Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

The ATLAS Collaboration

Abstract

Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow WW^* \rightarrow \ell\nu\ell\nu$. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV, corresponding to an integrated luminosity of about 25 fb$^{-1}$. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson.
Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

ATLAS Collaboration

Abstract

Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, \(H \rightarrow \gamma\gamma\), \(H \rightarrow ZZ^* \rightarrow 4\ell\), and \(H \rightarrow WW^* \rightarrow \ell\nu\ell\nu\). The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of \(\sqrt{s}=7\) TeV and \(\sqrt{s}=8\) TeV, corresponding to an integrated luminosity of about 25 fb\(^{-1}\). Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson.

1. Introduction

The discovery of a new particle of mass about 125 GeV in the search for the Standard Model (SM) Higgs boson at the CERN Large Hadron Collider (LHC) \([1]\), reported in July 2012 by the ATLAS \([2]\) and CMS \([3]\) Collaborations, is a milestone in the quest to understand the origin of electroweak symmetry breaking \([4–9]\).

This paper presents measurements of several properties of the newly observed particle, including its mass, production strengths and couplings to fermions and bosons, using diboson final states: \(H \rightarrow \gamma\gamma\), \(H \rightarrow ZZ^* \rightarrow 4\ell\), and \(H \rightarrow WW^* \rightarrow \ell\nu\ell\nu\). Spin studies are reported elsewhere \([10]\). Due to the outstanding performance of the LHC accelerator throughout 2012, the present data sample is a factor of \(\sim 2.5\) larger than that used in Ref. \([2]\). With these additional data, many aspects of the ATLAS studies have been improved: several experimental uncertainties have been reduced and new exclusive analyses have been included. In particular, event categories targeting specific production modes have been introduced, providing enhanced sensitivity to different Higgs boson couplings.

The results reported here are based on the data samples recorded with the ATLAS detector \([11]\) in 2011 (at \(\sqrt{s}=7\) TeV) and 2012 (at \(\sqrt{s}=8\) TeV), corresponding to integrated luminosities of about 4.7 fb\(^{-1}\) and 20.7 fb\(^{-1}\), respectively. Similar studies, including also fermionic decays, have been reported recently by the CMS Collaboration using a smaller dataset \([12]\).

This paper is organised as follows. Section 2 describes the data sample and the event reconstruction. Section 3 summarises the Monte Carlo (MC) samples used to model signal and background processes. The analyses of the three decay channels are presented in Sections 4–6. Measurements of the Higgs boson mass, production properties and couplings are discussed in Section 7. Section 8 is devoted to the conclusions.

2. Data sample and event reconstruction

After data quality requirements, the integrated luminosities of the samples used for the studies reported here are about 4.7 fb\(^{-1}\) in 2011 and 20.7 fb\(^{-1}\) in 2012, with uncertainties given in Table \([13]\) as described in Ref. \([13]\). Because of the high LHC peak luminosity (up to \(7.7 \times 10^{33}\) cm\(^{-2}\) s\(^{-1}\) in 2012) and the 50 ns bunch spacing, the number of proton–proton interactions occurring in the same bunch crossing is large (on average 20.7, up to about 40). This “pile-up” of events requires the use of dedicated algorithms and corrections to mitigate its impact on the reconstruction of e.g. leptons, photons and jets.

For the \(H \rightarrow ZZ^* \rightarrow 4\ell\) and \(H \rightarrow WW^* \rightarrow \ell\nu\ell\nu\) channels, the primary vertex of the event is defined as the reconstructed vertex with the highest \(\sum p_T^2\), where \(p_T\) is the magnitude of the transverse momentum of each
Table 1: Main sources of experimental uncertainty, and of theoretical uncertainty on the signal yield, common to the three channels considered in this study. Theoretical uncertainties are given for a SM Higgs boson of mass $m_H = 125$ GeV and are taken from Refs. [18–20]. “QCD scale” indicates (here and throughout this paper) QCD renormalisation and factorisation scales and “PDFs” indicates parton distribution functions. The ranges for the experimental uncertainties cover the variations with p_T and y.

<table>
<thead>
<tr>
<th>Source (experimental)</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity</td>
<td>± 1.8 (2011), ± 3.6 (2012)</td>
</tr>
<tr>
<td>Electron efficiency</td>
<td>± 2–5</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>± 1–5</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>± 2–40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source (theory)</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCD scale</td>
<td>± 8 (ggF), ± 1 (VBF, VH), ± 0.5 (tH)</td>
</tr>
<tr>
<td>PDFs + α_s</td>
<td>± 8 (ggF, tH), ± 4 (VBF, VH)</td>
</tr>
</tbody>
</table>

associated track; it is required to have at least three associated tracks with $p_T > 0.4$ GeV. For the $H \rightarrow \gamma\gamma$ analysis a different primary vertex definition is used, as described in Section 4.

Muon candidates [17] are formed by matching reconstructed tracks in the inner detector (ID) with either complete tracks or track segments reconstructed in the muon spectrometer (MS). The muon acceptance is extended to the region $2.5 < |\eta| < 2.7$, which is outside the ID coverage, using tracks reconstructed in the forward part of the MS.

Electron candidates [18] must have a well-reconstructed ID track pointing to a cluster of cells with energy depositions in the electromagnetic calorimeter. The cluster should satisfy a set of identification criteria requiring the longitudinal and transverse shower profiles to be consistent with those expected for electromagnetic showers. Tracks associated with electromagnetic clusters are fitted using a Gaussian Sum Filter [19], which allows bremsstrahlung energy losses to be taken into account. The identification criteria described in Ref. [18] have been modified with time to maintain optimal performance as a function of pile-up, in particular for low-p_T electrons.

The reconstruction, identification and trigger efficiencies for electrons and muons, as well as their energy and momentum scales and resolutions, are determined using large samples of $Z \rightarrow \ell\ell$, $W \rightarrow \ell\nu$ and $J/\psi \rightarrow \ell\ell$ events [18–20]. The resulting uncertainties are smaller than $\pm 1\%$ in most cases, one exception being the uncertainty on the electron selection efficiency which varies between $\pm 2\%$ and $\pm 5\%$ as a function of p_T and y.

Photo candidates [21] are reconstructed and identified using shower shapes in the electromagnetic calorimeter, with or without associated conversion tracks, as described in Section 4.

Jets [22, 23] are built from topological clusters [24] using the anti-k_t algorithm [25] with a distance parameter $R = 0.4$. They are typically required to have transverse energies greater than 25 GeV (30 GeV) for $|\eta| < 2.4 (2.4 < |\eta| < 4.5)$, where the higher threshold in the forward region reduces the contribution from jet candidates produced by pile-up. To reduce this contribution further, jets within the ID acceptance ($|\eta| < 2.47$) are required to have more than 25–75% (depending on the pile-up conditions and Higgs boson decay mode) of the summed scalar p_T of their associated tracks coming from tracks originating from the event primary vertex. Pile-up corrections based on the average event transverse energy density in the jet area [26] and the number of reconstructed vertices in the data are also applied.

Jets originating from b-quarks [27–29] are identified (“b-tagged”) by combining information from algorithms exploiting the impact parameter of tracks (defined as the distance of closest approach to the primary vertex in the transverse plane), the presence of a displaced vertex, and the reconstruction of D- and B-hadron decays.

The missing transverse momentum, E_T^{miss} [30], is the magnitude of the negative vector sum of the p_T of muons, electrons, photons, jets and clusters of calorimeter cells with $|\eta| < 4.9$ not associated with these objects. The uncertainty on the E_T^{miss} energy scale is obtained from the propagation of the uncertainties on the contributing components and thus depends on the considered final state. A track-based missing transverse momentum, p_T^{miss}, is calculated as the negative vector sum of the transverse momenta of tracks associated with the primary vertex.

The main sources of experimental uncertainty common to all the channels considered in this study are summarised in the top part of Table 1.

3. Signal and background simulation

The SM Higgs boson production processes considered in these studies are gluon fusion ($gg \rightarrow H$, denoted ggF), vector-boson fusion ($qq' \rightarrow qq'H$, denoted
VBF), and Higgs-strahlung (q\bar{q}′ \rightarrow WH, ZH, denoted WH/ZH or jointly VH). The small contribution from the associated production with a \(t\bar{t} \) pair (gg/\(q\bar{q}' \rightarrow t\bar{t}H \), denoted t\(t\bar{t} \)) is taken into account in the \(H \rightarrow \gamma\gamma \) and \(H \rightarrow ZZ^* \) analyses. Samples of MC-simulated events are employed to model the signal and compute signal selection efficiencies. The event generators are listed in Table 2. Cross-section normalisations and other corrections (e.g., Higgs boson \(p_T \) spectrum) are obtained from up-to-date calculations as described in Refs. 12, 14, 16, 43, 47, and Table 3 shows the production cross sections and the branching ratios for the final-state channels considered in this paper are also given (where \(\ell \) stands for electron or muon), together with their relative uncertainty. Up-to-date theoretical calculations are used [14, 15, 29].

<table>
<thead>
<tr>
<th>Process</th>
<th>Generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggF, VBF</td>
<td>POWHEG [13, 44] + PYTHIA</td>
</tr>
<tr>
<td>WH, ZH, t(t\bar{t})</td>
<td>PYTHIA</td>
</tr>
<tr>
<td>(H \rightarrow ZZ^*) \rightarrow 4\ell decay</td>
<td>PROPHECY4f [35, 36]</td>
</tr>
<tr>
<td>(t\bar{t}), (\gamma \gamma), (W\gamma)</td>
<td>ALPGEN [13] + HERWIG [38]</td>
</tr>
<tr>
<td>gg \rightarrow WW</td>
<td>POWHEG + PYTHIA, SHERPA [29]</td>
</tr>
<tr>
<td>(t\bar{t}), (W\gamma)</td>
<td>A cerMC [41] + PYTHIA6</td>
</tr>
<tr>
<td>(q\bar{q} \rightarrow WW)</td>
<td>POWHEG + PYTHIA6</td>
</tr>
<tr>
<td>(gg \rightarrow WW)</td>
<td>gg2WW [42, 43] + HERWIG</td>
</tr>
<tr>
<td>(q\bar{q} \rightarrow ZZ)</td>
<td>gg2ZZ [43, 45] + HERWIG</td>
</tr>
<tr>
<td>(gg \rightarrow ZZ^*)</td>
<td>MadGraph [48, 49] + PYTHIA6, HERWIG</td>
</tr>
<tr>
<td>(WZ)</td>
<td>MadGraph [48] + PYTHIA6, HERWIG</td>
</tr>
<tr>
<td>(W\gamma + \text{jets})</td>
<td>ALPGEN + HERWIG</td>
</tr>
<tr>
<td>(W\gamma^*)</td>
<td>MadGraph [48] + PYTHIA6, HERWIG</td>
</tr>
<tr>
<td>(q\bar{q}/gg \rightarrow \gamma \gamma)</td>
<td>SHERPA</td>
</tr>
</tbody>
</table>

4. The \(H \rightarrow \gamma\gamma \) channel

This channel is particularly sensitive to physics beyond the Standard Model since the decay proceeds via loops (which in the SM are dominated by W-boson exchange).

