The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/118479

Please be advised that this information was generated on 2017-08-04 and may be subject to change.
Genome evolution predicts genetic interactions in protein complexes and reveals cancer drug targets

Xiaowen Lu¹, Philip R. Kensche¹, Martijn A. Huynen¹,² & Richard A. Notebaart¹,²

Genetic interactions reveal insights into cellular function and can be used to identify drug targets. Here we construct a new model to predict negative genetic interactions in protein complexes by exploiting the evolutionary history of genes in parallel converging pathways in metabolism. We evaluate our model with protein complexes of Saccharomyces cerevisiae and show that the predicted protein pairs more frequently have a negative genetic interaction than random proteins from the same complex. Furthermore, we apply our model to human protein complexes to predict novel cancer drug targets, and identify 20 candidate targets with empirical support and 10 novel targets amenable to further experimental validation. Our study illustrates that negative genetic interactions can be predicted by systematically exploring genome evolution, and that this is useful to identify novel anti-cancer drug targets.

¹ Department of Bioinformatics (CMBI), Centre for Molecular Life Sciences, Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands. ²Centre for Systems Biology and Bioenergetics (CSBB), Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands. Correspondence and requests for materials should be addressed to R.A.N. (email: R.notebaart@cmbi.ru.nl).
Knowledge of how proteins interact with each other to exert their function is crucial for understanding how disruption of interactions can lead to disease and in the development of treatments. In recent years, several system-level maps of protein complexes have been constructed from physical interaction data to initialize understanding of the functional relationships between proteins. These studies are important in identifying which proteins are linked to each other in biological processes. Yet, these maps do not directly reveal how the proteins interact with each other. More specifically, they do not provide information about whether the interaction between two proteins is symmetric, in which both proteins are equally important in the function of a protein complex, or whether the interaction is asymmetric, in which one protein can function in the absence of the other protein, but not vice versa (Fig. 1a). One example of such asymmetry is the cyclin–Cdc28 complex where the function of the cyclin, Cln1p, depends on the Cdc28 kinase, but not vice versa. The function of Cln1p depends on Cdc28p as transcriptional activation of CLN1 requires an active Cdc28 kinase. The function of Cdc28p, however, does not depend on Cln1 as the presence of Cln2p compensates for Cln1p’s absence to activate Cdc28p (ref. 8). Thus, there is a functional asymmetry between Cln1p and Cdc28p, where Cln1p depends on Cdc28p and not vice versa (Cln1p→Cdc28p). Similarly, there is asymmetry between Cln2p and Cdc28p (Cln2p→Cdc28p). This example shows the relationship between functional asymmetry and what is called a negative genetic interaction, where mutations (for example, knockout) of two genes (for example, CLN1 and CLN2) reduce the fitness much more strongly than would be expected based on the decline in fitness of each gene individually. The concept of negative genetic interactions is very valuable in the development of therapeutic treatments for diseases that can be treated by selectively depleting cells with a disease-causing mutation. Especially promising are the discoveries of cancer drugs that target proteins having synthetic lethal interactions with mutated oncogenes or tumour-suppressor genes. The mechanism underlying this treatment is that inhibiting these genes separately is relatively harmless in a normal cell, while it is lethal to a cancer cell as it causes a lethal double mutant with mutated oncogenes/tumour-suppressor genes. Thus, targeting

