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Abstract In this paper we describe a tagger-lemmatizer for fourteenth century

Dutch charters (as found in the corpus van Reenen/Mulder), with a special focus on

the treatment of the extensive orthographic variation in this material. We show that

despite the difficulties caused by the variation, we are still able to reach about 95 %

accuracy in a tenfold cross-validation experiment for both tagging and lemmati-

zation. We can deal effectively with the variation in tokenization (as applied by the

authors) by pre-normalization (retokenization). For variation in spelling, however,

we choose to expand our lexicon with predicted spelling variants. For those forms

which can also not be found in this expanded lexicon, we first derive the word class

and subsequently search for the most similar lexicon word. Interestingly, our

techniques for recognizing spelling variants turn out to be vital for lemmatization

accuracy, but much less important for tagging accuracy.

Keywords POS tagging · Lemmatization · Spelling variation ·

Orthographic variation · Historical text · Middle Dutch

1 Introduction

Word class tagging is currently assumed to be a well-understood task, for which

increases in the state of the art are measured in tenths, even hundredths of percents

on benchmark datasets. Lemmatization is considered a bit more challenging, but is
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also rather well dealt with. These observations, however, apply only to these tasks in

general. For specific types of text material, tagging and lemmatization are still tasks

whose problems are far from solved. In this paper, we address one of those types of

text, fourteenth century Dutch.

In the fourteenth century, Dutch orthography was far from standardized, not only

at the level of spelling, but also at the level of punctuation and spacing. During the

Middle Ages, a group of dialects made up the Dutch language without any dialect

prevailing as the dominant one. The Latin alphabet was used to try to put these

dialects into writing. This resulted in many spelling variants, regional variants and

clitic combinations. A massive increase in societal and interregional interaction, at

the end of the Middle Ages, created the need for a more standardized language. For

Dutch and its dialects, this led to fundamental changes in grammar and usage during

the fifteenth and sixteenth century, and a gradual standardization during the

sixteenth and seventeenth century.

Currently, there is a new drive toward digitalization of historical Dutch texts, not

only for historical linguists, but also e.g. for historians. More variation in the user

group implies that not all users are actually well-versed in reading the historical

variants of Dutch and it would be useful to enrich the material with annotation

layers, at least lemma and POS tag layers, enabling a more efficient access for

everybody. As an example, assume that a researcher would like to investigate the

development of prices during the fourteenth century; some of the relevant texts

could e.g. be located with the word penning (“coin”), but without annotation our

researcher would have to guess at least the 56 different spelling variants that we see

in the 1,055 occurrences in our corpus. But how, then, should such annotation layers

be created? Preferably mostly automatic, but for Dutch text from the fourteenth

century, we are not aware of any available existing tagger-lemmatizers. There used

to be the LIMA system developed at the Free University of Amsterdam for semi-

automatic tagging of (among others) Middle Dutch (Huber 1988, 1989), but this was

unfortunately lost during computer upgrades (van Reenen, personal communica-

tion). Furthermore, tagging with LIMA still needed a substantial amount of manual

work. The work in the late 1980s, however, did produce a reasonably sizable

annotated corpus (Corpus of fourteenth century Dutch also known as Corpus van
Reenen/Mulder, CRM; Rem 2003, Chapter 2), which can be used as the basis for the

creation of an automatic tagger-lemmatizer. This of course means that the tagging

and lemmatization guidelines of that time have to be largely followed. However,

this is not a major problem as these guidelines were created by historical linguists

specializing in the Dutch of the target period and the resulting material is still the de

facto standard. Still, as we will see below, some details could be handled better,

such as the lemmatization of proper names. However, we decided to leave such

details as they are and withhold adaptations until later, possibly as a part of a

unification of the tagging and lemmatization for the whole history of Dutch, which

can be investigated as soon as sufficient material for all periods becomes available,

which is now being realized in the Nederlab project (see http://www.nederlab.nl).

For the task at hand, there is a fundamental choice as to how the processing pipeline

is set up. For historical text, a very popular approach is a preprocessing step which

normalizes the orthography, after which more or less standard NLP tools are applied;
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the probably best known example of a normalizer is the VARD (Baron and Rayson

2008). Treatment of variants can also be integrated into theNLP tool itself. Thismeans

that more information becomes available to help process the variety, but also that any

NLP tools cannot be off-the-shelf and will need adjustment or will even have to be

created from scratch. A theoretically possible third option, applying an NLP tool and

then correcting its output for spelling variants, does not appear very promising. The

VARD approach was designed for English and appears to be rather successful there.

However, a significant amount of manual work is sometimes still needed in

normalizing a text. Also, the texts under investigation already show a reasonable

degree of standardization: less than 40 % of the tokens are variants even for the oldest

studied period, fifteenth century, with a slight peak towards 50 % around 1500 (Baron

et al. 2009; in comparison, a similar measurement on the CRM shows 75 % variants)

and it is unknown how the performance is affected when going to texts with more

extreme variation. Similar results are achieved for other languages where the VARD

or other normalizers have been used. Reynaert et al. (2012) apply VARD2 and TICCL

(Reynaert 2005) to Portuguese letters. Again, very impressive overall accuracies of

94.7 % (VARD) and 93.5 % (TICCL2) are reported, and tests per period showed that

VARD’s accuracy on the ten sixteenth and seventeenth century letter was hardly lower

than the overall one (Hendrickx and Marquilhas 2011). However, as we see that only

about 25 % of the tokens in these ten letters needed normalization, we must conclude

that the Portuguese from that period is also already reasonably stabilized. For German,

however, we can see what happens beyond the thresholds of the Modern periods

(Bollmann 2012): a combination of normalizers managed to reach a normalization

accuracy of 93.5 % of the tokens on the 1545 Luther bible, but only 73.6 % on Anselm

texts (various versions from fourteenth to sixteenth century; Bollmann et al. 2011).

Since our texts are more like such older texts, since we recognize the amount of

manual work involved, and since we have the luxury of a lemma-annotated corpus, we

decided to opt for the second approach and build a special purpose system, learning not

only POS statistics but also orthographic variation statistics from training material and

extrapolate to other potential word form variants.

In this paper, we describe in some detail how we approached the creation of a

tagger-lemmatizer based on the CRM. The detail will focus mostly on our treatment

of the orthographic variation in the text material, this being the most influential

difference with the text material usually discussed in the tagging literature.

Section 2 describes the corpus with specific attention for the orthographic variation

in that corpus. Section 3 describes the tagger-lemmatizer as a whole and Sect. 4

gives a detailed description of our strategy to deal with the extreme orthographic

variation. Section 5 lists the results of tenfold cross-validation experiments with the

charters in the corpus. Section 6 briefly discusses some related work and Sect. 7

gives our conclusions and plans for future work.

2 Orthographic variation in the corpus of fourteenth century Dutch

In this section we describe the corpus material we are using in this paper (Sect. 2.1)

and illustrate the orthographic variation that we find (Sect. 2.2).
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2.1 Corpus of fourteenth century Dutch

The Corpus of fourteenth century Dutch (Corpus van Reenen/Mulder, CRM) was

originally created by M.J. Mulder and P.Th.van Reenen and consists of 2,700

charters from 345 places of origin. Charters are a distinct type of formal documents,

and typically make a grant of land or record a privilege. They treat, subject to

certain procedural requirements, Legal Affairs and are intended to serve as evidence

thereof or to make them public. The nature of charters leads to the presence of

specific formulaic expressions. However, these expressions usually differ per

location and they also show a clear development during the fourteenth century.