Events are required to have two high-\(p_T \) photons with invariant mass in the range 100–160 GeV. The main background is continuum \(\gamma\gamma \) production, with smaller contributions from \(\gamma j \) and dijet processes. Compared to the previously published results [2], additional categories of events are introduced in the analysis of the 8 TeV data to increase the sensitivity to production through VBF or in association with a W or Z boson.

4.1. Event selection

The data used in this channel are selected using a diphoton trigger [90] requiring two clusters formed from energy depositions in the electromagnetic
calorimeter, with shapes compatible with electromagnetic showers. An E_T threshold of 20 GeV is applied to each cluster for the 7 TeV data, while at 8 TeV the thresholds are increased to 35 GeV on the leading (highest E_T) and 25 GeV on the sub-leading (next-highest E_T) cluster. The trigger efficiency is larger than 99% for events passing the final event selection.

In the offline analysis, photon candidates are required to have $E_T > 40$ GeV and 30 GeV for the leading and sub-leading photon, respectively. Both photons must be reconstructed in the fiducial region $|\eta| < 2.37$, excluding the calorimeter barrel/end-cap transition region $1.37 \leq |\eta| < 1.56$.

Photon candidates are required to pass tight identification criteria based mainly on shower shapes in the electromagnetic calorimeter [2]. They are classified as converted if they are associated with two tracks consistent with a $\gamma \rightarrow e^+e^-$ conversion process or a single track leaving no hits in the innermost layer of the inner detector, and as unconverted otherwise [91]. Identification efficiencies, averaged over η, range from 85% to above 95% for the E_T range under consideration. Jets misidentified as photons are further rejected by applying calorimeter and track isolation requirements to the photon candidates. The calorimeter isolation is defined as the sum of the transverse energies of positive-energy topological clusters within a cone of size $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} = 0.4$ around the photon candidates, excluding the core of the showers. It is required to be smaller than 4 GeV and 6 GeV for the 7 TeV and 8 TeV data, respectively. The pile-up contribution is corrected on an event-by-event basis [92]. The track isolation, applied to the 8 TeV data only, is defined as the scalar sum of the transverse momenta of all tracks with $p_T > 0.4$ GeV associated with the diphoton production vertex (defined below) and lying within a cone of size $\Delta R = 0.2$ around the photon candidate; it is required to be smaller than 2.6 GeV. Conversion tracks associated with either photon candidate are excluded.

For the precise measurement of the diphoton invariant mass ($m_{\gamma\gamma}$), as well as for the computation of track-based quantities (e.g. track isolation, selection of jets associated with the hard interaction), the diphoton production vertex should be known precisely. The determination of the vertex position along the beam axis is based on so-called “photon pointing”, where the directions of the two photons, measured using the longitudinal and lateral segmentation of the electromagnetic calorimeter, are combined with a constraint from the average beamspot position. For converted photons the position of the conversion vertex is also used. This technique alone is sufficient to ensure that the contribution of angular measurement uncertainties to the diphoton invariant mass resolution is negligible. For a more precise identification of the primary vertex, needed for the computation of track-based quantities, this pointing information is combined with tracking information from each reconstructed vertex: the Σp_T^2 for the tracks associated with a given vertex and, for the 8 TeV data, the Σp_T of the tracks and the azimuthal angle between the transverse momentum of the diphoton system and that of the vector sum of the track p_T. A Neural Network (likelihood) discriminant is used for the 8 TeV (7 TeV) data. The performance of this algorithm is studied using $Z \rightarrow ee$ decays, ignoring the tracks associated with the electrons and weighting the events so that the p_T and rapidity distributions of the Z boson match those expected from the Higgs boson signal. The probability of finding a vertex within 0.3 mm of the one computed from the electron tracks is larger than 75%.

The photon energy calibration is obtained from a detailed simulation of the detector geometry and response, independently for converted and unconverted photons. The calibration is refined by applying η-dependent correction factors determined from studies of $Z \rightarrow ee$ events in data [18]: they range from $\pm 0.5\%$ to $\pm 1.5\%$ depending on the pseudorapidity of the photon. Samples of radiative $Z \rightarrow \ell\ell\gamma$ decays are used to verify the photon energy scale. The energy response of the calorimeter shows a stability of better than $\pm 0.1\%$ with time and various pile-up conditions.

The signal efficiency of the above selections at 8 TeV is estimated to be 37.5% for a Higgs boson with $m_H = 125$ GeV.

The number of events in the diphoton mass region 100–160 GeV passing this inclusive selection is 23788 in the 7 TeV data and 118893 in the 8 TeV data. The fraction of genuine $\gamma\gamma$ events, as estimated from data [93], is $(75^{+3}_{-3})\%$.

4.2. Event categorisation

To increase the sensitivity to the overall Higgs boson signal, as well as to the specific VBF and VH production modes, the selected events are separated into 14 mutually exclusive categories for further analysis, following the order of preference listed below.

Lepton category (8 TeV data only): This category targets mainly VH events where the W or Z bosons decay to charged leptons. An isolated electron ($E_T > 15$ GeV) or muon ($p_T > 10$ GeV) candidate is required. To remove contamination from $Z\gamma$ production with $Z \rightarrow ee$, electrons forming an invariant mass with either photon
in the range $84 \text{ GeV} < m_{\gamma\gamma} < 94 \text{ GeV}$ are not considered.

E_T^{miss} category (8 TeV data only): This category targets mainly VH events with $W \rightarrow t\bar{t}$ or $Z \rightarrow \nu\nu$. An E_T^{miss} significance (defined as $E_T^{\text{miss}}/\sigma_{E_T^{\text{miss}}}$, where in this case $\sigma_{E_T^{\text{miss}}} = 0.67 \text{ GeV}^{1/2} \sqrt{E_T}$ with E_T being the event total transverse energy) greater than five is required, corresponding to $E_T^{\text{miss}} > 70–100 \text{ GeV}$ depending on ΣE_T.

Low-mass two-jet category (8 TeV data only): To select VH events where the W or Z boson decays hadronically, a pair of jets with invariant mass in the range $60 \text{ GeV} < m_{jj} < 110 \text{ GeV}$ is required. To reduce the ggF contamination, the pseudorapidity difference between the dijet and diphoton systems is required to be $|\Delta\eta_{\gamma\gamma,jj}| < 1$, and the component of the diphoton transverse momentum orthogonal to the diphoton thrust axis in the transverse plane is required to satisfy $p_T^\gamma > 70 \text{ GeV}$.

High-mass two-jet categories: These categories are designed to select events produced through the VBF process, which is characterised by the presence of two forward jets with little hadronic activity in the central part of the detector. Jets are reconstructed as described in Section 2. The selection for the 8 TeV data is based on a multivariate technique using a Boosted Decision Tree (BDT), whose input quantities are: the pseudorapidities of the two jets (η_1, η_2) and their separation in η; the invariant mass of the dijet system; the difference $\eta^* = \eta_{\gamma\gamma} - (\eta_1 + \eta_2)/2$, where $\eta_{\gamma\gamma}$ is the pseudorapidity of the diphoton system; the minimal radial distance ($\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2}$) of any jet–photon pair; and the difference $\Delta\phi_{\gamma\gamma,jj}$ between the azimuthal angles of the diphoton and dijet momenta. The BDT training is performed using a signal sample, as well as a background sample composed of simulated $\gamma\gamma$ events combined with γj and jj components obtained from data. The BDT response distributions for data and simulation are shown in Fig. 1. The BDT output is used to define two high-mass two-jet categories: a “tight” category corresponding to BDT ≥ 0.74, and a “loose” category for $0.44 \leq \text{BDT} < 0.74$. For the 7 TeV data, the same cut-based selection as described in Ref. 2 is applied, namely $m_{jj} > 400 \text{ GeV}$, $|\Delta\eta_{jj}| > 2.8$ and $|\Delta\phi_{\gamma\gamma,jj}| > 2.8$.

Untagged events: Not selected in any of the above categories are classified in nine additional categories according to the properties of their diphoton system.

Figure 1: Distribution of the VBF BDT response after applying the selection of the inclusive analysis and requiring in addition the presence of two jets with $|\Delta\eta_{jj}| > 2$ and $|\eta^*| < 5$. The data in the signal sidebands (i.e. excluding the m_{jj} region $120–130 \text{ GeV}$), the expected background, and the expected signal from VBF and ggF production are shown. They are all normalised to unity except ggF, which is normalised to the ratio between the numbers of ggF and VBF events passing the selection described above.

4.3. Background estimation

The background is obtained from fits to the diphoton mass spectrum in the data over the range $100–160 \text{ GeV}$ after the full selection. The procedure, the choice of the analytical forms for the background and the determination of the corresponding uncertainties follow the method described in Ref. 2. Depending on the category, the analytical form is either a fourth-order Bernstein polynomial (used also for the inclusive sample), an exponential of a second-order polynomial, or a single exponential. In these fits, the Higgs boson signal is described by the sum of a Crystal Ball function for the core of the distribution and a Gaussian function for the tails.
4.4. Systematic uncertainties

Systematic uncertainties can affect the signal yield, the signal fractions in the various categories (with possible migrations between them), the signal mass resolution and the mass measurement. The main sources specific to the \(H \to \gamma\gamma \) channel are listed in Table 4, while sources in common with other decay channels are summarised in Section 2 and Table 1. The uncertainties described below are those affecting the 8 TeV analysis (see Ref. [2] for the 7 TeV analysis).

Table 4: For \(m_H = 125 \) GeV and the 8 TeV data analysis, the impact of the main sources of systematic uncertainty specific to the \(H \to \gamma\gamma \) channel on the signal yield, event migration between categories and mass measurement and resolution. Uncertainties common to all channels are listed in Table 1. The ± signs indicate anticorrelations between categories.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td>±0.5</td>
</tr>
<tr>
<td>Photon identification</td>
<td>±2.4</td>
</tr>
<tr>
<td>Isolation</td>
<td>±1.0</td>
</tr>
<tr>
<td>Photon energy scale</td>
<td>±0.25</td>
</tr>
<tr>
<td>ggF (theory), tight high-mass two-jet cat.</td>
<td>±48</td>
</tr>
<tr>
<td>ggF (theory), loose high-mass two-jet cat.</td>
<td>±28</td>
</tr>
<tr>
<td>ggF (theory), low-mass two-jet cat.</td>
<td>±30</td>
</tr>
<tr>
<td>Impact of background modelling</td>
<td>±(2–14), cat.-dependent</td>
</tr>
</tbody>
</table>

4.4.1. Event migration: Mis-modelling of the detector material could cause event migration between the unconverted and converted photon categories in the simulation. The uncertainty is obtained from MC samples produced with variations of the material description. The uncertainty in the population of the \(p_T \) categories due to the description of the Higgs boson \(p_T \) spectrum is determined by varying the QCD scales and PDFs used in the \(HqT \) program [63].

