RESEARCH LETTER

Megatrials for Bronchodilators in Chronic Obstructive Pulmonary Disease (COPD) Treatment: Time to Reflect

Wouter D. van Dijk, MD, Lisette van den Bemt, PhD, and Chris van Weel, MD, PhD

Introduction: Chronic obstructive pulmonary disease (COPD) is an important cause of morbidity and mortality worldwide. Although (long-acting) bronchodilators are used to relieve symptoms, the impact of bronchodilators on COPD mortality remains an unresolved issue. Our aim was to explore the results and the interpretations of the results of studies of bronchodilator treatment from high-impact COPD trials.

Methods: We searched PubMed and Embase for primary publications of randomized controlled trials with more than 1000 participants with COPD and that studied the effectiveness of long-acting bronchodilator treatment. We assessed population characteristics, primary outcomes, focus of outcomes, and possible bias from concomitant pulmonary medication.

Results: We retrieved 5 primary publications of large trials. Participants tended to be patients with rather severe COPD who were cared for at a hospital. Only half of the primary outcomes were statistically significant. Reports tended to focus on statically significant outcomes and not necessarily on primary outcomes or outcomes of the whole study population. The relevance of study outcomes was rarely discussed.

Discussion: The rather small effects of bronchodilators in a COPD population that is not representative for daily care, together with the tendency of relying on statistical rather than clinical significance, hampers translation to the large number of patients with COPD in the community. (J Am Board Fam Med 2013;26:221–224.)

Keywords: Bronchodilators, Chronic Disease, Chronic Obstructive Pulmonary Disease (COPD), Pharmacotherapy, Respiratory Tract Diseases

Chronic obstructive pulmonary disease (COPD) is a progressive chronic disease characterized by not fully reversible airflow obstruction. It is one of the most important causes of morbidity and mortality worldwide, directly related to cigarette smoking. Indeed, cessation of cigarette smoking is the single-most efficient intervention to prevent both disease development and progression.1,2 In addition, (long-acting) bronchodilators are used to relieve symptoms. An unresolved question is the impact of bronchodilators on COPD mortality, in part by attenuation of pulmonary function decline and exacerbations, independent from desired symptom relief. The last decade, a number of large studies on the effectiveness of long-acting bronchodilators received extensive attention in leading medical journals. Calverley observed that “ensuring that these expensive studies are done objectively to the highest standard is an important goal”.3 For that reason, the quality of these large trials, their external validity, and what they add to the current clinical practice, are of importance. We systematically reviewed the results and the interpretations of these results of megatrials on long-acting bronchodilators in COPD patients that were published in high impact journals.

This article was externally peer reviewed.

Submitted 23 December 2011; revised 23 March 2012; accepted 26 March 2012.

From the Department of Primary and Community Care, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands.

Funding: none.

Conflict of interest: none declared.

Corresponding author: Wouter D. van Dijk, Department of Primary and Community Care, Radboud University Nijmegen Medical Centre, Internal Postal code 117, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands (E-mail: w.vandijk@aios.umcn.nl).

doi: 10.3122/jabfm.2013.02.110342 Megatrials for Bronchodilators in COPD Treatment
Table 1. Large Bronchodilator Trials According to Factors For Interpreting Good Clinical Practice on Design, Results, and Translation

<table>
<thead>
<tr>
<th>Study (trial registry; funding)</th>
<th>Patients (n)</th>
<th>Length of Follow-up</th>
<th>Selection Criteria (Part)</th>
<th>Population</th>
<th>Characteristics</th>
<th>Medication Protocol</th>
<th>Allowed bias medication</th>
<th>Primary outcome</th>
<th>Results</th>
<th>Significance</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calverley, 2007<sup>6</sup> (registered; funding from GSK)</td>
<td>6112</td>
<td>3 years</td>
<td>40-80 years old, COPD diagnosis FEV<sub>1</sub>: <60%, FER: <0.70 before BD Reversibility: <10% No respiratory disease, use of oxygen</td>
<td>65 years</td>
<td>75% male 43% smoker FEV<sub>1</sub> 44% predicted value</td>
<td>Salmeterol/ Fluticasone Salmeterol Fluticasone Placebo</td>
<td>Long-acting BD, steroids Short-acting and other BD</td>
<td>Mortality</td>
<td>12.6% vs 13.5% vs 16.0% vs 15.2%</td>
<td>NS</td>
<td>A</td>
</tr>
<tr>
<td>Calverley et al,<sup>4</sup> 2003 (not registered; funding from GSK)</td>
<td>1465</td>
<td>1 year</td>
<td>FEV<sub>1</sub>: 25% to 70% before BD FER: <0.70 before BD Reversibility: <10% ≥1 exacerbation ≥5 years No respiratory disease, use of oxygen</td>
<td>63.5 years</td>
<td>72.5% male 51% smoker FEV<sub>1</sub> 49% predicted value</td>
<td>Salmeterol/ Fluticasone Salmeterol Fluticasone Placebo</td>
<td>Albuterol Long-acting β-agonist, steroids Anticholinergics and theophyllin</td>
<td>FEV<sub>1</sub> before BD</td>
<td>10% vs 2% vs 2% vs 3%</td>
<td>P < .01</td>
<td>B</td>
</tr>
<tr>
<td>Tashkin et al,<sup>7</sup> 2008 (registered; funded by BI and Pfizer)</td>
<td>5993</td>
<td>4 years</td>
<td>>40 years FEV<sub>1</sub>: <70%, FER: <0.70 No respiratory disease, use of oxygen Myocardial infarction during last 6 months, unstable arrhythmia</td>
<td>64.5 years</td>
<td>75% male 30% smoker FEV<sub>1</sub> 48% predicted value</td>
<td>Spiriva Placebo —</td>
<td>Short-acting anticholinergics All nonanticholinergics</td>
<td>FEV<sub>1</sub> decline before and after BD Before BD: 30 vs 30 mL/yr After BD: 40 vs 42 mL/yr</td>
<td>32.3% vs 27.9%</td>
<td>P = .037</td>
<td>D</td>
</tr>
<tr>
<td>Niewoehner et al,<sup>5</sup> 2005 (not registered; funded by BI and Pfizer)</td>
<td>1829</td>
<td>6 months</td>
<td>>40 years COPD diagnosis FEV<sub>1</sub>: <60% FER: <0.70 No asthma Myocardial infarction during past 6 months, cardiac hospitalization during past year</td>
<td>67.8 years</td>
<td>99% male 30% smoker FEV<sub>1</sub> 56% predicted value 29% oxygen</td>
<td>Spiriva Placebo —</td>
<td>Short-acting anticholinergics All nonanticholinergics</td>
<td>%Exacerbation %Exacerbation hospitalization</td>
<td>32.3% vs 27.9% 9.5% vs 7.0%</td>
<td>NS</td>
<td>C</td>
</tr>
</tbody>
</table>