Figure 1 | Functional asymmetry and negative genetic interactions are linked. (a) Protein A and B have an asymmetric functional relationship, where the function of A depends on B but not vice versa. The asymmetry between protein A and B can be owing to the presence of protein C, which can compensate for a mutant of A. In such a scenario, proteins A and C are predicted to have a negative genetic interaction. (b) Functional asymmetry between enzyme A and B involved in a branched pathway in a metabolic network (A depends on B, but not vice versa: A→B). Nodes and arrows represent metabolites and reactions, respectively. The asymmetric relationship is owing to a converging reaction catalysed by enzyme C, which can compensate for A’s absence. Thus, enzyme A and C are likely to have a negative genetic interaction. (c) Flowchart to predict negative genetic interactions from genome evolution within a three-member protein complex (protein A, B and C). The blue arrow represents the functional asymmetry between two genes inferred from genome evolution. The blue line represents that there is no evolutionary evidence for a functional asymmetry between two genes. Here, both gene A and C are predicted to have functional asymmetry with B, while gene A and C are predicted not to have functional asymmetry.
these genes can kill the cancer cells while leaving the normal cells relatively unaffected. Prioritizing drug targets in such an approach, by predicting negative genetic interactions between the mutated oncogenes/tumour-suppressor genes and other proteins, is, however, not trivial.

Discovering negative genetic interactions mainly depends on laborious and specific experiments, which can be expensive and time-consuming, partially because of the explosion of the number of pairwise gene combinations. Several computational approaches have been developed to predict genetic interactions by integrating multiple types of functional genomic data, such as synthetic lethal data, physical interaction data and co-expression data. These approaches, however, strongly depend on species-specific empirical genetic interaction data as input and therefore do not allow predictions for other species where genetic interaction data are largely unavailable.

Here, we aim to predict negative genetic interactions in protein complexes via the concept of functional asymmetry, which we infer from genome evolution. The example of the cyclin-Cdc28 complex showed that functional asymmetry and negative genetic interaction are linked. This linkage can also be illustrated by enzyme relationships in metabolism. Enzymes in converging pathways have asymmetric relationships with an enzyme in an outgoing pathway (Fig. 1b). Consequently, the enzymes in converging pathways can have negative genetic interactions, as they can compensate for each other’s absence. Analogous to metabolism, we expect that two proteins in a complex with asymmetry to a third protein will have a negative genetic interaction (Fig. 1a,c). Importantly, the functional asymmetry between enzymes in metabolism is indeed reflected in genome evolution.

On the basis of these prior studies, we have developed an evolutionary model to predict asymmetric functional relationships and negative genetic interactions in protein complexes in S. cerevisiae. Our model predicts that almost 75% of the protein complexes in S. cerevisiae contain functionally asymmetric protein pairs. By integrating the information of predicted asymmetry in protein complexes, we show an up to twofold increase in the predictive power for negative genetic interactions relative to randomly chosen protein pairs from a complex. Moreover, our results show a twofold increase in prediction precision compared with an alternative model. After mapping negative genetic interaction predictions from yeast to human, as well as a direct application to human protein complexes, we predict 20 cancer interaction predictions from yeast to human, as well as a direct application to human protein complexes. To answer this question, we asked whether predicted asymmetry is reflected in genome-scale empirical data. We first examined asymmetry in gene essentiality. For a predicted functionally asymmetric pair (A→B) where only one of the proteins is essential, we expect protein B to be the essential one. To test this, we examined those predicted asymmetric pairs where only one of the encoding proteins is essential and quantified to what extent the predicted asymmetry is consistent with asymmetry in gene essentiality. Our analysis reveals that 72% (1,071 out of 1,497) of the asymmetric pairs (A→B) are consistent with asymmetry in gene essentiality, that is, if one of the two genes is essential, it is B (Fig. 3a; one-tailed Fisher’s exact test; P < 2.2e−16).