4.4.2. Mass measurement and mass resolution: The measurement of the Higgs boson mass in the \(H \to \gamma\gamma \) channel is discussed in Section 7.2. Uncertainties on the diphoton mass scale come from the following sources: the calibration of the electron energy scale (obtained from \(Z \to ee \) events); the uncertainty on its extrapolation to the energy scale of photons, dominated by the description of the detector material; and the knowledge of the energy scale of the presampler detector located in front of the electromagnetic calorimeter. The total uncertainty amounts to ±0.55% (corresponding to ±0.7 GeV). The mass resolution, obtained from the Crystal Ball function used in the fits described in Section 4.3, ranges from 1.4 GeV to 2.5 GeV depending on the category. The main uncertainties come from the calorimeter energy scale and the extrapolation from the electron to the photon response. Smaller contributions arise from pile-up and the primary vertex selection.
4.5. Results

The diphoton invariant mass distribution after selections for the full data sample is shown in Fig. 2. At the maximum deviation from the background-only expectation, which occurs for \(m_{\gamma\gamma} \sim 126.5 \) GeV, the significance of the observed peak is 7.4\(\sigma \) for the combined 7 TeV and 8 TeV data and the category-based analysis (compared with 4.3\(\sigma \) expected from SM Higgs boson production at this mass), which establishes a discovery-level signal in the \(\gamma\gamma \) channel alone. Table 5 lists the observed number of events in the main categories, the estimated background from fits to the data (described in Section 4.3), and the predicted signal contributions from the various production processes.

Additional interpretation of these results is presented in Section 7.

5. The \(H \to ZZ^* \to 4\ell \) channel

Despite the small branching ratio, this channel provides good sensitivity to Higgs boson studies, e.g. to the coupling to Z bosons, mainly because of the large signal-to-background ratio.

Events are required to have two pairs of same-flavour, opposite-charge, isolated leptons: 4\(e \), 2\(e\mu \), 2\(\mu e \), 4\(\mu \) (where final states with two electrons and two muons are ordered by the flavour of the dilepton pair with mass closest to the Z-boson mass). The largest background comes from continuum (\(Z^0\gamma / \gamma \gamma \))\((Z^0\gamma / \gamma \gamma) \) production, referred to hereafter as \(ZZ^* \). Important contributions arise also from \(Z+ \) jets and \(t\bar{t} \) production, where two of the charged lepton candidates can come from decays of hadrons with \(b \)- or \(c \)-quark content, misidentification of light-quark jets, and photon conversions.

The analysis presented here is largely the same as that described in Ref. [100] with only minor changes. The electron identification is tightened in the 8 TeV data to improve the background rejection for final states with a pair of electrons forming the lower-mass \(Z^* \) boson. The mass measurement uses a constrained fit to the \(Z \) mass to improve the resolution. The lepton pairing is modified to reduce the mis-pairing in the 4\(\mu \) and 4\(e \) final states, and the minimum requirement on the mass of the second \(Z^* \) boson is relaxed. Final-state radiation (FSR) is included in the reconstruction of the first \(Z^{*0} \) in events containing muons. Finally, a classification which separates Higgs boson candidate events into ggF–like, VBF–like and VH–like categories is introduced.

5.1. Event selection

The data are selected using single-lepton or dilepton triggers. The \(p_T \) threshold of the single-muon trigger is 24 GeV (18 GeV) in 2012 (2011) and the \(E_T \) threshold of the single-electron trigger is 24 GeV (20–22 GeV). The dielectron trigger threshold is \(E_T = 12 \) GeV and the dimuon trigger threshold is \(p_T = 13 \) GeV (10 GeV in 2011) for both leptons. In addition, an asymmetric dimuon trigger and electron–muon triggers are used as described in Ref. [100]. The efficiency for events passing the offline analysis cuts is set by at least one of the above triggers is between 97\% and 100\%.

Muon and electron candidates are reconstructed as described in Section 2. In the region \(|\eta| < 0.1\), which
has limited MS coverage, ID tracks with $p_T > 15$ GeV are identified as muons if their calorimetric energy deposits are consistent with a minimum ionising particle. Only one muon per event is allowed to be reconstructed either in the MS alone or without MS information. For the 2012 data, the electron requirements are tightened in the transition region between the barrel and end-cap calorimeters (1.37 < $|\eta|$ < 1.52), and the pixel-hit requirements are stricter to improve the rejection of photon conversions.

Each electron (muon) must satisfy $E_T > 7$ GeV ($p_T > 6$ GeV) and be measured in the pseudorapidity range $|\eta| < 2.47$ ($|\eta| < 2.7$). The highest-p_T lepton in the quadruplet must satisfy $p_T > 20$ GeV, and the second (third) lepton must satisfy $p_T > 15$ GeV ($p_T > 10$ GeV). To reject cosmic rays, muon tracks are required to have a transverse impact parameter of less than 1 mm.

Multiple quadruplets within a single event are possible. For each quadruplet, the same-flavour, opposite-charge lepton pair with invariant mass closest to the Z-boson mass (m_ℓ) is referred to as the leading lepton pair. Its invariant mass, denoted by m_{12}, is required to be between 50 GeV and 106 GeV. The invariant mass of the other (sub-leading) lepton pair, m_{34}, is required to be in the range $m_{\text{min}} < m_{34} < 115$ GeV. The value of m_{min} is 12 GeV for a reconstructed four-lepton mass $m_\ell \ell' < 140$ GeV, rises linearly to 50 GeV at $m_\ell \ell' = 190$ GeV, and remains constant for higher masses. If two or more quadruplets satisfy the above requirements, the one with m_{34} closest to the Z-boson mass is selected. For further analysis, events are classified in four sub-channels, 4μ, $2\ell 2\mu$, $2\mu 2e$, 4ℓ.

The Z+jets and $t\bar{t}$ background contributions are reduced by applying requirements on the lepton transverse impact parameter divided by its uncertainty, $|d_0|/\sigma_{d_0}$. This ratio must be smaller than 3.5 for muons and smaller than 6.5 for electrons (the electron impact parameter is affected by bremsstrahlung and thus its distribution has longer tails). In addition, leptons must satisfy isolation requirements based on tracking and calorimetric information, similar to those described in Section 4.1 as discussed in Ref. [2].

The impact of FSR photon emission on the reconstructed invariant mass is modelled using the MC simulation (PHOTOS), which reproduces the rate of collinear photons with $E_T > 1.3$ GeV in $Z \rightarrow \mu\mu$ decays in data to $\pm 5\%$ [101]. Leading muon pairs with 66 GeV < m_{12} < 89 GeV are corrected for FSR by including any reconstructed photon with E_T above 1 GeV lying close (typically within $\Delta R < 0.15$) to the muon tracks, provided that the corrected m_{12} satisfies $m_{12} < 100$ GeV. The MC simulation predicts that about 4% of all $H \rightarrow ZZ^* \rightarrow 4\mu$ candidate events should have this correction.

For the 8 TeV data, the signal reconstruction and selection efficiency for a SM Higgs boson with $m_H = 125$ GeV is 39% for the 4μ sub-channel, 26% for the $2\mu 2\mu 2e$ sub-channels and 19% for the 4ℓ sub-channels.

The final discriminating variable in this analysis is the 4ℓ invariant mass. Its resolution, which is improved by typically 15% by applying a Z-mass constrained kinematic fit to the leading lepton pair, is about 1.6 GeV, 1.9 GeV and 2.4 GeV for the 4μ, $2\mu 2\mu 2e$ and 4ℓ sub-channels, respectively, and for $m_{12} = 125$ GeV.

5.2. Event categorisation

To enhance the sensitivity to the individual production modes, events passing the above selection are assigned to one of three categories, named VBF–like, VH–like, and ggF–like. Events are VBF–like if the two highest p_T jets are separated by more than three units in pseudorapidity and have an invariant mass greater than 350 GeV. Events that do not qualify as VBF–like are considered for the VH–like category. They are accepted in this category if they contain an additional lepton (e or μ) with $p_T > 8$ GeV, satisfying the same requirements as the four leading leptons. The remaining events are assigned to the ggF–like category. No classification based on the 4ℓ flavour is made in the VBF–like and VH–like categories. Higgs boson production through VBF and VH is expected to account for about 60% and 70% of the total signal events in the VBF–like and VH–like categories, respectively. The signal-to-background ratio in the signal peak region is about five for the VBF–like category, about three for the VH–like category, and about 1.5 for the inclusive analysis.

5.3. Background estimation

The expected background yield and composition are estimated using the MC simulation for ZZ* production, and methods based on control regions (CRs) from data for the $Z +$ jets and $t\bar{t}$ processes [2]. The transfer factors used to extrapolate the background yields from the CRs to the signal region are obtained from the MC simulation and cross-checked with data. Since the background composition depends on the flavour of the sub-leading lepton pair, different approaches are followed for the $\ell\ell + \mu\mu$ and the $\ell\ell + ee$ final states.

The reducible $\ell\ell + \mu\mu$ background is dominated by $t\bar{t}$ and $Z +$ jets (mostly Zbb) events. A CR is defined by removing the isolation requirement for the muons of the sub-leading pair, and by requiring that at least one
of them fails the transverse impact parameter selection. This procedure allows the $t\bar{t}$ and $Z + \text{jets}$ backgrounds to be estimated simultaneously from a fit to the m_{12} distribution.

To determine the reducible $\ell\ell + ee$ background, a CR is formed by relaxing the selection criteria for the electrons of the sub-leading pair: each of these electrons is then classified as “electron–like” or “fake–like” based on requirements on appropriate discriminating variables [102]. The numbers of events with different combinations of “electron–like” or “fake–like” objects are then used to estimate the true composition of the CR (in terms of isolated electrons, non-prompt electrons from heavy-flavour decays, electrons from photon conversions and jets misidentified as electrons), from which the expected yields in the signal region can be obtained using transfer factors from the MC simulation.

Similar techniques are used to determine the backgrounds for the VBF–like and VH–like categories.

5.4. Systematic uncertainties

The dominant sources of systematic uncertainty affecting the $H \rightarrow ZZ\ell\ell$ 8 TeV analysis are listed in Table 6 (see Ref. [2] for the 7 TeV analysis). Lepton reconstruction and identification, electron reconstruction and identification as well as the expected SM Higgs boson signal for the selected candidates in the data. The estimated background, as expected from SM Higgs boson production at this mass. This result establishes a discovery-level signal in the 4ℓ channel alone.