Furthermore, the formulae tend to be present mostly at the beginning and end of the

charters, with the middle allowing for much more freedom.

The CRM was designed to be representative of the local language use of Middle

Dutch and to be suitable for all types of linguistic research, including dialectal,

morphological and phonological research. In order to be eligible for inclusion in the

corpus, a charter had to be original and the date of creation should be present in the

charter itself. Furthermore (Rem 2003), the parties named in the document had to be

from the same place or area, and none of them should be of a high social status. The

assumption was that a charter was more representative of a genuinely local variant

of language use if the participants are all local and of relatively humble stature.

After all, individuals of high social status are in a position to recruit staff from

different areas, and can be expected to have many supra-regional contacts which

might promote the use of non-local variants. Recently, the CRM has been extended,

by Chris De Wulf, Margit Rem and others, with approximately 1,000 further

Flemish and Brabantic charters, thus providing an even better coverage of the entire

Middle Dutch area. For the experiments described in this paper, however, we used

only the original CRM as the newer additions had at that time not yet been

annotated with tag and lemma information.

All charters were transcribed diplomatically, i.e. it was attempted to retain all

features of the original manuscript, such as spacing and punctuation, rather than to

interpret the text and replace these features according to the conventions valid at the

time of transcription. An example charter and transcription are shown in Figs. 1 and 2.

Token separation, spelling, capitalization and punctuation were all left intact. The

mixed use of u/v/w and i/j was not normalized. Abbreviations were resolved, but

marked in such a way that the original form could be reproduced. In some cases,

spacing was adjusted, merging or splitting tokens, sometimes according to project

guidelines as to which tokens constituted whole words but sometimes also

according to the opinion of the transcriber; again the original form was kept

recoverable. Unreadable or badly readable passages were put between square

brackets. After transcription, the texts were extensively manually annotated.

Supported by the LIMA tool (Huber 1988, 1989), part-of-speech tags and lemmas

were added (for more detail, see Sect. 3.1 below). Furthermore, the parts of

separated verb forms or pronominal adverbs were marked as such. For part of the

corpus, the most important aspects of the syntactic structure were also provided. In

this paper, we only address the annotation with a Tag-Lemma Pair (henceforth

called TLP). During annotation, although the process did contain correction by a
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senior researcher, there was no measurement of inter-annotator agreement, nor has

any systematic measurement of the quality of the annotation been undertaken

afterwards. Still, although the experiments with our system will lead us to identify

some types of problems, our impression is that, overall, the annotation is not worse

than that of other annotated corpora, with an error rate of only a few percent.

2.2 Orthographic variation in the CRM

In the corpus we see both extensive variation in the spacing applied by the authors

and in the spelling they use for the various words. We do not address punctuation

here, as any treatment would have to be based on some kind of analysis of the

syntactic and rhythmic properties of the text, seeing that Greidanus (1926) observes

that periods and capitalization do not indicate sentence separation, but depends on

where the author judges there to be some kind of split in thought or rhythm. For

statistics on thirteenth century prose, we refer the reader to Gerritsen (1990).

As for spacing, it was decided to let the transcribers adjust spacing (leaving

access to the original) in order to separate the perceived individual words as

described in the transcription guidelines. Such adjustments are limited to the

spacing itself; no adjustments are made for clitic forms which are in principle

recognizable as such, but where one or more parts have mutated during cliticization

so that some kind of component reconstruction would be necessary. In the original

manuscripts, there are about 770,000 points where spacing is observed. In about 1 %

of these, the transcribers decided remove the spacing: adjacent tokens were merged

into a single word. Mostly, this concerned the merging of two tokens, but there were

also about 1,200 3-part merges and even 4 4-part merges. A frequent example of

two tokens that were merged by the transcribers is the sequence COMPASS

DIRECTION + zijde, e.g. noordzijde (“north side”). If we consider all possible compass

directions, we find 1,108 occurrences, of which 742 (67 %) were written in the

manuscripts as one token and 266 (33 %) as two tokens. On the other hand, the

transcribers also inserted an additional 1.5 % spacings by splitting about 12,000

Fig. 1 An example charter from the Corpus of fourteenth Century Dutch
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tokens. A frequent example here is the sequence Adposition-Article. We find this

sequence 30,547 times in the corpus. In 7,795 of the cases, we are clearly dealing

with an enclitic form in which one or both parts have been mutated, e.g. te der (“at
the”) written as ter and met den (“with the”) written as metten, so that they have to

be considered as a single token. Of the other 22,752 cases, where there are no

mutations but where the component words are simply concatenated, 17,482 (77 %)

are written as two separate tokens and 5,270 (23 %) as a single token. For the

annotation of the corpus, it was decided to view this sequence as two tokens, so that

5,270 separators were inserted by the transcribers.

A much more complex situation is presented by the variation in spelling, as most

words provide several positions where variation is possible. As an example, Table 1

shows the word forms which have been assigned the lemma gelijk (“similarly”) and

the tag adverb, a combination which is present 691 times in the corpus, with 24

different word forms. The variation is even greater for proper names, where the

corpus designers decided to group all forms under the standardized name forms

listed by Van der Schaar (1992). The resulting extensive perceived variation is

witnessed by the name Gerard, whose 1,119 occurrences (in uninflected condition)

show 66 different forms, listed in Table 2.

As can be expected, the number of observed variants increases as the length of

the word goes up (since there is more potential for variation) and as the frequency of

the word goes up (since more variation can be observed). In our corpus, we

examined the word forms associated with the about 14,000 TLPs occurring more

than once.1 We included the tag in order to isolate actual spelling variation and to

avoid counting variation due to various inflectional forms. We then grouped these

TLPs into length and frequency bands. As for length, we grouped the TLPs by

taking the integral part of the log2 of the average length of the corresponding word

forms, but included the ten TLPs with an average word length lower than 2, which

should therefore in principle be assigned to band 0, into length band 1. This lead to 4

bands with band 1 containing 134 TLPs consisting on average of less than 4

characters and band 4 of 940 TLPs consisting on average of 16 up to 21.8 [the plural

noun heiligegeestmeesters (“administrators of the Poor Relief Fund”)]. As for

frequency, we grouped the TLPs by taking the integral part of the log2 of the

frequency, with a maximum of 10, as the TLPs with a higher frequency than 211

Fig. 2 Transcription of the charter shown in Fig. 1

1 We excluded hapaxes as they obviously cannot show spelling variation. Interestingly, the 760,000

words of the corpus include only 11,000 hapax TLPs.
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occur far to little to assign them separate bands. This led to 10 groups with group 1

containing 3,695 TLPs with 2 or 3 occurrences, up to group 10 containing 158 TLPs

with 1,024 or more occurrences. For all TLPs, we then measured the spelling

variation in two ways. The associated number of different forms shows the overall

range of options and the entropy (Shannon 1948) for the choice of the form shows

whether these options are taken more or less in equal amounts or whether there are

one or more dominant options. On average, a TLP type has 3.12 spellings and an

entropy of 0.83, which shows that there are indeed more dominant and less

dominant forms as equal probabilities for all forms would lead to an entropy of

about 1.6. The average variation in the different band combinations can be seen in

Figs. 3 and 4. Note that, as these graphs show averages over given length and

frequency bands, the extremes appear lower than they in fact are. The highest

numbers of forms are found for the adverbs erfelijk (“hereditarily”, 97 forms),

jaarlijks (“each year”, 89 forms) and tegenwoordig (“these days”, 78 forms). The

highest three entropies are found for again the adverb erfelijk (4.8) and also again

tegenwoordig, but now as an adjective inflected to its –n and –e forms (5.1 and 5.8).

