 2012].

The reliable detection of rare, genic CNVs is a valuable adjuvant
tool within the clinical setting when WES data are available. Possi-
bilities to enhance the detection power for CNVs of WES approaches
include larger capture Kkits, the addition of a genomic backbone to
improve genome-wide resolution, and/or the addition of intronic
capture sequences to improve the accuracy in determining which
exons are affected by a CNV. Improvements in data analysis could
be made by applying more sophisticated normalization methods to
account for biases introduced during the capture and sequencing
procedures. In addition, current WES CNV detection algorithms
used in this study are limited in breakpoint accuracy by the read-
depth approach and could be further improved by incorporating
information from genotypes, split-reads, and read-pair informa-
tion to increase the detection power of WES for CNVs [Mills et al.,
2011]. While these improvements are of great benefit to further
increase WES-based CNV detection, the results presented in this
study show that CNV detection resolution of exome sequencing is
already comparable to that of medium-resolution genomic microar-
rays currently used as clinical assays.
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