Table 6: For $m_H = 125$ GeV and the 8 TeV data analysis, the impact of the main sources of systematic uncertainty specific to the $H \rightarrow ZZ\ell\ell$ channel on the signal yield, estimated reducible background, event migration between categories and mass measurement. Uncertainties common to all channels are listed in Table 11.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal yield</td>
<td>4σ 2σ 1σ σ</td>
</tr>
<tr>
<td>Muon reconstruction and identification</td>
<td>± 0.8 ± 0.4 ± 0.4 ± 0.4</td>
</tr>
<tr>
<td>Electron reconstruction and identification</td>
<td>± 8.7 ± 2.4 ± 9.4</td>
</tr>
<tr>
<td>Reducible background (inclusive analysis)</td>
<td>± 2.4 ± 1.0 ± 2.3 ± 13</td>
</tr>
</tbody>
</table>

Migration between categories	$\pm 32/11/11$
ggF/VBF/VH contributions to VBF-like cat.	$\pm 2.2/0.2/0.2$
ZZ* contribution to VBF-like cat.	$\pm 2.2/0.2/0.2$
ggF/VBF/VH contributions to VH-like cat.	$\pm 15/5/6$
ZZ* contribution to VH-like cat.	$\pm 15/5/6$

5.5. Results

The reconstructed four-lepton mass spectrum after all selections of the inclusive analysis is shown in Fig. 3. The data are compared to the (scaled) expected Higgs boson signal for $m_H = 124.3$ GeV and to the estimated backgrounds. At the maximum deviation from the background-only expectation (occurring at $m_H = 124.3$ GeV), the significance of the observed peak is 6.6σ for the combined 7 TeV and 8 TeV data, to be compared with 4.4σ expected from SM Higgs boson production at this mass. This result establishes a discovery-level signal in the 4ℓ channel alone.

Table 7 presents the numbers of observed and expected events in the peak region. Out of a total of
32 events selected in the data, one and zero candidates are found in the VBF–like and VH–like categories, respectively, compared with an expectation of 0.7 and 0.1 events from the signal and 0.14 and 0.04 events from the background.

Additional interpretation of these results is presented in Section 7.

Table 7: For the $H \rightarrow ZZ^* \rightarrow 4\ell$ inclusive analysis, the number of expected signal ($m_H = 125$ GeV) and background events, together with the number of events observed in the data, in a window of size ±5 GeV around $m_\ell\ell = 125$ GeV, for the combined $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV data.

<table>
<thead>
<tr>
<th></th>
<th>Signal</th>
<th>ZZ*</th>
<th>$Z + \text{jets}, t\bar{t}$</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>4μ</td>
<td>6.3±0.8</td>
<td>2.3±0.1</td>
<td>0.35±0.15</td>
<td>13</td>
</tr>
<tr>
<td>$2\mu2\mu e2e$</td>
<td>7.0±0.6</td>
<td>3.5±0.1</td>
<td>2.11±0.37</td>
<td>13</td>
</tr>
<tr>
<td>$4e$</td>
<td>2.6±0.4</td>
<td>1.2±0.1</td>
<td>1.11±0.28</td>
<td>6</td>
</tr>
</tbody>
</table>

6. The $H \rightarrow WW^* \rightarrow 1\ell N\nu$ channel

This decay mode provides direct access to the Higgs boson couplings to W bosons. Its rate is large, but a narrow mass peak cannot be reconstructed due to the presence of two neutrinos in the final state. The reconstructed topology consists of two opposite-charge leptons and a large momentum imbalance from the neutrinos. The dominant SM backgrounds are WW (which includes WW^*), Wt and $Wt\bar{t}$, all of which produce two W bosons. The classification of events by jet multiplicity (N_{jet}) allows the control of the background from top quarks, which contains b-quark jets, as well as the extraction of the signal strengths for the ggF and VBF production processes. For the hypothesis of a SM Higgs boson, the spin-zero initial state and the $V-A$ structure of the W-boson decays imply a correlation between the directions of the charged leptons, which can be exploited to reject the WW background. These correlations lead to the use of quantities such as the dilepton invariant mass $m_{\ell\ell}$, angular separation $\Delta \phi_{\ell\ell}$ in the selection criteria described below. Drell–Yan (DY) events ($pp \rightarrow Z/\gamma^* \rightarrow \ell\ell$) may be reconstructed with significant missing transverse momentum because of leptonic τ decays or the degradation of the E_T^{miss} measurement in the high pile-up environment of the 2012 run. Finally, $W+$jets production in which a jet is reconstructed as a lepton, and the diboson processes $Wy^{(0)}$, WZ, and ZZ^*, are also significant backgrounds after all event selection.

The studies presented here are a significant update of those reported in Ref. [2]. The signal regions considered include ee, $e\mu$, and $\mu\mu$ final states with zero, one, or at least two reconstructed jets. The $N_{\text{jet}} \geq 2$ analysis has been re-optimised to increase the sensitivity to Higgs boson production through VBF for $m_H = 125$ GeV. Improved DY rejection and estimation techniques have allowed the inclusion of ee and $\mu\mu$ events from the 8 TeV data. The analysis of the 7 TeV data, most recently documented in Ref. [103], has been updated to apply improvements from the 8 TeV analysis, including more stringent lepton isolation requirements, which reduce the $W+$jets background by 40%.

6.1. Event selection

Events are required to have two opposite-charge leptons (e or μ) and to pass the same single-lepton triggers as described in Section 5 for the $H \rightarrow ZZ^*$ channel. The leading lepton must satisfy $p_T > 25$ GeV and the sub-leading lepton $p_T > 15$ GeV. Electron and muon identification and isolation requirements (see Ref. [2]) are more restrictive than those used in the $H \rightarrow ZZ^*$ analysis in order to suppress the $W+$jets background.

In the $ee/\mu\mu$ channels, $Z \rightarrow \ell\ell$ and low-mass $\gamma^* \rightarrow \ell\ell$ events, including J/ψ and τ production, are rejected by requiring $|m_{\ell\ell} - m_Z| > 15$ GeV and $m_{\ell\ell} > 12$ GeV, respectively. In the $e\mu$ channels, low-mass $\gamma^* \rightarrow \tau^+\tau^- \rightarrow e\mu\nu\nu$ production is rejected by imposing $m_{\ell\ell} > 10$ GeV.

Drell–Yan and multi-jet backgrounds are suppressed by requiring large missing transverse momentum. For $N_{\text{jet}} \leq 1$, a requirement is made on $E_{T,\text{rel}} = E_{T}^{\text{miss}} \cdot \sin|\Delta \phi_{\text{closest}}|$, where $\Delta \phi_{\text{closest}}$ is the smallest azimuthal angle between the E_{T}^{miss} vector and any jet or high-p_T charged lepton in the event; if $|\Delta \phi_{\text{closest}}| > \pi/2$, then $E_{T,\text{rel}}^{\text{miss}} = E_{T}^{\text{miss}}$ is taken. For additional rejection of the DY background in the $ee/\mu\mu$ channels with $N_{\text{jet}} \leq 1$, the track-based $P_{T,\text{rel}}^{\text{miss}}$ described in Section 2 is used, modified to $P_{T,\text{rel}}^{\text{miss}}$ in a similar way as $E_{T,\text{rel}}^{\text{miss}}$. For these channels, requirements are also made on f_{recoil}, an estimate of the magnitude of the soft hadronic recoil opposite to the system consisting of the leptons and any accompanying jet, normalised to the momentum of the system itself. The f_{recoil} value in DY events is on average larger than that of non-DY events, where the high-p_T system is balanced at least in part by recoiling neutrinos.

The $N_{\text{jet}} \geq 2$ analysis uses $E_{T,\text{rel}}^{\text{miss}}$ instead of $E_{T,\text{rel}}^{\text{miss}}$ because the larger number of jets in the final states reduces the signal efficiency of the $E_{T,\text{rel}}^{\text{miss}}$ criterion. For the $ee/\mu\mu$ channels with $N_{\text{jet}} \geq 2$, an $E_{T,\text{rel}}^{\text{miss}}$ variant called "$E_{T,\text{rel,STVF}}^{\text{miss}}$" is also employed. In the calculation of $E_{T,\text{rel,STVF}}^{\text{miss}}$, the energies of (soft) calorimeter deposits
unassociated with high-p_T leptons, photons, or jets are scaled by the ratio of the summed scalar p_T of tracks from the primary vertex unmatched with such objects to the summed scalar p_T of all tracks from any vertex in the event which are also unmatched with objects \[102\].

For all jet multiplicities, selections exploiting the kinematic features of $H\to WW^*\to \ell\nu\ell\nu$ events are applied. The dilepton invariant mass is required to be small, $m_{\ell\ell}<50$ GeV for $N_{\text{jet}}\leq 1$ and $m_{\ell\ell}<60$ GeV for $N_{\text{jet}}\geq 2$; the azimuthal separation of the leptons is also required to be small, $\Delta\phi_{\ell\ell}<1.8$.

6.2. Event categorisation

The analysis is divided into categories with $N_{\text{jet}}=0$, $N_{\text{jet}}=1$, and $N_{\text{jet}}\geq 2$. In the $N_{\text{jet}}=0$ analysis, $E_{T\text{miss}} > 25$ GeV ($E_{T\text{miss}} > 45$ GeV and $p_T^{\text{miss}} > 45$ GeV) is required for $e\mu$ ($ee/\mu\mu$) final states. The transverse momentum of the dilepton system is required to be large, $p_T^{\ell\ell} > 30$ GeV. For $ee/\mu\mu$ events, the hadronic recoil is required to be typical of events with neutrinos in the final state, $f_{\text{recoil}} < 0.05$. Finally, the azimuthal separation between the $p_T^{\ell\ell}$ and $E_{T\text{miss}}$ vectors must satisfy $|\Delta\phi_{\ell\ell}, E_{T\text{miss}}| > \pi/2$, in order to remove potentially poorly reconstructed events.

In the $N_{\text{jet}}=1$ analysis, the $E_{T\text{miss}}$ and p_T^{miss} requirements are the same as for $N_{\text{jet}}=0$, but the hadronic recoil threshold is looser, $f_{\text{recoil}} < 0.2$. The top-quark background is suppressed by rejecting events with a b-tagged jet. The b-tagging algorithm described in Section 2 is used, at an operating point with 85% efficiency for b-quark jets and a mis-tag rate of 11% for light-quark and gluon jets, as measured in a sample of simulated $t\bar{t}$ events. The $Z\to\tau\tau$ background in $e\mu$ final states is suppressed using an invariant mass $m_{\tau\tau}$ computed assuming that the neutrinos from τ decays are collinear with the charged leptons \[103\] and that they are the only source of $E_{T\text{miss}}$. The requirement $|m_{\tau\tau} - m_Z| \geq 25$ GeV is applied.