Many predicted asymmetric pairs have, however, no asymmetry in gene essentiality, simply because the majority of proteins are not strictly essential under standard laboratory conditions (that is, glucose-rich medium). Approximately 40% of the predicted asymmetric pairs are composed of two non-essential genes. Nevertheless, even when proteins are non-essential they can still contribute to fitness and result in significant growth defects after a gene knockout. Similarly to the gene essentiality analysis, we expected that if one of the two proteins in a predicted asymmetric pair (A→B; both non-essential) has a stronger growth defect, it would be protein B. To test this, we examined 511 predicted asymmetric pairs where two non-essential proteins cause different growth defects, and quantified the consistency between the predicted and empirical functional asymmetry. As expected, 63% (322 out of 511) of the cases are consistent (Fig. 3a; one-tailed Fisher’s exact test; P = 1.40e−04), that is, the predicted independent protein B has a stronger growth defect when knocked out. This consistency is robust at various cutoffs on empirical growth defect differences (ranging from 0.0001–0.3). Notably, the level of consistency increased from 63 to 67% when we increased the cutoff to 0.3, that is, where growth defect difference is largest. These results show that the evolutionary model is able to capture asymmetric functional relationships in protein complexes. ESCRT-I, a protein complex functioning in cargo selection in the multivesicular body (MVB) sorting pathway, is one example where the predicted functional asymmetry is supported by solid empirical evidence (Fig. 3b).

Empirical evidence for functional asymmetry. The high frequency of predicted functional asymmetry triggers the question to what extent our predictions are biologically meaningful. To answer this question, we asked whether predicted asymmetry is reflected in genome-scale empirical data. We first examined asymmetry in gene essentiality. For a predicted functionally asymmetric pair (A→B) where only one of the proteins is essential, we expect protein B to be the essential one. To test this, we examined those predicted asymmetric pairs where only one of the encoding proteins is essential and quantified to what extent the predicted asymmetry is consistent with asymmetry in gene essentiality. Our analysis reveals that 72% (1,071 out of 1,497) of the asymmetric pairs (A→B) are consistent with asymmetry in gene essentiality, that is, if one of the two genes is essential, it is B (Fig. 3a; one-tailed Fisher’s exact test; P < 2.2e−16).

Many predicted asymmetric pairs have, however, no asymmetry in gene essentiality, simply because the majority of proteins are not strictly essential under standard laboratory conditions (that is, glucose-rich medium). Approximately 40% of the predicted asymmetric pairs are composed of two non-essential genes. Nevertheless, even when proteins are non-essential they can still contribute to fitness and result in significant growth defects after a gene knockout. Similarly to the gene essentiality analysis, we expected that if one of the two proteins in a predicted asymmetric pair (A→B; both non-essential) has a stronger growth defect, it would be protein B. To test this, we examined 511 predicted asymmetric pairs where two non-essential proteins cause different growth defects, and quantified the consistency between the predicted and empirical functional asymmetry. As expected, 63% (322 out of 511) of the cases are consistent (Fig. 3a; one-tailed Fisher’s exact test; P = 1.40e−04), that is, the predicted independent protein B has a stronger growth defect when knocked out. This consistency is robust at various cutoffs on empirical growth defect differences (ranging from 0.0001–0.3). Notably, the level of consistency increased from 63 to 67% when we increased the cutoff to 0.3, that is, where growth defect difference is largest. These results show that the evolutionary model is able to capture asymmetric functional relationships in protein complexes. ESCRT-I, a protein complex functioning in cargo selection in the multivesicular body (MVB) sorting pathway, is one example where the predicted functional asymmetry is supported by solid empirical evidence (Fig. 3b).

Empirical evidence for negative genetic interactions. An asymmetric functional relationship observed between two proteins A and B can also be linked to a type of relationship known as a negative genetic interaction. The reasoning behind this is that B may not depend on the presence of A, because of the
Subsequently, A can be predicted as independent, dependent or unclassified by applying a cutoff on probability (functionally asymmetric enzyme pairs in the metabolic network). For a protein pair (A–B), the 11 evolutionary variables (Fig. 2b) are used to predict the gain events of A, which is expected to be larger than 0. The six evolutionary and the five relative frequencies all contribute to the prediction of functional conditional probability that A is functionally independent (is independent and B is dependent, or no evidence for asymmetry when A and B have any other combination of predicted relationship).