It was unexpected that the extremes are found for adjectives rather than proper

Table 1 Word forms found when the lemma gelijk (“similarly”) is used as an adverb

ghelijc 373 gheliich 10 ghelic 3 gheljjch 1

gheliic 86 gelijch 9 gelic 2 ghelljc 1

gelijc 64 gelike 9 geliic 2 ghlijc 1

ghelike 54 gheliken 9 ghelijck 2 gilycs 1

ghelijch 33 gelyck 4 ghelijcke 1 like 1

ghelyc 19 ghelich 4 ghelijct 1 yegelike 1

Table 2 Word forms associated with the proper name Gerard

gheriit 121 gert 12 gerijd 4 gherut 2

gherijt 111 gerat 11 gheeraert 4 garret 1

gherart 84 gerit 10 gheredt 4 ger 1

gheret 70 gheerd 10 gheryd 4 geraed 1

gherit 70 geraert 8 gherrijd 3 gerairt 1

gherijd 58 gerd 8 ghierart 3 gerard 1

gerart 56 gheryt 8 gered 2 gerid 1

gheert 55 gerijt 7 gereet 2 geriit 1

gheriid 54 gheeraerd 7 geyrart 2 geryt 1

gheraerd 47 gheerard 7 gheeraerdt 2 gheerlec 1

gherd 47 gherret 7 gheeraet 2 gheraird 1

ghert 46 geerd 6 gheerit 2 gherrid 1

ghered 37 gherid 6 gher 2 gherud 1

gheraet 24 geraet 5 gherairt 2 gherydijn 1

gheeraed 19 geret 5 gherardt 2 gierkijn 1

gherard 18 gheraed 5 gherat 2

gheraert 16 geert 4 gherrijt 2
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Fig. 3 The number of spelling variants as a function of the length and frequency of the TLP

Fig. 4 The entropy of the spelling variation as a function of the length and frequency of the TLP
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names, but on closer examination it turns out that the forms also include a lot of

morphological variants which are not marked as such in the tag. Looking at the

averaged graphs, we see that, with the exception of some irregularities, e.g. the ones

caused by low numbers of TLPs per cell in length band 1, the number of variants

indeed appears to be mostly correlated to both length and frequency (Fig. 3).

However, if we look at entropy (Fig. 4), it would seem that the general trend is that

entropy is highest in the medium frequency bands. In the highest frequency bands,

there may be more forms, but most of these turn out to be rare. An example is the

finite verb form doen (“do”). It has 8 variant spellings, but one of these (doen itself)

is used in 798 of its 819 occurrences.

3 Tagger-lemmatizer architecture

In this section, we describe our tagger-lemmatizer as a whole. We start by

describing the nature of the annotation (Sect. 3.1). Then we describe the pipeline

architecture (Sect. 3.2) and its components: tokenization (Sect. 3.3), TLP suggestion

(Sect. 3.4) and contextual disambiguation (Sect. 3.5).

3.1 Word class tags and lemmas

We transformed the numerical tags in the original annotation of the corpus to a

mnemonic format for reasons of readability, using an attribute notation as

exemplified by V(fin,past,lex) (a Verb in a finite form, namely past tense, and
being a lexical (rather than an auxiliary) verb). The part before the parentheses

indicates the part of speech (see Table 3). The parts between the parentheses

indicate various more detailed subgroupings. In all, we observe 184 different tags in

the corpus. For the moment, this also limits the number of tags that the tagger will

output, as it is automatically trained on the corpus. However, we should note that the

annotation also distinguishes clitic forms, e.g. tsconuents is tagged as representing a

combination of te dat convent (“at that convent”) and receives the tag

Adp()+Art(def,forms)+N(sing,forms). In the corpus, we encounter 16,099 clitics,

showing 436 different tag combinations.2

Each token is also associated with a lemma. In general, this is the modern form of

the lemma, e.g. si → zij (“she”). When no modern form exists, a pseudo-modern

form was created, e.g. eeuwelike → eeuwelijk (“eternal”), verlyen → verlijden
(“confess”), manesse → manis (“summons”). For proper names, a normalized form

is used, based on the list given by Van der Schaar (1992). For clitic forms, the same

2 The tagset used here is very similar to the Decoy tagset (Van Eynde 2005), which is the current de facto

standard for modern Dutch, which is only to be expected as both tagsets are in principle based on the

Dutch grammatical tradition. However, there are also differences. Obviously, the whole clitic apparatus is

absent from the Decoy tagset. Another clear difference in the tags is the fact that we do not attempt to

mark case, but merely the form of the word ending. Other differences will mostly be in the application of

the tags rather than the tags themselves, as some constructs were still in flux in the fourteenth century, e.g.

the development of articles from demonstrative pronouns which we will address in footnote 9.
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strategy is followed as for tags, and the clitic form is assigned a lemma combination,

e.g. the abovementioned tsconuents is assigned lemma te+dat+convent.3 In the

corpus, we find 12,510 simple lemmas and 853 clitic combinations.

3.2 System pipeline

Our tagger-lemmatizer system is built using the pipeline architecture that is rather

standard for such systems. First there is a tokenization module, which has the task to

recognize the tokens within the character stream. How this is done is described in

Sect. 3.3. The tokenization module does not perform sentence separation; seeing the

almost total lack of systematic punctuation connected to sentence boundaries, we do

not distinguish sentences but simply process the whole charter at once. After the

tokens have been proposed, each token is associated with a list of potential TLPs, as

described in Sect. 3.4. Each potential TLP is also assigned a number indicating its

likelihood. After this, a disambiguation module, described in Sect. 3.5, combines the

lexical likelihoods with the contextual likelihoods for each token and assigns an

overall likelihood to each TLP.

A distinguishing feature of our system in relation to other tagging systems,

however, is that it is designed to do two more passes through the whole pipeline.