The $N_{\text{jet}}\geq 2$ analysis is optimised for the selection of the VBF production process. The two leading jets, referred to as “tagging jets”, are required to have a large rapidity separation, $|\Delta y_{jj}| > 2.8$, and a high invariant mass, $m_{jj} > 500$ GeV. To reduce the contribution from ggF events containing any jet with $p_T > 20$ GeV in the rapidity gap between the two tagging jets are rejected. Both leptons are required to be in the rapidity gap. The DY background is suppressed by imposing $E_{T\text{miss}} > 20$ GeV for $e\mu$, and $E_{T\text{miss}} > 45$ GeV and $E_{T\text{miss}} > 35$ GeV for $ee/\mu\mu$. The same $Z\to\tau\tau$ veto and b-jet veto are applied as in the $N_{\text{jet}}=1$ analysis. The $t\bar{t}$ background is further reduced by requiring a small total transverse momentum, $|p_T^{\text{tot}}| < 45$ GeV, where $p_T^{\text{tot}} = p_T^{\ell\ell} + p_T^{\text{jets}} + E_{T\text{miss}}$, and p_T^{jets} is the vectorial sum of all jets in the event with $p_T > 25$ GeV.

The total signal selection efficiency for $H\to WW^*\to \ell\nu\ell\nu$ events produced with $\ell = e, \mu$, including all the final state topologies considered, is about 5.3% at 8 TeV for a Higgs boson mass of 125 GeV.

The dilepton transverse mass m_T is the discriminating variable used in the fit to the data to extract the signal strength. It is defined as $m_T = (E_{T}^{\ell\ell} + E_{T\text{miss}})^2 - |\mathbf{p}_T^{\ell\ell} + \mathbf{E}_{T\text{miss}}|^2)^{1/2}$ with $E_{T}^{\ell\ell} = (p_T^{\ell\ell} + p_T^{\text{jets}})^2/2$. For the $e\mu$ channels with $N_{\text{jet}} \leq 1$, the fit is performed separately for events with $10 < m_{\ell\ell} < 30$ GeV and events with $30 < m_{\ell\ell} < 50$ GeV, since the signal-to-background ratio varies across the $m_{\ell\ell}$ distribution, as shown in Fig. 4.

6.3. Background estimation

The leading SM processes producing two isolated high-p_T leptons and large values of $E_{T\text{miss}}$ are WW and top-quark production, where the latter includes (here and in the following) both $t\bar{t}$ and single top-quark processes (tW, tb and $tq\bar{t}$). These backgrounds, as well as $Z\to\tau\tau$, are normalised to the data in control regions defined by selections similar to those used for the signal region, but with some criteria reversed or modified to obtain signal-depleted samples enriched in particular backgrounds. The event yield in the CR (after subtracting contributions from processes other than the targeted one) is extrapolated to the signal region using transfer factors obtained from MC simulation.

Additional significant backgrounds arise from $W+\text{jets}$ and Z/γ^*, which are dissimilar to the signal but have large cross sections. A small fraction of these pass the event selection through rare final-state configurations and/or mis-measurements. This type of background is difficult to model reliably with the simulation and is therefore estimated mainly from data.

A third category of background consists of diboson processes with smaller cross sections, including $WY^{(*)}, WZ$, and ZZ^* (inclusively indicated in the following as Other VV), and the WW background in the $N_{\text{jet}} \geq 2$ analysis. These processes are estimated using the MC simulation normalised to the NLO cross sections from MCFM \[104\], except for the $N_{\text{jet}} \geq 2$ WW background, for which the cross section from the relevant MC generators (see Table 2) is used. The Other VV processes all produce same-charge and opposite-charge lepton pairs, as does $W+\text{jets}$. The number and kinematic features of same-charge events which would otherwise pass the full event selection are compared to the above-mentioned
predictions for these backgrounds, and good agreement is observed.

6.3.1. W+jets

The W+jets background is estimated using a CR in the data in which one of the two leptons satisfies the identification and isolation criteria, and the other lepton (denoted here as “anti-identified”) fails these criteria but satisfies looser requirements. All other analysis selections are applied. The contribution to the signal region is then obtained by scaling the number of events in the CR by transfer factors, defined as the ratio of the number of fully identified lepton candidates passing all selections to the number of anti-identified leptons. The transfer factors are obtained from a dijet sample as a function of the p_T and η of the anti-identified lepton.

6.3.2. Z/γ*

The Z/γ^* yield in the $ee/\mu\mu$ channels for $N_{\text{jet}} \leq 1$ is estimated using the E_{rec} requirement efficiency in data for DY and non-DY processes. The former is measured in $ee/\mu\mu$ events in the Z-boson peak region. The latter is measured in the $e\mu$ signal region, taking advantage of the fact that the E_{rec} distribution is nearly identical for all non-DY processes including the signal, as well as for $e\mu$ and $ee/\mu\mu$ final states. The DY normalisation in the $ee/\mu\mu$ signal region can then be extracted, given the two measured efficiencies and the total number of events in the $ee/\mu\mu$ signal region before and after the E_{rec} requirement. For the $ee/\mu\mu$ channels with $N_{\text{jet}} \geq 2$, the two-dimensional distribution ($E_{\text{min}}^\ell\ell$, $m_{\ell\ell}$) in the data is used to estimate the total Z/γ^* yield, as in Ref. [103].

The $Z \rightarrow \tau\tau$ background is normalised to the data using an $e\mu$ CR defined by the back-to-back configuration of the leptons, $\Delta \phi_{\ell\ell} > 2.8$. For the corresponding CR with $N_{\text{jet}} \geq 2$, no b-tagged jets are allowed, and $p_T^{\text{miss}} < 45$ GeV is required in addition, in order to reduce the contamination from top-quark production. A separate CR in the $Z \rightarrow \ell\ell$ peak region is used to correct the modelling of the VBF-related event selection.

6.3.3. $t\bar{t}$ and single top-quark

The top-quark background for the $N_{\text{jet}} = 0$ category is estimated using the procedure described in Ref. [2], namely from the number of events in data with any number of reconstructed jets passing the $E_{\text{min}}^\ell\ell$ requirement (a sample dominated by top-quark production), multiplied by the fraction of top-quark events with no reconstructed jets obtained from simulation. This estimate is corrected using a CR containing b-tagged jets. The top-quark background in the $N_{\text{jet}} \geq 1$ channels is normalised to the data in a CR defined by requiring exactly one b-tagged jet and all other signal selections except for the requirements on $\Delta \phi_{\ell\ell}$ and $m_{\ell\ell}$.

6.3.4. WW

The WW background for $N_{\text{jet}} \leq 1$ is normalised using CRs in data defined with the same selection as the signal region except that the $\Delta \phi_{\ell\ell}$ requirement is removed and the $m_{\ell\ell}$ bound is modified: for $N_{\text{jet}} = 0$ 50 GeV ≤ $m_{\ell\ell}$ < 100 GeV is required, while for $N_{\text{jet}} = 1$ $m_{\ell\ell}$ > 80 GeV is used to define the CR. Figure 4 shows the $m_{\ell\ell}$ distribution of $e\mu$ events with $N_{\text{jet}} = 0$ for the 8 TeV $H \rightarrow WW^* \rightarrow e\nu\mu\nu + 0$ jets analysis. The events with $m_{\ell\ell} < 50$ GeV correspond to the signal region except that the $\Delta \phi_{\ell\ell} < 1.8$ requirement is not applied here, and the events with 50 GeV < $m_{\ell\ell}$ < 100 GeV correspond to the $N_{\text{jet}} = 0$ WW control region. The signal is stacked on top of the background. The hatched area represents the total uncertainty on the sum of the signal and background yields from statistical, experimental, and theoretical sources. The lower part of the figure shows the ratio of the data to the predicted background. For comparison, the expected ratio of the signal plus background to the background alone is also shown.

Figure 4: The $m_{\ell\ell}$ distribution of $e\mu$ events with $N_{\text{jet}} = 0$ for the 8 TeV $H \rightarrow WW^* \rightarrow e\nu\mu\nu + 0$ jets analysis. The events with $m_{\ell\ell} < 50$ GeV correspond to the signal region except that the $\Delta \phi_{\ell\ell} < 1.8$ requirement is not applied here, and the events with 50 GeV < $m_{\ell\ell}$ < 100 GeV correspond to the $N_{\text{jet}} = 0$ WW control region. The signal is stacked on top of the background. The hatched area represents the total uncertainty on the sum of the signal and background yields from statistical, experimental, and theoretical sources. The lower part of the figure shows the ratio of the data to the predicted background. For comparison, the expected ratio of the signal plus background to the background alone is also shown.

12
6.4. Systematic uncertainties

The main sources of systematic uncertainty affecting this analysis are reported in Table 8 and described in detail in Ref. [107].

Theoretical uncertainties on the inclusive signal production cross sections are given in Section 2. Additional, larger uncertainties from the QCD renormalisation and factorisation scales affect the predicted distribution of the ggF signal among the exclusive jet bins and can produce migration between categories. These uncertainties are estimated using the HNNLO program [108, 109] and the method reported in Ref. [110]. Their impact on the signal yield is summarised in Table 8 in addition to other non-negligible contributions (parton shower and underlying event modelling, as well as acceptance uncertainties due to QCD scale variations).

The experimental uncertainties affecting the expected signal and background yields are associated primarily with the reconstruction and identification efficiency, and with the energy and momentum scale and resolution, of the final-state objects (leptons, jets, and E_T^{miss}), as described in Section 2. The largest impact on the signal expectation comes from the knowledge of the jet energy scale and resolution (up to 6% in the $N_{jet} \geq 2$ channel).

For the backgrounds normalised using control regions, the uncertainties come from the numbers of events in the CR and the contributions of other processes, as well as the transfer factors to the signal region.

For the WW background in the $N_{jet} \leq 1$ final states, the theoretical uncertainties on the transfer factors (evaluated according to the prescription of Ref. [13]) include the impact of missing higher-order QCD corrections, PDF variations, and MC modelling choices. They amount to ±2% and ±4–6% relative to the predicted WW background in the $N_{jet} = 0$ and $N_{jet} = 1$ final states, respectively. For the WW yield in the $N_{jet} \geq 2$ channel, which is obtained from simulation, the total uncertainty is 42% for QCD production with gluon emission, and 11% for the smaller but non-negligible contribution from purely electroweak processes; the latter includes the size of possible interference with Higgs boson production through VBF.

The leading uncertainties on the top-quark background are experimental. The b-tagging efficiency is the most important of these, and it appears in Table 8 primarily through its effect on this background. Theoretical uncertainties have the greatest relative importance for $N_{jet} \geq 2$, giving ±2% on the total background yield in this final state.