We specifically focused on triplets where protein A, B and C are predicted to have an evolutionary fan-in motif (Fig. 1b). We therefore first investigated to what extent converging metabolic pathways show negative genetic interactions as a proxy for compensation, that is, double mutants cause more severe growth defects than expected from the two single mutants. Indeed, enzyme pairs in converging pathways show a threefold enrichment in negative genetic interactions compared with non-converging enzyme pairs (Fig. 3c; one-tailed Fisher’s exact test; \(P = 2.42 \times 10^{-11}\)).

Given this result, we expect that in cases where we predict a fan-in motif within a protein complex, the A and C proteins have negative genetic interactions with each other. To address this, we compared fan-in A–C pairs with randomly chosen pairs from the same protein complex (that is, non-motif A–C pairs). Our results reveal that the fraction of negative genetic interactions increases.
Figure 3 | Asymmetric functional relationships and negative genetic interactions. (a) Empirical support for predicted functional asymmetry in gene essentiality and, for non-essential genes, in the growth defect of single-gene knockout. For predicted asymmetric pairs (A → B), the fraction f_{AB} ($f_{AB} = n_{A} / (n_{A} + n_{B})$, where 0 = non-essential or no fitness defect and 1 = essential or substantial growth defect) is expected to be larger than 0.5 (fraction in pairs with no asymmetry). (b) One example of predicted functional asymmetry with experimental support. ESCRT-I is composed of four members, Vps23p, Vps28p, Vps37p and Mvb12p. Mvb12p (blue subunit) is predicted to functionally depend on Vps23p, Vps28p and Vps37p (red) and not vice versa. Structural studies revealed that the functionally dependent subunit, Mvb12p, is a structural stabilizer, which changes the ESCRT-I core complex (Vps23p, Vps28p and Vps37p) from a fan-shaped structure (upper panel) to an elongated structure (lower panel). First, the dependency of Mvb12 on the core complex is supported by the fact that Mvb12p is unstable in cells lacking any of the other ESCRT-I subunits. Second, that Vps23p, Vps29p and Vps37p do not strictly depend on Mvb12p is validated by the findings that certain MVB sorting pathways, such as carboxypeptidase S (CPS) and Ste2 sorting, are effective even if Mvb12p is absent. However, loss of function of Vps23p, Vps28p or Vps37p results in a complete block of the MVB pathway.

(c) Enrichment of negative genetic interactions in fan-in motif A–C pairs. The fraction of negative genetic interaction is defined as $f = N_{neg} / (N_{neg} + N_{pos} + N_{noInteraction})$. P-values in (a) and (c) were calculated with a one-tailed Fisher's exact test and visualized with an asterisk (*) that stands for a P-value < 0.05.

Notably, our model still has a precision of >0.3 when parameterized to the same sensitivity as Pandey’s model (Supplementary Fig. S3).

In total, our model predicted 273 A–C pairs in evolutionary fan-in motifs in S. cerevisiae protein complexes, for most of which (60%) a genetic interaction has not been measured. However, to provide empirical evidence for the predicted negative interactions, we exploited available genetic interaction data in Schizosaccharomyces pombe and Drosophila melanogaster via orthology definitions from STRING7.0 (ref. 29). Following this approach, we found that for ten out of our A–C pairs a genetic interaction has been experimentally found in either in S. pombe or in D. melanogaster and, as expected, most cases (8/10) show a negative genetic interaction in those species (Supplementary Data 1).