After a first pass, it goes back to tokenization and re-estimates the token recognition,

now also using the information about the likelihoods of the TLPs provided by the

first passage (Sect. 3.3). In these first two passes, the system uses its standard

lexicon, which contains spelling variants that have been observed in the training

data or have been extrapolated from the training data. After the second pass, this

already expanded lexicon is expanded yet again by adding best guesses for all

Table 3 Main part-of-speech tags and their observed frequencies in the CRM

POS Long name Observed

by itself

Observed

with clitic

Total

N Noun 225,850 3,302 229,152

Adp Adposition 92,401 8,622 101,023

V Verb 95,083 1,446 96,529

Pron Pronoun 75,740 3,805 79,545

Conj Conjunction 71,773 985 72,758

Art Article 46,301 11,821 58,122

Adj Adjective 51,840 1,185 53,025

Num Numeral 33,514 231 33,745

Adv Adverb 30,967 309 31,276

PronAdv Pronominal adverb 15,132 557 15,689

Misc Miscellaneous

(e.g. Latin words)

2,727 4 2,731

Punc Punctuation 51,033 51,033

3 In the tagger-lemmatizer, such clitics are viewed as atomic units and are not split in any way for

processing.
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unknown word forms in the tagged text, using the contextual TLP likelihood in all

their observed occurrences (Sect. 3.4). As can be expected, these additional passes

increase processing time, especially the lexicon re-expansion. We therefore evaluate

the effect of these additions in Sects. 5.2 (re-estimating tokens) and 5.3

(re-expanding lexicon).

3.3 Tokenization module

The tokenization module attempts to identify the tokens in the text. Punctuation

tokens are split off from any word tokens they might be attached to. We will not

model punctuation explicitly, but as it does appear to represent some kind of

structure (Gerritsen 1990), we do keep punctuation tokens in our data so that they

can aid in contextual disambiguation.

The word tokens are identified with a pure machine learning classification

approach, using two different models. The basic model only uses character level

information about a potential token separation point and can be used on unprocessed

text. The re-estimation model also uses information about the probable tags and

lemmas next to potential separation points and can therefore only be used after an

initial round of tagging and lemmatization. For both models, we use the WPDV

machine learning system (van Halteren 2000a), as it has two special properties

which allow us better control over the learning process. First of all, it allows set-

valued features, i.e. the same feature can have multiple values in the same case

(Cohen 1996).4 Secondly, the system allows that weights are attached in the input to

specific feature name-feature value combinations inside each individual case, which

will be used in addition to the weights that the system has determined on the basis of

the training data per feature (or rather combination of features). We will show below

how these properties are used in our tokenization models.

In order to decide which tokens there are in the text, we have to determine for

each position between two non-spacing characters (which might or might not be

separated in the manuscript by white-space) whether this position separates two

tokens or whether it is inside a token.5 The basic model attempts to do this purely on

the basis of the context in terms of character strings. As an example, take the string

ende op gedregen haren (“and transferred (to) their (…)”), where we have to

determine whether the space between op and gedregen separates two tokens or not.

In this string, it does not and opgedregen should be considered as a single token. For

WPDV, we prepare three feature names, ap (actually present), cl (left context), and

cr (right context). The first indicates whether or not the manuscript actually shows

4 In machine learning classification, data sets consist of cases, each of which belongs to a class, which is

to be estimated by the classifier, and furthermore contains a number of features, representations of

properties that might be useful for the classifier in its task. E.g. in POS-tagging, the class would be a part

of speech and the features would include the current token, its potential parts of speech and the part of

speech of the previous token. In most classification systems, each feature is assigned a name or placed in a

specific column and can contain only one value.
5 Note that the hyphen may, already in fourteenth century Dutch, indicate a word break over a line

boundary and is therefore ambiguous between spacing and non-spacing character. We will not go into in

detail about this.
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separation, which in this string it does.6 The second and third only differ in

direction, but are otherwise the same. Both are set-valued, including values for

distance to the next spacing (e.g. cl=#L#2 and cr=#L#8), full string up to the next

spacing (e.g. cl=#W#op and cr=#W#gedregen), and 1–5 adjacent non-spacing

characters, but adding markers for spacing (e.g. for left context cl=#1#p,

cl=#2#op, cl=#3#e+op, cl=#4#de+op, cl=#5#nde+op). For the various lengths,

we add weights of 2length, and 16 for the full string up to the spacing. In this way, we

indicate that matching on more context should be weighted stronger. WPDV does

not only consider individual features, but also feature combinations and will

therefore consider e.g. combinations of ap and cr; however, only features having

different names are being combined, so not e.g. different values for cr. We can also

specify frequency thresholds. We have decided to use only feature combinations

that occur at least 3 times in the training material, which leads to about 13 million

active feature combinations used for the classification. Our choice of threshold was

mostly pragmatic, as lowering it to 2 would lead to a data model that is larger than

the working memory of our 4 Gb machines, and we did not measure to which degree

this choice of threshold has influenced the accuracy of the process.

For the re-estimation model, only those potential separation points where the

basic model yielded a best probability of less than 0.9 are being considered. For

these, we now replace the character-level features by token-level features, based on

the token and tag-lemma information suggested by the previous pass through the

pipeline. The context between the potential separation point and the next token

separation according to the previous run is described by two features fl (focus to the

left) and fr (focus to the right). Each of these is set-valued, including various length

substrings, again weighting more extensive substrings with higher weights. Apart

from these, we use the feature cl (left context) and cr (right context), each set-

valued, listing all possible uni-, bi- and trigrams of tags and/or lemmas, weighted

with their probabilities as provided by the previous run. Finally, we again use the

feature ap to indicate whether or not there is actual spacing in the manuscript.

Building the model on only those cases where the basic model is not confident

allows us to set the frequency threshold to only 2 for feature combinations in the

re-estimation model. This leads to about 9 million active feature combinations taken

into account by the system. The effect of this re-estimation is described in Sect. 5.2.

3.4 Potential tag-lemma pair proposal module

The next step in the process is the suggestion of TLPs that could be associated with

each token. Here too, we start by following standard techniques. Known word forms

are simply looked up in a lexicon, the difference with most other systems being that

we have expanded our lexicon so that it also contains forms which have not been

observed in the training material but can be expected on the basis of observed

spelling variation (for details see Sect. 4). Each suggested TLP is also given a

6 As explained in Sect. 2.2, the transcribers of the corpus have sometimes reinterpreted the orthography,

which means that we have two opinions on token separation. We use the transcribers’ opinion as the

target of the classification, but use the actual tokenization in the manuscript as a feature.
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numerical likelihood indication, which can be used by the contextual disambigu-

ation module (Sect. 3.5).

Unknown word forms are provided with a tag by way of a machine learning

algorithm, as are word forms which have a virtual frequency (see Sect. 4.4) of less

than 10 in the lexicon. In the latter case, the newly suggested tags are merged with

the ones derived from the lexicon, using a weighting scheme which gives less value

to the machine learner suggestions as the virtual frequency in the lexicon increases.

The TLP’s suggested by this algorithm do not contain a proper lemma; instead, the

lemma position in the TLP is filled with a marker (currently “???”) to indicate this.

We again use the WPDV system as machine learner. We learn a model on the basis

of all open class TLPs. The features for this model are exemplified in Fig. 5. A

standard feature for such models is the word-final string (Ie), again set-valued with

lengths 1–6 and weighted with 2length (P1 to P32). The length of the word is also

taken into account, using length bands 1, 2–3, 4–5, 6–10, 11–20 and 21+ (Ilen).