The $W+jets$ transfer factor uncertainty (±40–45%) is dominated by differences in the jet composition between dijet and $W+jets$ samples as observed in the MC simulation. The uncertainties on the muon and electron transfer factors are treated as correlated among the N_{jet} categories but uncorrelated with each other. Their impact on the total background uncertainty is smaller than ±2.5%. The main uncertainty on the DY contribution in the $N_{jet} \leq 1$ channels comes from the use of the f_{recoil} efficiency evaluated at the peak of the Z-boson mass distribution for the estimation of the DY contamination in the low-m_T region.

The uncertainty on the m_T shape for the total background, which is used in the fit to extract the signal yield, is dominated by the uncertainties on the normalisations of the individual components. The only explicit m_T shape uncertainty is applied to the WW background, and is determined by comparing several generators and showering algorithms.

The estimated background contributions with their uncertainties are listed in Table 9.

6.5. Results

Figure 5 shows the transverse mass distributions after the full selection for $N_{jet} \leq 1$ and $N_{jet} \geq 2$ final states. The regions with $m_T > 150$ GeV are depleted of signal contribution; the level of agreement of the data with the expectation in these regions, which are different from
those used to normalise the backgrounds, illustrates the quality of the background estimates. The expected numbers of signal and background events at 8 TeV are presented in Table 9. The VBF process contributes 2\%, 12\% and 81\% of the predicted signal in the regions 0 ≤ \(m_T \) ≤ 1 and \(m_T < 1.2 \) \(m_H \) for \(N_{\text{jet}} \geq 2 \).

All lepton flavours are combined. The total background as well as its main components are shown. The quoted uncertainties include the statistical and systematic contributions, and account for anticorrelations between the background predictions.

<table>
<thead>
<tr>
<th>(N_{\text{jet}})</th>
<th>Observed</th>
<th>Signal</th>
<th>Total background</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>831 ± 50</td>
<td>100 ± 14</td>
<td>739 ± 55</td>
</tr>
<tr>
<td>1</td>
<td>309 ± 50</td>
<td>10.9 ± 1.4</td>
<td>261 ± 28</td>
</tr>
<tr>
<td>≥ 2</td>
<td>55 ± 1.5</td>
<td>4.1 ± 1.5</td>
<td>36 ± 4</td>
</tr>
</tbody>
</table>

Table 9: For the \(H \to WW^* \to ℓνν\) analysis of the 8 TeV data, the numbers of events observed in the data and expected from signal \((m_H = 125.5 \text{ GeV}) \) and backgrounds inside the transverse mass regions 0.75 \(m_H < m_T < m_H \) for \(N_{\text{jet}} \leq 1 \) and \(m_T < 1.2 \) \(m_H \) for \(N_{\text{jet}} \geq 2 \.

The latter depends on one or more parameters of interest \(\alpha \), such as the Higgs boson production strength \(\mu \) normalised to the SM expectation (so that \(\mu = 1 \) corresponds to the SM Higgs boson hypothesis and \(\mu = 0 \) expected deviation (4.1σ) occurring at \(m_H = 140 \text{ GeV} \). For \(m_H = 125.5 \text{ GeV} \), a significance of 3.8σ is observed, compared with an expected value of 3.8σ for a SM Higgs boson.

Additional interpretation of these results is presented in Section 7.

7. Higgs boson property measurements

The results from the individual channels described in the previous sections are combined here to extract information about the Higgs boson mass, production properties and couplings.

7.1. Statistical method

The statistical treatment of the data is described in Refs. [111–115]. Hypothesis testing and confidence intervals are based on the profile likelihood ratio \(\Lambda(\alpha) \). The latter depends on one or more parameters of interest \(\alpha \), such as the Higgs boson production strength \(\mu \) normalised to the SM expectation (so that \(\mu = 1 \) corresponds to the SM Higgs boson hypothesis and \(\mu = 0 \).
to the background-only hypothesis), mass m_H, coupling strengths κ, ratios of coupling strengths λ, as well as on nuisance parameters θ:

$$\Lambda(\theta) = \frac{L(\alpha, \hat{\theta}(\alpha))}{L(\hat{\alpha}, \hat{\theta})}$$ \hspace{1cm} (1)$$

The likelihood functions in the numerator and denominator of the above equation are built using sums of signal and background probability density functions (pdfs) in the discriminating variables (chosen to be the $\gamma\gamma$ and 4ℓ mass spectra for $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$, respectively, and the m_T distribution for the $H \rightarrow WW^* \rightarrow 2e2\nu$ channel). The pdfs are derived from MC simulation for the signal and from both data and simulation for the background, as described in Sections 4.4 and 5.4. Likelihood fits to the observed data are done for the parameters of interest. The single circumflex in Eq. (1) denotes the unconditional maximum likelihood estimate of a parameter and the double circumflex denotes the conditional maximum likelihood estimate for given fixed values of the parameters of interest α. Systematic uncertainties and their correlations \cite{111} are modelled by introducing nuisance parameters θ described by likelihood functions associated with the estimate of the corresponding effect. The choice of the parameters of interest depends on the test under consideration, with the remaining parameters being “profiled”, i.e., similarly to nuisance parameters they are set to the values that maximise the likelihood function for the given fixed values of the parameters of interest.

7.2. Mass and production strength

The mass of the new particle is measured from the data using the two channels with the best mass resolution, $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$. In the two cases, $m_H = 126.8 \pm 0.2$ (stat) ± 0.7 (sys) GeV and $m_H = 124.3^{+0.6}_{-0.5}$ (stat) $^{+0.5}_{-0.3}$ (sys) GeV are obtained from fits to the mass spectra.

To derive a combined mass measurement, the profile likelihood ratio $\Lambda(m_H)$ is used, where the individual signal strengths $\mu_{\gamma\gamma}$ and $\mu_{4\ell}$ are treated as independent nuisance parameters in order to allow for the possibility of different deviations from the SM expectation in the two channels. The ratios of the cross sections for the various production modes for each channel are fixed to the SM values. It was verified that this restriction does not cause any bias in the results. The combined mass is measured to be:

$$m_H = 125.5 \pm 0.2 \text{ (stat)}^{+0.5}_{-0.6} \text{ (sys)} \text{ GeV}$$ \hspace{1cm} (2)$$

As discussed in Sections 4.4 and 5.4, the main sources of systematic uncertainty are the photon and lepton energy and momentum scales. In the combination, the consistency between the muon and electron final states in the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel causes a $\sim 0.8\sigma$ adjustment of the overall e/γ energy scale, which translates into a ~ 350 MeV downward shift of the fitted m_H^0 value with respect to the value measured from the $H \rightarrow \gamma\gamma$ channel alone.

To quantify the consistency between the fitted m_H^γ and m_H^ℓ masses, the data are fitted with the profile likelihood ratio $\Lambda(\Delta m_H)$, where the parameter of interest is the mass difference $\Delta m_H = m_H^\gamma - m_H^\ell$. The average mass m_H and the signal strengths $\mu_{\gamma\gamma}$ and $\mu_{4\ell}$: The result is:

$$\Delta m_H = 2.3^{+0.6}_{-0.5} \text{ (stat)} \pm 0.6 \text{ (sys)} \text{ GeV}$$ \hspace{1cm} (3)$$

where the uncertainties are 68% confidence intervals computed with the asymptotic approximation \cite{116}. From the value of the likelihood at $\Delta m_H = 0$, the probability for a single Higgs boson to give a value of $\Lambda(\Delta m_H)$ disfavouring the $\Delta m_H = 0$ hypothesis more than observed in the data is found to be at the level of 1.2% (2.5\sigma) using the asymptotic approximation, and 1.5% (2.4\sigma) using Monte Carlo ensemble tests. In order to test the effect of a possible non-Gaussian behaviour of the three principal sources contributing to the electron and photon energy scale systematic uncertainty (the $Z \rightarrow ee$ calibration procedure, the knowledge of the material upstream of the electromagnetic calorimeter and the energy scale of the presampler detector) the consistency between the two mass measurements is also evaluated by considering $\pm 1\sigma$ values for these uncertainties. With this treatment, the consistency increases to up to 8%.

To measure the Higgs boson production strength, the parameter μ is determined from a fit to the data using the profile likelihood ratio $\Lambda(\mu)$ for a fixed mass hypothesis corresponding to the measured value $m_H = 125.5$ GeV. The results are shown in Fig. 5 where the production strengths for the three channels and their main analysis categories, as well as the overall combination, are presented. The overall signal production strength is measured to be:

$$\mu = 1.33 \pm 0.14 \text{ (stat)} \pm 0.15 \text{ (sys)}$$ \hspace{1cm} (4)$$

where the systematic uncertainty receives similar contributions from the theoretical uncertainty on the signal cross section (ggF QCD scale and PDF, see Table 1 and all other, mainly experimental, sources. The uncertainty on the mass measurement reported in Eq. 2 produces a
±3% variation of μ. The consistency between this measurement and the SM Higgs boson expectation ($\mu = 1$) is about 7%; the use of a flat likelihood for the ggF QCD scale systematic uncertainty in the quoted $\pm 1\sigma$ interval yields a similar level of consistency with the $\mu = 1$ hypothesis. The overall compatibility between the signal strengths measured in the three final states and the SM predictions is about 14%, with the largest deviation ($\sim 1.9\sigma$) observed in the $H \rightarrow \gamma\gamma$ channel. Good consistency between the measured and expected signal strengths is also found for the various categories of the $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow WW^* \rightarrow \ell\ell\nu\nu$ analyses, which are the primary experimental inputs to the fit discussed in this section. If the preliminary $H \rightarrow \tau\tau$ results, for which only part of the 8 TeV dataset is used (13 fb$^{-1}$), were included, the combined signal strength would be $\mu = 1.23 \pm 0.18$.

7.3. Evidence for production via vector-boson fusion

The measurements of the signal strengths described in the previous section do not give direct information on the relative contributions of the different production mechanisms. Furthermore, fixing the ratios of the production cross sections for the various processes to the values predicted by the Standard Model may conceal tensions between the data and the theory. Therefore, in addition to the signal strengths for different decay modes, the signal strengths of different production processes contributing to the same decay modes are determined, exploiting the sensitivity offered by the use of event categories in the analyses of the three channels.

The data are fitted separating vector-boson-mediated processes, VBF and VH, from gluon-mediated processes, ggF and tH, involving fermion (mainly top-quark) loops or legs. Two signal strength parameters, $\mu_{ggF+nHF}$ and μ_{VBF}, which scale the SM-predicted rates to those observed, are introduced for each of the considered final states. The results are shown in Fig. 9. The 95% CL contours of the measurements are consistent with the SM expectation. A combination of all channels would provide a higher-sensitivity test of the theory. This can be done in a model-independent way (i.e. without assumptions on the Higgs boson branching ratios) by measuring the ratios ($\mu_{VBF-VH} \times B/B_{SM}$)/($\mu_{ggF+nHF}$).