Negative genetic interactions reveal cancer drug targets. The screen for negative genetic interactions has been shown to be a valuable strategy in the search for candidate cancer drug targets. The common approach is to find proteins that have a negative genetic interaction with either an oncogene or a tumour-suppressor gene. As mutations in these genes cause cancer, the idea is that mutations in their negative genetic interaction partner would inhibit cancer cells to grow (that is, synthetic lethality) and leave normal cells relatively viable. Although a number of
promising examples have been reported to target cancer cells via synthetic lethality10-13,30, discovering genetic interactions by experimental approaches is very labour intensive. Therefore, we asked whether our model captured conserved genetic interactions between \emph{S. cerevisiae} and other species like \emph{D. melanogaster}, such that it can serve as a framework to establish genetic interactions for medical genetics. Based on the orthologue profiles from STRING7.0 (ref. 29), we found 90.1% (246 out of 273) of the predicted fan-in motifs in yeast are conserved in \emph{D. melanogaster}, that is, all three genes in a fan-in motif are present in \emph{D. melanogaster}. Of these, nine have been examined for genetic interaction in \emph{D. melanogaster}31-33, and all show negative genetic interaction (note, 7/9 have also been found in \emph{S. cerevisiae}). This suggests that our model can be used to predict negative genetic interactions in other species, such as mouse or human, which could provide a basis for prioritizing drug targets.

To achieve the highest coverage, we combined two strategies to predict cancer drug targets: (i) by using orthology mapping from predicted negative interactions from yeast to human and (ii) by a direct application of our model to human protein complexes34,35. By using orthologues of the genes in the predicted fan-in motifs in yeast, we predicted \~ 250 novel negative genetic interaction pairs in human, of which 36 involve a cancer-related gene (oncogene or tumour-suppressor gene)36. Notably, most of these pairs (83.4%, 30/36) have not been reported before as negative interaction (note, 7/9 have also been found in \emph{S. cerevisiae}). This suggests that our model can be used to predict negative genetic interactions in other species, such as mouse or human, which could provide a basis for prioritizing drug targets.

![Figure 4](image-url)

Figure 4 | Prioritized cancer drug targets with empirical support. Thirty prioritized cancer drug targets. The numbers in red represent the 30 promising targets. The numbers in grey represent the genes that failed to be targets as they are either non-essential in cancer cells or are essential in normal cells. In total, 93 genes are predicted to have a negative genetic interaction with a cancer-related gene. By examining gene essentiality in cancer and non-essentiality in normal cells, we prioritized 30 cancer drug targets. Twenty cases are essential in at least one cancer type, that is, breast, ovary or pancreas and non-essential in normal cells. Experimentally detected genetic variation/overexpression of the cancer-related gene and the RNA interference of the predicted targets in the same cancer type or the same cancer cell line were combined suggesting a double mutant. For most of these (16/20), there is empirical evidence that the cancer-related gene is mutated in either the same cancer type or the same cancer cell line as the predicted targets (blue column). For six cases that are confirmed to be non-essential in normal cells, the essentiality in cancer still needs to be examined experimentally. For four cases, the essentiality in both cancer cells and normal cells is not yet measured (red numbers in the pink column).
to be essential in several types of cancer cells38 and non-essential in \textit{D. melanogaster}41. In addition, \textit{TLE1} and \textit{HDAC1} have a confirmed negative genetic interaction in \textit{D. melanogaster}41, which makes \textit{TLE1} a promising drug target for further analysis.

Another example is the predicted interaction between \textit{NSUN2} and \textit{FBXW7} (Fig. 5). \textit{NSUN2} is experimentally found to be essential in cancer cells42, and \textit{FBXW7}, a tumour-suppressor gene, has been found to be mutated in cancer cells43. In normal cells, \textit{NSUN2} and \textit{FBXW7} both function to regulate cellular differentiation via two different mechanisms. \textit{FBXW7} regulates cell differentiation by inhibiting c-Myc44 and proteins in Notch pathway45, and \textit{NSUN2} functions to maintain normal cell differentiation when activated by LEF1/\textit{β}-catenin complex, which is part of Wnt pathway46,47. It has been found that the loss of \textit{FBXW7} results in elevated expression of c-Myc44, which results in an upregulation of \textit{NSUN2} (ref. 48). As a result, \textit{NSUN2} stabilizes the mitotic spindle in fast cell proliferation in cancer cell growth42. Thus, targeting \textit{NSUN2} can kill cancer cells while leaving normal cells relatively unaffected, owing to the compensatory \textit{FBXW7}–Notch pathway. This is further supported by the non-essentiality of \textit{NSUN2} in normal mouse model47.