The remaining features are connected to Dutch morphology. First of all, Dutch has

separable verbs where a particle can be split off for some finite forms but is attached

at the beginning of the word in others. On the basis of the split off occurrences, we

are able to learn an inventory of particles, so that we can check in unknown words

whether or not they start with a particle. Secondly, past participle formation in

Dutch is generally done with prefixation of ge– (or spelling variants), but with an

infix –ge– placed after the particle for separable verbs. As there are also some other

recognizable prefixes, we add features for the first 1–3 characters of the word (Ib)

and the first 2–3 characters following a recognized particle (Ibp). Both these

features are again set-valued and weighted for length. We set a frequency threshold

of 2, leading to about 400,000 active feature combinations.

After a full pass through the tagging pipeline, we have suggestions for all

unknown word forms in their context(s). At this point, our system allows a further

lexicon expansion. Every TLP that is suggested by the unknown word form

algorithm, and that is given a probability higher than 0.1, is examined. First, an

exception rule is applied, for word forms which are tagged as numbers and look like

Roman numerals, as for these a similarly spelled word may well represent a

different number. For all other word forms, the system finds the closest word form

in the lexicon which can be associated with the assigned tag. This lemma is then

added to the lexicon, with an estimated probability dependent on the sum of all

estimated probabilities in the texts currently being tagged. Furthermore, the

probabilities for known word forms are also updated in the lexicon dependent on

their estimated contextual probabilities in the texts. The resulting updated lexicon is

then used in a new pass through the tagging pipeline. The effects of this

re-expansion are described in Sect. 5.3.

Fig. 5 The case for the word form wtghenomen (“taken out”) for the machine learning module providing
potential tags for unknown word forms
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3.5 Contextual disambiguation module

After all tokens have been associated with a list of potential TLPs and their

likelihoods, the system adjusts these likelihoods on the basis of the context. For

contextual disambiguation, we did not have to develop new methods, but could

reuse existing tools. As we knew that better results can be achieved with

combinations of systems rather than individual ones (van Halteren et al. 2001), we

opted to combine our own tagger generator system (WPDVit) with two other

popular systems: TnT and SVMTool. We use all systems in several modes, and

combine their outputs into a final result.

SVMtool (Giménez and Márquez 2004) is one of the best tagger generators

currently available, using Support Vector Machine technology. It allows for a

number of different strategies, of which we use modes 0 (one-pass, default), 1 (two-

pass), 2 (robust against unknown words) and 4 (very robust against unknown

words), leaving all other settings at their default value. In addition we apply each

mode going both left-to-right and right-to-left through the text, leading to a total of 8

SVMtool suggestions. As SVMtool yields only tags with likelihoods and no

lemmas, the likelihoods for the suggestions are merged into those for all TLPs with

the corresponding tags.

TnT (Tags ‘n Trigrams; Brants 2000) is one of the most used HMM-based tagger

generators. Seeing that HMM tagging has proved useful in the past and differs

considerably from SVM-based tagging, we judged that including it in our

combination would be fruitful. We use TnT with its default settings, but do again

run it both left-to-right and right-to-left, leading to 2 TnT suggestions. TnT too only

yields tags and no lemmas, and output is used in the same way as that from SVMtool.7

Our final addition to the combination is an experimental system using the WDPV

machine learning system, called the WPDV iterative tagger (WPDVit). It has an

architecture similar to an earlier WPDV-based tagger (van Halteren 2000b), but is

expanded in that the contextual disambiguation is used iteratively. As already

mentioned above, the WPDV system allows each feature in a specific case to be

weighted individually by the user. In WPDVit, we use this property to weight each

TLP in the context with its likelihood as yielded in the previous iteration, being the

lexical likelihoods on the first iteration and contextual likelihoods in later iterations.

E.g. if we are disambiguating geet in geet telken geldens tide (“goes at each pay

period”) and the first tagging suggested a probability of 0.54 for telken being a clitic

form with tag Adp()+Num(indef,formn) and lemma te+elk and a probability of 0.81

for geldens having tag V(participle,pres,forms) and lemma gelden, then we would

add a feature for the right context being Adp()+Num(indef,formn)++ V(participle,

pres,forms) with a weight of 0.54 × 0.81 = 0.44, which helps identify geet as the

third person singular finite form of the verb gaan (“go”) rather than its closest

competitor, a form of the proper noun Gerhard. Pilot experiments showed that, for

the fourteenth century data, iteration was only useful at the early stages and we kept

only the outputs of the first and second iteration. The direction in the tagging

7 Both SVMtool and TnT work on the original word forms and do not make use of the TLPs suggested by

our own system.
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process is not relevant for WPDVit. SVMtool and TnT proceed through the sentence

word by word and use the choices made for each token in the disambiguation of the

next token, which means that the resulting likelihoods will depend on the direction

in which the sentence is tagged. WPDVit on the other hand considers the

undisambiguated tags of the context in both directions and is therefore not

influenced by a chosen tagging direction. As a result, there are only two WPDVit

TLP suggestions, one for the output of each iteration.

After running the individual disambiguation systems, we have 14 suggestions as

to the likelihood of each TLP. In principle, one could now train a new classifier

which uses the 14 opinions as features for its classification (stacked classification).
However, this would be rather computationally expensive. For the current system,

we have therefore decided to just give each opinion equal weight and simply

average the suggested likelihoods. To reduce the number of TLPs that are taken into

account, though, which is especially important for modules like WPDVit, we

remove all TLPs with a likelihood of less than 0.0001 at specific points in the

pipeline.

4 Lexicon expansion

Given the enormous amount of spelling variation, it is unlikely that all spelling

variants will be observed in training material comprising a mere 700,000 words. We

therefore expand our lexicon by including variants of observed word forms which

are likely given the also observed spelling variation. This process is completely data

driven and not supported by manually created rule systems such as e.g. VARD’s

modified SoundEx and letter replacement rules (Baron and Rayson 2008). Although

especially phonetic modeling appears attractive, we do not expect it very likely to

be successful, as the spelling variation in our texts is mostly linked to the sometimes

extreme dialectal pronunciation variation. Furthermore, the exact pronunciation of

most dialects is not known, which seriously hampers the desired modeling. We first

determine the cost of variation at the character level (Sect. 4.1), which is then used

to align all word forms per TLP into variation grids showing the variation options

for that TLP (Sect. 4.2). We then examine all variation grids in order to generalize

to a set of likely variation rules which are more widely applicable (Sect. 4.3).

Finally, we generate expected variants from known word forms by applying what

we learned about variation for those forms and in general (Sect. 4.4).