\footnote{Such an approach avoids model assumptions needed for a consistent parameterisation of production and decay modes in terms of Higgs boson couplings.}

\footnote{Such a separation is possible under the assumption that the kinematic properties of these production modes agree with the SM predictions within uncertainties.}

Figure 6: The measured production strengths for a Higgs boson of mass $m_H = 125.5$ GeV, normalised to the SM expectations, for diboson final states and their combination. Results are also given for the main categories of each analysis (described in Sections 4.2, 5.2, and 6.2). The best-fit values are shown by the solid vertical lines, with the total uncertainty indicated by the shaded band, and the statistical uncertainty by the superimposed horizontal error bars. The numbers in the second column specify the contributions of the (symmetrised) statistical uncertainty (top), the total (experimental and theoretical) systematic uncertainty (middle), and the theory uncertainty (bottom) on the signal cross section (from QCD scale, PDF, and branching ratios) alone, for the individual categories only the statistical uncertainty is given.

B/B$_{SM}$ for the individual channels and their combination. The results of the fit to the data with the likelihood $\Lambda (\mu_{VBF+VH}/\mu_{ggF+nHF})$ are shown in Fig. 8. Good agreement with the SM expectation is observed for the individual final states and their combination.

To test the sensitivity to VBF production alone, the data are also fitted with the ratio $\mu_{VBF}/\mu_{ggF+nHF}$. A value

\[\mu_{VBF}/\mu_{ggF+nHF} = 1.4^{+0.4}_{-0.3} \text{ (stat)}^{+0.6}_{-0.4} \text{ (sys)} \]

is obtained from the combination of the three channels (Fig. 9), where the main components of the systematic uncertainty come from the theoretical predictions for the ggF contributions to the various categories and jet multiplicities and the knowledge of the jet energy scale and resolution. This result provides evidence at the 3.3σ level that a fraction of Higgs boson production
occurs through VBF (as Fig. 9 shows), the probability for a vanishing value of $\mu_{\text{VBF}}/\mu_{\text{ggF+ttH}}$, given the observation in the data, is 0.04%). The inclusion of preliminary $H \rightarrow \tau\tau$ results [117], which also provide some sensitivity to this ratio, would give a significance of 3.1σ.

7.4. Couplings measurements

Following the approach and benchmarks recommended in Refs. [119, 120], measurements of couplings are implemented using a leading-order tree-level motivated framework. This framework is based on the following assumptions:

- The signals observed in the different search channels originate from a single resonance. A mass of 125.5 GeV is assumed here; the impact of the uncertainty reported in Eq. (2) on the results discussed in this section is negligible.

- The width of the Higgs boson is narrow, justifying the use of the zero-width approximation. Hence the predicted rate for a given channel can be decomposed in the following way:

$$\sigma \cdot B(i \rightarrow H \rightarrow f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

(6)

where σ_i is the production cross section through the initial state i, Γ_f the partial decay width into the final state f and Γ_H the total width of the Higgs boson.

ATLAS

$m_H = 125.5$ GeV

\[
\begin{array}{c|c|c|c}
\text{H} \rightarrow \gamma\gamma & \mu_{ggf+ttH} & \text{(stat)} & \text{(theo)} \\
\hline
\mu_{ggF+ttH} & 1.1 \pm 0.9 \pm 0.5 \\
\mu_{ggF+ttH} & 0.6 \pm 0.9 \\
\mu_{ggF+ttH} & 2.0 \pm 2.2 \\
\mu_{ggF+ttH} & 1.4 \pm 0.7 \\
\mu_{ggF+ttH} & \end{array}
\]

Figure 8: Measurements of the $\mu_{\text{VBF+VH}}/\mu_{\text{ggF+ttH}}$ ratios for diboson final states and their combination, for a Higgs boson mass $m_H = 125.5$ GeV. The best-fit values are represented by the solid vertical lines, with the total 1σ and 2σ uncertainties indicated by the dark- and light-shaded bands, respectively, and the statistical uncertainties by the superimposed horizontal error bars. The numbers in the second column specify the contributions of the statistical uncertainty (top), the total (experimental and theoretical) systematic uncertainty (middle), and the theoretical uncertainty (bottom) on the signal cross section (from QCD scale, PDF, and branching ratios) alone. For a more complete illustration, the distributions of the likelihood ratios from which the total uncertainties are extracted are overlaid.

- Only modifications of coupling strengths are considered, while the tensor structure of the Lagrangian is assumed to be the same as in the Standard Model. This implies in particular that the observed state is a CP-even scalar.

The spin-CP hypothesis is addressed in Ref. [111].
The relevant relationships are:

$$ \frac{\sigma \cdot B (gg \rightarrow H \rightarrow \gamma \gamma)}{\sigma_{\text{SM}}(gg \rightarrow H) \cdot B_{\text{SM}}(H \rightarrow \gamma \gamma)} = \frac{k_F^2 \cdot k_Y^2}{k_H} \quad (7) $$

In some of the fits, \(k_F\) and the effective scale factors \(k_\xi\) and \(k_\eta\) for the loop-induced \(H \rightarrow \gamma \gamma\) and \(gg \rightarrow H\) processes are expressed as a function of the more fundamental factors \(k_W, k_2, k_3, k_5, k_6\) and \(k_8\) (only the dominant fermion contributions are indicated here for simplicity). The relevant relationships are:

$$ k_F^2(k_5, k_7) = \frac{k_F^2 \cdot \sigma_{ggH}^F + k_5^2 \cdot \sigma_{ggH}^B + k_7 \cdot \sigma_{ggH}^B}{\sigma_{ggH}^F + \sigma_{ggH}^B + \sigma_{ggH}^B} \quad (8) $$

$$ k_Y^2(k_2, k_3, k_6, k_8) = \frac{\sum_{i,j} \kappa_i \kappa_j \cdot \Gamma_{ij}^{\gamma\gamma}}{\sum_{i,j} \Gamma_{ij}^{\gamma\gamma}} \quad (9) $$

$$ k_H^2 = \sum_{jj \nu W W^*, ZZ^*, bb, \tau \tau^*} \frac{\sigma_{ggH}^{jj \nu W W^*, ZZ^*, bb, \tau \tau^*} \cdot \Gamma_{jj \nu W W^*, ZZ^*, bb, \tau \tau^*}^{\gamma\gamma}}{\Gamma_{jj \nu W W^*, ZZ^*, bb, \tau \tau^*}^{\gamma\gamma}} \quad (10) $$

where \(\sigma_{ggH}^{jj \nu W W^*, ZZ^*, bb, \tau \tau^*} \cdot \Gamma_{jj \nu W W^*, ZZ^*, bb, \tau \tau^*}^{\gamma\gamma}\) and \(\Gamma_{jj \nu W W^*, ZZ^*, bb, \tau \tau^*}^{\gamma\gamma}\) are obtained from theory [14, 15, 119].

Results are extracted from fits to the data using the profile likelihood ratio \(\Lambda(\kappa)\), where the \(k_\eta\) couplings are treated either as parameters of interest or as nuisance parameters, depending on the measurement.

The assumptions made for the various measurements are summarised in Table 10 and discussed in the next sections together with the results.

7.4.1. Couplings to fermions and bosons

The first benchmark considered here (indicated as model 1 in Table 10) assumes one coupling scale factor for fermions, \(k_F\), and one for bosons, \(k_Y\); in this scenario, the \(H \rightarrow \gamma \gamma\) and \(gg \rightarrow H\) loops and the total Higgs boson width depend only on \(k_F\) and \(k_Y\), with no contributions from physics beyond the Standard Model (BSM). The strongest constraint on \(k_F\) comes indirectly from the \(gg \rightarrow H\) production loop.

Figure 10 shows the results of the fit to the data for the three channels and their combination. Since only the relative sign of \(k_F\) and \(k_Y\) is physical, in the following \(k_Y > 0\) is assumed. Some sensitivity to this relative sign is provided by the negative interference between the \(W\)-boson loop and \(t\)-quark loop in the \(H \rightarrow \gamma \gamma\) decay. The data prefer the minimum with positive relative sign, which is consistent with the SM prediction, but the local minimum with negative sign is also compatible with the observation (at the \(\sim 2\sigma\) level). The two-dimensional compatibility of the SM prediction with the best-fit value is 12%. The 68% CL intervals of \(k_F\) and \(k_Y\), obtained by profiling over the other parameter, are:

$$ k_F \in [0.76, 1.18] \quad (9) $$

$$ k_Y \in [1.05, 1.22] \quad (10) $$

with similar contributions from the statistical and systematic uncertainties.

In this benchmark model, the assumption of no contributions from new particles to the Higgs boson width provides strong constraints on the fermion coupling \(k_F\), as about 75% of the total SM width comes from decays to fermions or involving fermions. If this assumption is relaxed, only the ratio \(\lambda_{FV} = k_F/k_Y\) can be measured.
Table 10: Summary of the coupling benchmark models discussed in this paper, where $\lambda_{ij} = \kappa_i/\kappa_j$, $\kappa_i = \kappa_i/\kappa_H$, and the functional dependence assumptions are: $\kappa_V = \kappa_W = \kappa_F$, $\kappa_F = \kappa_i = \kappa_e = \kappa_e$ (and similarly for the other fermions), $\kappa_j = \kappa_j/\kappa_e$, $\kappa_j = \kappa_j/\kappa_e$, and $\kappa_H = \kappa_H/\kappa_j$. The tick marks indicate which assumptions are made in each case. The last column shows, as an example, the relative couplings involved in the $gg \to H \to \gamma\gamma$ process, see Eq. (10), and their functional dependence in the various benchmark models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Probed couplings</th>
<th>Parameters of interest</th>
<th>Functional assumptions</th>
<th>Example: $gg \to H \to \gamma\gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Couplings to κ_V, κ_F</td>
<td>κ_V, κ_F</td>
<td>$\sqrt{\kappa_V}, \sqrt{\kappa_F}$</td>
<td>$\kappa^_V \cdot \kappa^_F/\kappa^*_V(\kappa_V, \kappa_F)$</td>
</tr>
<tr>
<td>2</td>
<td>fermions and bosons</td>
<td>κ_{WW}, κ_{VV}</td>
<td>$\sqrt{\kappa_{WW}}, \sqrt{\kappa_{VV}}$</td>
<td>$\kappa^_V \cdot \kappa^F(\kappa_V, \alpha{WW}, \alpha_{VV})$</td>
</tr>
<tr>
<td>3</td>
<td>Custodial symmetry</td>
<td>$\lambda_{WZ}, \lambda_{FZ}, \kappa_{ZZ}$</td>
<td>$-\sqrt{\kappa_{WZ}}, -\sqrt{\kappa_{FZ}}$</td>
<td>$\kappa^_V \cdot \kappa^F(\kappa_V, \lambda{WZ}, \lambda_{FZ}, \lambda_{WZ})$</td>
</tr>
<tr>
<td>4</td>
<td>$\alpha_{WZ}, \alpha_{FZ}, \alpha_{ZZ}$</td>
<td>$\sqrt{\alpha_{WZ}}, \sqrt{\alpha_{FZ}}, \sqrt{\alpha_{ZZ}}$</td>
<td>$\alpha^_V \cdot \alpha^F(\alpha{WZ}, \alpha_{FZ}, \alpha_{WZ})$</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Vertex loops</td>
<td>κ_z, κ_y</td>
<td>$-1, -1$</td>
<td>$\kappa^_z \cdot \kappa^_y(\kappa_z, \kappa_y)$</td>
</tr>
</tbody>
</table>

(benchmark model 2 in Table 10), which still provides useful information on the relationship between Yukawa and gauge couplings. Fits to the data give the following 68% CL intervals for λ_{VV} and $\kappa_{VV} = \kappa_V\kappa_V/\kappa_H$ (when profiling over the other parameter):

$$\lambda_{VV} \in [0.70, 1.01]$$
$$\kappa_{VV} \in [1.13, 1.45]$$

The two-dimensional compatibility of the SM prediction with the best-fit value is 12%. These results also exclude vanishing couplings of the Higgs boson to fermions (indirectly, mainly through the $gg \to H$ production loop) by more than 5σ.