Continued
Methods

WD and LB conducted a search in both PubMed and Embase until 7/31/2011, containing terms of COPD and bronchodilators. We included primary publications in leading journals with an impact factor of at least 15 in 2011 of randomized controlled trials with more than 1000 participants with COPD, that studied the effectiveness of long-acting bronchodilator treatment. WD and LB independently and systematically assessed population characteristics, primary outcomes, focus of secondary outcomes, and possible bias from concomitant pulmonary medication.

Results

We retrieved five primary publications of large trials on bronchodilator effect in COPD patients.

Table 1. Continued

<table>
<thead>
<tr>
<th>Study (trial registry; funding)</th>
<th>Characteristics</th>
<th>Medication Protocol</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (n)</td>
<td>Length of Follow-up (Part)</td>
<td>Selection Criteria</td>
<td>Population</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Vogelmeier et al.*, 2011</td>
<td>7376</td>
<td>1 year</td>
<td>>40 years</td>
</tr>
<tr>
<td>(registered; funded by BI and Pfizer)</td>
<td></td>
<td>FEV₁ < 70%, FER: <0.70</td>
<td>62.9 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FEV₁ > 49% predicted value</td>
<td>74.7% male</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVD</td>
<td>48% smoker</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No asthma</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVD</td>
<td></td>
</tr>
</tbody>
</table>

*A: Acknowledge statistically nonsignificant results for primary outcome, but the focus is on beneficial effect and secondary outcome in main text discussion and conclusion. They claim the study is underpowered. B: Focus is on secondary outcomes in main text discussion. C: Focus is on secondary outcome in result and discussion section of both abstract and main text. Of many nonsignificant post hoc subgroup analyses, they only state the significant one. D: Acknowledge statistically nonsignificant results for the primary outcome (called "borderline significant"), but focus is on beneficial effect in the abstract and main text results. E: Focus is on an exaggerated effect on one fourth of all patients (a third had an exacerbation), which is not stated in the abstract. Focus is on inaccurate description of population in main text discussion and conclusion.

BD, bronchodilator; BI, Boehringer Ingelheim; COPD, chronic obstructive pulmonary disease; CVD, cardiovascular disease; FER, forced expiratory ratio; FEV₁, forced expiratory volume in first second; GSK, GlaxoSmithKline; NS, not significant.
always correctly stated the population key characteristics, whereas another used pre-bronchodilator values as primary outcome.

Discussion
Despite the positive tone in the reports of large trials on long-acting bronchodilator therapy in COPD patients, only half of the primary outcomes were statistically significant. Next, reports tend to focus on statically significant outcomes and not necessarily on primary outcomes or outcomes of the whole study population.

Compared with combining results of smaller rigorous trials into meta-analyses, megatrials could provide a small advantage on minimizing confounding by change. However, since large trials increase their participant numbers by reducing protocol rigidness, bias can be introduced that weakens causative interpretations. For instance, in these COPD megatrials, various co-medications were allowed during the study without proper adjustments for it in the analyses. On the other hand, decreased rigidness may provide a generalization of results in daily practice, but only if the study population is representative of the target population to which its results will be applied. Moreover, the clinical relevance of the rather small effects in a possibly biased COPD population that is not representative for daily care should be debated, in particular as meta-analyses rate these trials on their patient numbers mostly.

Most patients with COPD are treated in the community, while the selection of patients for large trials is biased toward referred, hospital cared patients. This, together with the tendency of relying on statistical rather than clinical significance, hampers translation to the large number of patients with COPD in the community. Independent from symptom relief, we would therefore plea for some precaution on the customary prescription of long-acting bronchodilators for the COPD population at large.

References
3. Calverley PM, Rennard SI. What have we learned from large drug treatment trials in COPD? Lancet 2007;370:774–85.