4.1 Character variation cost

For the alignment of the various word forms for the same TLP, we build upon the

Levenshtein (1965) algorithm with differentiated edit operation costs. As a result,

we need to estimate costs for all possible character insertions, deletions and

substitutions. Since we are working with two observed forms rather than a standard

form and a variant, every word form comparison is symmetric, and the costs for

insertion and deletion of the same character are equal. Furthermore, given the nature
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of our data, we also derive separate costs for doubling/undoubling (which are

cheaper than the corresponding insertion/deletion). Finally, as ch and ph at first sight
appeared to act as single characters in variation, we transformed them both

internally to a single character (viz. \ and [). Later observation showed that ch
turned out to alternate more with c than with the phonologically related g, but this
was unproblematic as h-deletion is common elsewhere as well. For ph, we saw the

opposite, in that alternation with f is more common than with p.
In order to estimate operation costs, we examine all word form pairs for the

same TLP which are only one edit operation apart. For all observed edit operations,

we start with a cost of one. Then, for every word pair where the operation is

observed, the cost is reduced by a constant C times the current cost. Note that the

optimal C is obviously corpus dependent; in the work reported here, C is set to

0.003. For future work, we are considering to switch to a more corpus independent

method, e.g. Mutual Information-based (Wieling et al. 2009).

We show examples of the resulting costs in Table 4. Vowels are clearly strongly

subject to variation, as is the presence of the h. Consonants are more stable, but here

too we find pairs such as d-t which are almost completely interchangeable. At the

higher cost end, we find very unlikely changes, such as insertion of b and

substitution of b into z, which apparently do sometimes occur in our data. Their cost

remains at almost 1.

All unobserved insertion/deletion and doubling/undoubling operations are given

cost 1. Unobserved substitutions are set to 2 if the two characters are compatible, i.e.

both are vowels, both are consonants or both are digits. For measuring

compatibility, the characters v and w are counted as both vowel and consonant

since they are freely interchanged with u and uu, all u’s themselves are transformed

at the start of processing to v, and the character j is system-internally treated as i,
always a vowel. If the two characters are not compatible, substitution is blocked

with a cost of 1,000,000.

4.2 Multi-variant alignment

We now proceed to building a variation grid for all word forms observed with the

same TLP (see example in Table 5). For each TLP, we first find the two most similar

forms, according to the Levenshtein algorithm with edit costs as described above,

and align them. From then on, as long as there are more forms to be merged into the

grid, we each time identify which form is most similar to the whole current grid.

When comparing a character in the new form with a column of the grid, the edit cost

is primarily determined by the row yielding the lowest cost, but slightly adjusted by

the row yielding the highest cost.8 If at any time, the overall cost for the new form is

higher than 2.25, a number chosen as appropriate on the basis of human inspection

of the grid formation process, we assume that the TLP in question actually has more

than one different orthogonal form and start a new grid. This happens for about

8 There is only space here for a general description and not for the various heuristics employed, such as

penalization of an insertion which hinders a substitution of neighboring characters. For further detail,

please contact the author.
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0.7 % of the TLPs, most often names, e.g. Ambrosius is found both as ambrosivs and
as brosikens.

4.3 Rule derivation

After we have built the grids, we can examine which edit operations occur in the

same character context in more TLPs. For each edit operation in each TLP grid,

including the identity operation, we generate all contexts with 1–3 characters left

and right and list them together with the operation in question and the observed

frequencies of the source and target form, resulting in a kind of protorules (now no

longer symmetric as to insertion/deletion). We continue with those protorules which

are observed at least 10 times and assign a probability for the given operation in the

given context by dividing the frequency of the source form by the frequency of the

target form, thus merging the token-dependent protorules into probabilistic

character-context-dependent rules. If the item is observed for less than 25 TLPs,

this probability is reduced. We keep all rules with a probability higher than 0.05, but

filter out those that are redundant. i.e. those where a more general context provides

the same or higher probability. Table 6 exemplifies the output by showing the most

probable operations of the various types (for a specific training set). The operations

shown all have probabilities higher than 0.5 and transform a less likely variant into a

more likely one; the reverse operation may also be present but with much lower

probability, e.g. s__c__o → \ has probability 0.11.

4.4 Variant generation

After deriving generalized rules, we turn back to the grids to expand them with

expected but unobserved variant forms. We always start with a form which is

actually observed, and then allow a number of operations on it which are based on

the current TLP grid and which number at most the square root of the length of the

form. These operations consist of choosing a column in the grid and replacing the

character that the source form has there (possibly none) by a different character in

the same column in another row (again possibly none). For each change, the

probability of the target word form is adjusted by the probability of the edit

operation. After the grid-based operations, we allow the application of a single

general rule, but now reduce the probability not only by multiplying with the

Table 4 Selected data-driven

edit operation costs for

determining Levenshtein

distance

Insertion/

deletion

Doubling/

undoubling

Substitution

e .017 .004 e ↔ i .050

h .085 .085 i ↔ y .086

n .459 .339 d ↔ t .235

r .769 .661 c ↔ k .598

m .956 .849 b ↔ p .969

b .979 .949 b ↔ z .997
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probability of the rule but also by an additional multiplication with 0.4 for using an

operation not observed for this TLP. We then sum the probabilities of each target

form over all its derivations, and where present also add in the originally observed

count for this form. We now include those target forms in the lexicon which have a

final probability of 0.0001 and which do not include character trigrams that were not

observed in the training material. In order to be able to provide a frequency count to

the lexicon, we transform the probabilities to virtual frequencies in such a way that

the frequencies for all spelling variants for a TLP add up to the actual total

frequency of this TLP. As an example, Table 7 shows some observed and virtual

frequencies of the noun geboorte (“birth”), for which the original grid is shown in

Table 5.

4.5 Effects of expansion on the lexicon

The lexicon expansion as explained above increases the number of lexicon entries

(i.e. word form—TLP pairs) from about 50,000 to about 1,250,000. The number of

Table 6 Most probable generalized spelling variation rules

Substitution Deletion Insertion

#s__ \ __e → c .73 eg__h__# .90 #g__ __el → h .76

t__z__# → s .71 f__f__# .87 #g__ __es → h .75

an__d__# → t .70 t__h_en .85 g__ __el → h .71

l__d__# → t .70 en__n__e# .78 dag__ __e → h .70

s__ \ __o → c .68 ike__n__# .78 #g__ __e → h .66

The notation should be read as follows. Each rule has a left hand side and a right hand side, separated by

an arrow. The left hand side consists of a left context, a focus (possibly empty) and a right context,

separated by double underscores. A rule shows that the focus may be replaced by the right hand side when

in the presence of both left and right context, with the probability indicated. As to the characters within

the rules, remember that \ represents the character combination ch; and the # indicates the beginning or

end of the token

Table 5 Multiple spelling variant alignment grid, for the word geboorte (“birth”), with the observed

count in the rightmost column

G h e b o e r t e 14

G e b v e r d e 11

b o e r t e 7

G h e b o r t e 3

G e b o r t e 3

G e b v r t e 2

G h e b v e r t e 1

G h e b v e r d e 1

G e b o i r d e 1

b o r t e 1
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TLPs obviously remains the same, at about 23,000, but the number of distinct word

forms goes up from about 40,000 to about 1,100,000.

If we look at the number of word forms per TLP (Fig. 6), which has an average of

about 2 in the original lexicon and about 50 in the expanded one, we see that the

number of expanded forms does not depend primarily on the number of forms

observed in the corpus. In a typical run of the system, i.e. fold3 from the cross-

validation described below, we see that the TLP with the most variation is the plural

form of the noun heiligegeestmeester (“administrator of the Poor Relief Fund”),

which goes from 11 observed variant forms to 8,437 variant forms in the expanded

lexicon.