7.4.2. Ratio of couplings to the W and Z bosons

In the Standard Model, custodial symmetry imposes the constraint that the W and Z bosons have identical couplings to the Higgs boson and that $\rho = 1$ (as measured at LEP [12]). The former constraint is tested here by measuring the ratio $\lambda_{WZ} = \kappa_W/\kappa_Z$.

The simplest and most model-independent approach is to extract the ratio of branching ratios normalised to their SM expectation, $\lambda_{WZ}^2 = B(H \to WW^*)/B(H \to ZZ^*) / B_{SM}(H \to WW^*)/B_{SM}(H \to ZZ^*)$, from the measured inclusive rates of the $H \to WW^*$ and $H \to ZZ^*$ channels. A fit to the data with the likelihood $\Lambda(\lambda_{WZ})$, where $\mu_{gg^2+nll} \times B(H \to ZZ^*)/B_{SM}(H \to ZZ^*)$ and $\mu_{VBV+nll}/\mu_{gg+nll}$ are profiled, gives $\lambda_{WZ} = 0.81^{+0.16}_{-0.15}$.

A more sensitive measurement can be obtained by also using information from WH and ZH production, from the VBF process (which in the SM is roughly 75% W-fusion and 25% Z-fusion mediated) and from the $H \to \gamma\gamma$ decay mode. A fit to the data using benchmark model 3 in Table 10 gives the likelihood curve shown in Fig. 11 with $\lambda_{WZ} \in [0.61, 1.04]$ at the 68% CL, dominated by the statistical uncertainty; the other parameters, λ_{ZV} and κ_{ZZ}, are profiled. The three-dimensional compatibility of the SM prediction with the best-fit value is 19%.

![Figure 11: Likelihood curve for the coupling scale factor λ_{WZ} (benchmark model 3 in Table 10). The thin dotted lines indicate the continuation of the likelihood curve when restricting λ_{ZV} to be either positive or negative. The dashed curves show the SM expectation with the right (left) minimum indicating λ_{ZV} positive (negative).](image)

Potential contributions from BSM physics affecting the $H \to \gamma\gamma$ channel could produce apparent deviations of the ratio λ_{WZ} from unity even if custodial symmetry is not broken. It is therefore desirable to decouple the observed $H \to \gamma\gamma$ event rate from the measurement of λ_{WZ}. This is done with an extended fit for the ratio λ_{WZ}, where one extra degree of freedom ($\lambda_{ZV} = \kappa_z/\kappa_Z$) absorbs possible BSM effects in the $H \to \gamma\gamma$ channel (benchmark model 4 in Table 10). This measurement yields:

$$\lambda_{WZ} = 0.82 \pm 0.15$$

and a four-dimensional compatibility of the SM prediction with the best-fit value of 20%.
7.4.3. Constraints on production and decay loops

Many BSM physics scenarios predict the existence of new heavy particles, which can contribute to loop-induced processes such as $gg \to H$ production and $H \to \gamma\gamma$ decay. In the approach used here (benchmark model 5 in Table 10), it is assumed that the new particles do not contribute to the Higgs boson width and that the couplings of the known particles to the Higgs boson have SM strength (i.e. $\kappa_i=1$). Effective scale factors κ_g and κ_γ are introduced to parameterise the $gg \to H$ and $H \to \gamma\gamma$ loops. The results of their measurements from a fit to the data are shown in Fig. 12. The best-fit values when profiling over the other parameters are:

$$\kappa_g = 1.04 \pm 0.14$$

$$\kappa_\gamma = 1.20 \pm 0.15$$

The two-dimensional compatibility of the SM prediction with the best-fit value is 14%.

![Figure 12: Likelihood contours for the coupling scale factors κ_g and κ_γ probing BSM contributions to the $H \to \gamma\gamma$ and $gg \to H$ loops, assuming no BSM contributions to the total Higgs boson width (benchmark model 5 in Table 10). The best-fit result (x) and the SM expectation (+) are also indicated.](image)

7.4.4. Summary

The results of the measurements of the coupling scale factors discussed in the previous sections, obtained under the assumptions detailed in Section 7.4 and Table 10, are summarised in Fig. 13. The measurements in the various benchmark models are strongly correlated, as they are obtained from fits to the same experimental data. A simple χ^2-like compatibility test with the SM is therefore not meaningful.

The coupling of the new particle to gauge bosons κ_V is constrained by several channels, directly and indirectly, at the $\pm10\%$ level. Couplings to fermions with a significance larger than 5σ are indirectly observed mainly through the gluon-fusion production process, assuming the loop is dominated by fermion exchange. The ratio of the relative couplings of the Higgs boson to the W and Z bosons, κ_W/κ_Z, is measured to be consistent with unity, as predicted by custodial symmetry. Under the hypothesis that all couplings of the Higgs boson to the known particles are fixed to their SM values, and assuming no BSM contributions to the Higgs boson width, no significant anomalous contributions to the $gg \to H$ and $H \to \gamma\gamma$ loops are observed.

![Figure 13: Summary of the measurements of the coupling scale factors for a Higgs boson with mass $m_H=125.5$ GeV. The best-fit values are represented by the solid vertical lines, with the $\pm1\sigma$ and $\pm2\sigma$ uncertainties given by the dark- and light-shaded band, respectively. For a more complete illustration, the distributions of the likelihood ratios from which the total uncertainties are extracted are overlaid. The measurements in the various benchmark models, separated by double horizontal lines, are strongly correlated.](image)

8. Conclusions

Data recorded by the ATLAS experiment at the CERN Large Hadron Collider in 2011 and 2012, corresponding to an integrated luminosity of up to $25 fb^{-1}$ at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV, have been analysed to determine several properties of the recently discovered Higgs boson using the $H \to \gamma\gamma$, $H \to ZZ^* \to 4\ell$ and...
9. Acknowledgements

We thank CERN for the successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not have been operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DLR, DFKI, and HGF, Germany; INFN, Italy; BMBF, DFG, MPG and AvH Foundation, Germany; GSRT and NSRF, Greek Commission for Scientific Research, Greece; IFIN-HH, Romania; MES of Russia and ROSATOM, Russian Federation; JINR, Russia; MSTDF, Serbia; SSERDA, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

H → WW* → ℓνℓν decay modes. The reported results include measurements of the mass and signal strength, evidence for production through vector-boson fusion, and constraints on couplings to bosons and fermions as well as on anomalous contributions to loop-induced processes. The precision exceeds previously published results in several cases. All measurements are consistent with expectations for the Standard Model Higgs boson.

[60] C. Anastasiou, S. Buchler, F. Herzog, and A. Lazopoulos, Inclusive Higgs boson cross-section for the LHC at 8 TeV, JHEP 1204 (2012) 004

LHC Higgs Cross Section Working Group, A. David et al., LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle, arXiv:1209.0040 [hep-ph].

The ATLAS Collaboration

R. Zitoun5, L. Živković35, G. Zobernig174, A. Zoccoli20a,20b, M. zur Nedden16, G. Zurzolo103a,103b, V. Zutshi107, L. Zwalinski30.

1 School of Chemistry and Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States of America
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Gazi University, Ankara; (c) Division of Physics, TOBB University of Economics and Technology, Ankara; (d) Turkish Atomic Energy Authority, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
13 (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China
34 Laboratoire de Physique Corpusculaire, Clermont Université et Université Blaise Pascal and CNRS/IN2P3,
Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
36 Niels Bohr Institute, University of Copenhagen, København, Denmark
37 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States of America
41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham NC, United States of America
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 Il Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 Il Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 Department of Physics, Indiana University, Bloomington IN, United States of America
61 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
62 University of Iowa, Iowa City IA, United States of America
63 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
66 Graduate School of Science, Kobe University, Kobe, Japan
67 Faculty of Science, Kyoto University, Kyoto, Japan
68 Kyoto University of Education, Kyoto, Japan
69 Department of Physics, Kyushu University, Fukuoka, Japan
70 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
71 Physics Department, Lancaster University, Lancaster, United Kingdom
72 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
74 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
75 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
76 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
77 Department of Physics and Astronomy, University College London, London, United Kingdom
78 Louisiana Tech University, Ruston LA, United States of America
79 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
129 State Research Center Institute for High Energy Physics, Protvino, Russia
130 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
131 Physics Department, University of Regina, Regina SK, Canada
132 Ritsumeikan University, Kusatsu, Shiga, Japan
133 (a) INFN Sezione di Roma I; (b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
134 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
135 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
136 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
139 Department of Physics, University of Washington, Seattle WA, United States of America
140 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
141 Department of Physics, Shinshu University, Nagano, Japan
142 Fachbereich Physik, Universität Siegen, Siegen, Germany
143 Department of Physics, Simon Fraser University, Burnaby BC, Canada
144 SLAC National Accelerator Laboratory, Stanford CA, United States of America
145 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
146 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
147 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
148 Physics Department, Royal Institute of Technology, Stockholm, Sweden
149 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
150 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
151 School of Physics, University of Sydney, Sydney, Australia
152 Institute of Physics, Academia Sinica, Taipei, Taiwan
153 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
155 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
156 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
157 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
159 Department of Physics, University of Toronto, Toronto ON, Canada
160 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
161 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
162 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
163 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
164 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
165 (a) INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
166 Department of Physics, University of Illinois, Urbana IL, United States of America
167 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
168 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
36
America

ak Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
ad Also at Nevis Laboratory, Columbia University, Irvington NY, United States of America
am Also at Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
an Also at Department of Physics, Oxford University, Oxford, United Kingdom
ao Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
ap Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa

* Deceased