Discussion

Even though various experimental techniques are available to study protein function, understanding their functions within protein complexes and their relationships between each other in a complex remains a challenge. Here, we have developed a model to predict functional relationships within protein complexes using the evolutionary history of genotypes in terms of gene gain and loss events. We first focused on the relationships in which the function of one protein A depends on the function of another protein B, but in which the reverse relationship is much weaker. We predicted such asymmetry by integrating various evolutionary scenarios, such as, gene B is more frequently gained across evolutionary history in the absence of gene A than vice versa. So, B can occur without A, but A cannot occur without B. To validate the method, we showed that the predicted functional asymmetry is consistent with various sources of empirical evidence, such as asymmetry in gene essentiality and single-knockout growth defects. However, one-third of the gene pairs in the same complex with asymmetry in gene essentiality (633/2,130) have not been captured by our model. Perfect prediction can, however, not be expected, because it is strictly based on complete gene loss and gain. Our model may therefore benefit from more fine-scale evolutionary events, such as the incorporation of mutation rates. Thus, in species where both A and B are still present, there might be asymmetry in the extent to which they have diverged at the sequence level from their respective ancestors. Second, the essentiality and growth defect data sets4,49 cover specific nutrient environments, which might not be experienced by species in our evolutionary model. Such differences in physiological conditions may result in different genome evolution and, as such, it could negatively affect model predictions.

Interestingly, functional asymmetric relationships can be used to predict negative genetic interactions in those cases where multiple proteins, for instance, A and C, have asymmetry with the same protein B. The underlying idea is that functional asymmetry is owing to the fact that A and C can compensate for each other’s absence. Indeed, we have shown that our model increases the
predictive power for negative genetic interactions in *S. cerevisiae* protein complexes by 50–100% relative to random protein pairs from the same complex. Moreover, we predict many novel genetic interactions, of which eight have been experimentally verified in *S. pombe* and *D. melanogaster*. Although this number is not high, this is not unexpected given that genome-scale genetic interaction screens have only been performed in *S. cerevisiae* in regulating cellular differentiation. In cancer cells, loss of function of *FBXW7* results in an elevated expression of c-Myc. Activation of c-Myc results in the upregulation of NSUN2 that is essential for cell proliferation. Owing to a synthetic lethality between *FBXW7* and NSUN2, targeting NSUN2 kills cancer cells, while leaving normal cells relatively unaffected.

Full understanding of the genetic basis of complex diseases and providing a framework to discover drug targets even though there are a number of very promising candidate drug targets discovered by using genetic interactions, effectively identifying them experimentally remains a major challenge. In contrast to other prediction models, our model does not depend on genetic interaction screens, which are available in a very limited number of species. Thus, our model can be applied to predict genetic interactions in species even when no empirical genetic interaction information is available. Moreover, compared with Pandey *et al.*, our model has a significantly higher prediction precision. Our approach is therefore useful to prioritize drug candidates. We found 20 cancer drug targets for which there is empirical evidence that they are essential in tumour cells and predicted ten novel drug targets. Notably, the majority (25/30) has not been measured in yeast or predicted by other computational approaches. These targets are promising given the empirical evidence that all are essential in at least one cancer type, such as breast, pancreas or ovarian cancer, while non-essential in model organisms. Future studies should reveal to what extent these targets are (i) non-essential in the same human healthy cell type, (ii) conserved across different tumour types and (iii) vulnerable for drug compounds.