The expansion of the lexicon of course also increases the ambiguity of the word

forms. However, as we see in Fig. 7, this increase is limited. Again using fold3,

980,606 (91 %) of the 1,076,916 newly introduced variants are only associated with

one TLP and 28,400 (82 %) of the 34,511 originally unambiguous word forms

remain unambiguous. The average ambiguity goes up from 1.22 TLPs to 1.72 TLPs

per word form, a factor of 1.36. We will see in Sect. 5.3 whether this increase in

ambiguity can be dealt with to such a degree that lexicon expansion is beneficial

rather than detrimental.

5 Experimental results

In order to test our system, we have performed a tenfold cross-validation on the

CRM, each time taking 90 % of the charters as training material and 10 % as test

material. Manually determined settings, such as the constant C mentioned in Sect.

4.1, were kept constant, but all models were trained purely on the training material

for a specific fold. The system output was evaluated against the original annotation

in the corpus, accepting this as a gold standard for annotation of fourteenth century

Dutch charters. We first give overall results on system performance (Sect. 5.1) and

then continue with a focused evaluation of the effects of retokenization (Sect. 5.2)

and lexicon expansion (Sect. 5.3).

5.1 Overall results

The results for the tagger in its full form over the whole corpus are shown in

Table 8. With scores approaching 95 % for the 1-best output, the system is not yet

Table 7 Selected forms for the

noun geboorte (“birth”) in the

expanded lexicon

Token Observed Virtual

frequency

gheboerte 14 7.73

gebverte 2 1.94

ghebvrde 0 0.41

boerde 0 0.14

heboeirte 0 0.0005
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near the results reported for taggers of modern languages, but this is only to be

expected. Given the nature of the material, the success rate is actually quite high.

Most of the errors for the 1-best output are disambiguation errors, but both lexicon

(especially where it concerns lemmas) and tokenization also provide room for

improvement. As can be expected, there is also a substantial difference in quality

between the charters. There are even charters (up to 172 tokens) that are tagged and

lemmatized completely correctly. At the other end of the spectrum, we find charters

in which only around 80 % of the tags (and/or lemmas) are correct. Sometimes, such

low quality is caused by the nature of the charter, e.g. having many unreadable

words or addressing a subject matter different from that of the (administrative) bulk

of the material, such as a furniture inventory.

Error analysis has shown that many of the errors can be easily explained, but not

easily repaired. An example at the tag level is the suffix –n, e.g. in joncvrouwen
(“damsel/damsels”). Our tagset does not indicate the function of a suffix, but only

marks the form, here the –n. However, for e.g. feminine nouns, the –n suffix is

ambiguous between singular (genitive or dative) and plural, and the singular-plural

distinction is made in the tagset. A similar problem is presented by –s, which is

Fig. 6 Number of word forms per TLP in the expanded lexicon as a function of the number of word
forms in the original lexicon (both in log scale)

1252 H. van Halteren, M. Rem

123

Author's personal copy



ambiguous between singular genitive (masculine or neutral) and plural. As correct

disambiguation depends on actually understanding the meaning of the text, the

system is distinctly challenged, which explains the large number of singular-plural

confusions with these two endings: 3,815 (11 % of all tag errors). At the lemma

level, the most common confusions are between de (“the”) and dat (“that”) with
3,599 errors (10.3 % of all lemma errors)9 and between the lemmas haar (“her”) and
hun (“their”) which correspond to the singular and plural interpretations of forms of

hare with 1,617 errors (4.6 %). In both cases, a deeper understanding of the text is

needed in order to make the desired distinction.

On the other hand, our examination also shows that quite a few of the

discrepancies between system output and corpus are in fact caused by errors in the

Fig. 7 Box plot of word form ambiguity in the expanded lexicon as a function of the ambiguity in the
original

9 The Modern Dutch definite articles originated from the unstressed demonstrative pronouns. In Middle

Dutch, the latter can still occur both as demonstrative pronouns and as articles. They have been annotated

as articles during the manual annotation the CRM unless the context clearly shows that they are meant to

be read as demonstrative pronouns. As the assigned lemmas are the modern ones, the choice entails a

difference in lemma.
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corpus annotation, about 30 % of the tag errors and about 10 % of the lemma errors,

which means that the quality might actually be higher than our measurements

indicate. Furthermore, about 30 % of the lemma errors concern proper names. Here

the system suffers from the predictable absence of many proper names from the test

manuscripts in the training manuscripts, so that 2,960 tokens tagged as proper name

do not get a lemma, accounting for 8.5 % of the lemma errors. But it also suffers

from inconsistency in the choice of lemmas for proper names. As an extreme

example, of the 1,119 occurrences of the name Gerard (Table 2), only 160 are

actually lemmatized as Gerard, the others being marked as Gerhard (634) or Gerrit
(325). For this name, the indexing in Van der Schaar (1992) could be clearer,

leading to confusion with the annotators. The system copies some of these errors,

but the remaining discrepancies account for 419 lemma errors (1.2 %).

5.2 Token separation results

As described in Sect. 3.3, we do not follow the token separation as observed in the

actual charters, but attempt to provide our own tokenization, using at first a simple

character-based model and in a later phase a partly word-based model. The question,

then, is whether these tokenization attempts are worth the effort. We measured the

quality of the output after the first and second pass through the system pipeline, i.e.

the passes using the expanded and not the re-expanded lexicon. In addition, we ran a

single pass with the tokenization module switched off, and hence using tokenization

as given by the layout in the charter. From Table 9 it is clear that the initial

tokenization is essential, as it improves both tag and lemma accuracy by about 3 %.

However, the later word-based re-estimate yields an improvement of a mere 0.1 %,

and would seem to be superfluous.

5.3 Lexicon expansion results

The same question as in 5.2 can be asked about lexicon expansion and re-expansion.

Here we measured the quality by counting the errors after the second and third pass

through the pipeline, i.e. the passes using re-estimated tokenization, and in addition

after two passes with the expanded lexicon replaced by a lexicon which only

contains word forms observed in the training material. The results are given in

Table 10. We see that the importance of the lexicon expansion is fully dependent on

the goal of the annotation. If only tags are needed, the expansions hardly bring

profit. It would seem that the machine learning model for tagging unknown words is

Table 8 Accuracy

measurements for the system as

a whole

Tag (%) Lemma (%)

Token recognized 99.20 99.20

Gold standard annotation

proposed

98.75 97.28

Gold standard annotation

selected

94.97 94.88
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well equipped to provide the proper tags for spelling variants. For lemmas, however,

each lexicon expansion yields an accuracy improvement of almost 1 %. And

although 1 % does not sound impressive, one should consider that the step from

93.11 to 93.96 % is a 12.3 % reduction of errors and from 93.96 to 94.88 % a

reduction of 15.2 %. In other words, both expansions are certainly worth the effort.

6 Related work

The spelling of late Medieval Dutch is currently being studied actively by several

researchers. The general trends in spelling and phonological variation were already

reported earlier (e.g. Berteloot 1984), but the availability of machine readable

corpora (see e.g. Mooijaart (1992), who used the Corpus Gysseling) and especially

the development of machine learning techniques allow us to enhance these reports

with much more detailed information.

Mike Kestemont and colleagues at the University of Antwerp have been looking

into spelling variation in thirteenth century Dutch literary texts (taken from the

Corpus Gysseling; Gysseling 1977–1981), combining Levenshtein-based distances

with k-nn techniques (Kestemont et al. 2010). Although this work shows many

similarities with ours, there are also many dissimilarities, too many to make the

results directly comparable. Instead, we are planning to exchange test material in the

near future and apply each method to each data set. Martin Reynaert of Tilburg

University has been working on spelling correction in general, using statistics on

common forms and apparent spelling variants in large corpora (Reynaert 2005).

Although his methods do work on historical material, he has not yet attempted to

process Dutch texts from before the eighteenth century (Reynaert, personal

communication). The Institute for Dutch Lexicography (INL) has also worked on a

tool and a procedure to derive spelling variation rules from example material and a

Table 9 Accuracy for various

levels of retokenization
Token (%) Tag (%) Lemma (%)

As written 96.05 91.73 90.90

First estimate 99.11 94.85 93.88

Re-estimate 99.20 94.94 93.96

Table 10 Accuracy for various levels of lexicon expansion

Gold standard tag

proposed (%)

Gold standard tag

selected (%)

Gold standard lemma

proposed (%)

Gold standard

lemma selected (%)

Known forms only 98.66 94.91 95.18 93.11

Expanded lexicon 98.79 94.94 96.23 93.96

With test token

adaptation

98.75 94.97 97.28 94.88

Dealing with orthographic variation 1255

123

Author's personal copy



spelling-variation-aware lemmatizer in the context of the IMPACT project

(Depuydt and de Does 2009; Depuydt, personal communication). However, the

lexicon that they developed covers the sixteenth century and later, this being the

language period covered by the Woordenboek der Nederlandse Taal (WNT; de

Vries et al. 1956).

For German, where the situation was very similar in Middle High German

(eleventh–fourteenth centuries) to that described here for Dutch, there is also active

research on automatic canonicalization. Examples are the work of Pilz et al. (2006,

2008), Jurish (2010), Schnurrenberger (2010), Bollmann et al. (2011) and Bollmann

(2012). Apart from Jurish, who also investigates phonologically based rewrite rules

(both manually constructed and automatically derived from a lexicon), the general

approach is using similarity measures to find matching known forms. However, only

Schurrenberger clearly focuses on text as old as ours. The others all target (often

much) younger texts. Given the differences in language, period and text type, we

will not go into a detailed comparison of the results. Automatic tagging of Middle

High German is also being attempted, but this work is still in its infancy (Dipper

2011; Hinrichs and Zastrow 2012). For English, the language for which NLP work

is usually the most advanced, spelling variant research is mostly being done on

younger texts (Archer et al. 2003; Pilz et al. 2008; Baron et al. 2011). For older

material, spelling variation does not appear to be addressed at all, e.g. the Penn-

Helsinki Corpus of Middle English (2nd Edition) is annotated extensively, but (in

the tradition of Penn-parsed corpora) not for lemma (Santorini 2010).

Further related efforts include attempts to recognize the region, period or

individual author/scribe of a text. Although the current paper attempts to deal with

the spelling problem in a generalized fashion, it is very likely that spelling remains

much more constant if we only consider texts from a single region, period or author/

scribe, which means that specialized spelling variation models could lead to better

results. Now the scribe can mostly be recognized, as long as the original manuscript

is still available, by way of an examination of the handwriting (e.g. Burgers 1995;

Dijkhof 1997; Van Camp 2011). In another paper (van Halteren and Rem, to be

submitted), we show that the handwriting-based classification can be reproduced

almost perfectly, when sufficient training material is present, on the basis of

spelling. This implies that indeed spelling is much more constant within the writings

of a specific person. Region can also be recognized to a large degree on the basis of

spelling (Rem 2003; Van Uytvank 2007), but period so far defies high quality

recognition (Van Uytvank 2007). However, both region and period do not

necessarily have to be determined on the basis of the form of the text, but can often

be derived in a different manner, either extra-linguistically or from actual mentions

in the text.

There is also extensive current work on orthographic variation outside the

historical context, especially in relation to the new media such as SMS (cf. e.g. Tagg

2009) and Twitter (cf. e.g. van Halteren and Oostdijk 2012), and in relation to

spelling variation due to the transliteration of proper names (cf. e.g. Hsu and Chen

2010). However, as the nature of such variation tends to differ from that in historical

texts, we prefer to refrain from a detailed comparison here.
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7 Conclusion and future work

We have implemented a tagger-lemmatizer system for fourteenth century Dutch

which is enhanced in relation to general state-of-the-art systems in that it attempts to

compensate for the extreme orthographic variation in the target text. The results can

be deemed good, reaching an accuracy of around 95 % for both tags and lemmas.

We have seen that it is not advisable to use the spacing in the manuscripts, but

instead the tokens as proposed by a machine learning model. However, a simple

character-based model appears to be sufficient for this task. For lemmatization, our

lexicon expansion, based on observed variation and extrapolated spelling variation

rules, greatly improved the quality. For tagging, however, a machine learning model

for unknown words proved equally capable.

Analyses of the output show several areas where there is room for further

improvement. The simplest change from the point of view of the system developer is

a further clean-up of the training material. In our analysis, we noticed errors and

inconsistencies in the corpus van Reenen-Mulder which negatively influence both

training and evaluation. However, the amount of work involved in rechecking the

annotation of such a corpus should not underestimated, and implementing such an

endeavor is likely to prove difficult. However, the system itself can also be improved.

Lemmatization of proper names, e.g. can be improved by importing name lists from

other sources, e.g. the Repertorium voor Eigennamen in Middelnederlandse Literaire

Teksten (See http://cf.hum.uva.nl/dsp/scriptamanent/remlt/remltindex.htm) which is

currently under construction. And tagging problems like the distinction between

plural and inflected singular (Sect. 5.1) could possibly be addressed by a rule-based

postprocessing module. If rules cannot be formulated, then we should in this case

consider simplifying the tagset and no longer attempt to make distinctions which are

in principle based on world knowledge.

Although some of our future work will obviously address improving system

quality for the current material, we are also very much looking outward. We have

already started processing texts from the same period and domain but from other

regions, and the next steps will gradually move towards other domains and periods.

We hope that such a gradual expansion, coupled with a limited level of focused

manual correction, will allow us to make the system useful for a much wider range

of historical texts. And once a sufficient amount of text has become available, we

can investigate if further improvements are possible by first recognizing what type

of text is being provided and subsequently processing this with specialized models

for that type of text. Obviously, this strategy is only viable if sufficient material

becomes available with corrected annotations, too much material for one group to

produce. However, as part of the NWO-Clarin NL project (see http://www.clarin.nl),

we have made a streamlined version of the system described in this paper available for

general use through the European Clarin infrastructure (http://www.clarin.eu) under

the name Adelheid (see http://adelheid.ruhosting.nl for details about its use). This

means that more researchers can now start to process and correct their own texts and

thus help realize a proper tagging and lemmatization of all historical Dutch in the near

future.
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