In the light of medical genetics, the presented approach can be applied to mammals when future protein–protein interaction networks become available for cancer and normal cell lines. This would allow for more specific predictions of cancer drug targets.
It should be noted that although we focused on protein complexes, our model might be used to predict interactions for any gene pair, as long as they are known to have a functional relationship between them. Taken together, this study shows that negative genetic interactions in protein complexes can be predicted by genome evolution, which has an application in searching for drug targets and in understanding human diseases.

Methods

Protein complexes. Four hundred and nine and 2,468 protein complexes of *S. cerevisiae* and human were used to predict negative genetic interactions within them, respectively. For each protein complex, all pair-wise combinations of proteins were generated as input for our evolutionary model.

Reconstruction of ancestral states. We used the presence and absence of orthologous genes across 373 species obtained from STRING 7.0 orthologous groups to reconstruct ancestral states of genes. We inferred the most parsimonious ancestral presence/absence states of each gene by using a rooted trifurcation (Achaea/Eukaryote/Eubacteria) phylogenetic tree of 373 species. All results were obtained using a gain/loss cost ratio of 2/1 and a delayed transition assumption (DELTRAN) in PAUP55. From the ancestral state reconstruction, we generated 11 evolutionary variables as inputs to the following classification step. The integration of these 11 evolutionary variables gives the highest correct classification rate with alternative hypotheses of evolutionary variables. For each gene pair A–B, we examined the following six evolutionary scenarios:

1. Both genes were absent in the ancestor and one was gained in the descendant (d) (a00_d10 or a01_d01), (ii) the presence of only one gene in the ancestor was unchanged in the descendant (a01_d10 or a00_d10), (iii) both or none of the genes were present in the ancestor and one was lost in the descendant (a11_d01 or a11_d10), (iv) a gain of one gene occurred when the other was present in the ancestor (a01_d11 or a10_d11), (v) only one gene was present in the ancestor and was lost in the descendant (a10_d00 or a01_d00) and (vi) only one gene was present in the ancestor and was lost in the descendant while the other gene was gained (a10_d01 or a01_d10) (Fig. 2b).

For gene A, we also calculated five fractions that reflect evolutionary asymmetry between A and B: f1: a11_d01/(a11_d10 + a11_d10), f2: a01_d11/(a01_d11 + a10_d11), f3: a01_d11/(a01_d11 + a10_d10), f4: a01_d11/(a01_d11 + a00_d10) and f5: a01_d11/(a01_d11 + a00_d10).

Evolutionary information to predict asymmetry of gene pairs. First, we reconstructed ancestral states for 2,400 directionally coupled enzyme pairs (functional asymmetry: A→B) in the yeast metabolic network and generated the 11 evolutionary variables. Directional coupling was found by constraining the reaction flux of one to a finite value followed by minimizing and maximizing another, and vice versa. A→B is found when the minimum flux through A is zero while the maximum is a finite value (when constraining B to a finite flux), and the minimum and maximum flux through B is unequal to zero when A is constrained to a finite value. Thus, the activity of A depends on the activity of B, but not the reverse (A→B). Each of the 11 evolutionary variables is a predictor for functional asymmetry between each pair of the 11 variables of A→B. A→B differs from those of an independent B. More specifically, for evolutionary events (i) and (ii), A is expected to occur less often than the independent B. For the other four evolutionary events, A is expected to occur more often than the independent B. Furthermore, we expect f1, f2, f3 and f4 to be larger than 0.5, and f5 to be larger than 0 for asymmetric functional relationships (Supplementary Fig. S1).

Given the fact that these 11 variables are not independent from each other, we used a Tree Augmented Naive Bayes (TAN) classifier to integrate these predictors. The TAN classifier relaxes the assumption of independence of input variables. The classifier is trained on the 2,400 directionally coupled enzyme pairs using WEKA. The classifier estimates conditional probabilities of one gene being independent (s1) or dependent (s2), where s1 + s2 = 1. The gene is predicted to be either independent (if s1 > s2) or dependent (if s2 > s1) with a conditional probability (s), where s = max(s1, s2). To predict the functional relationship in protein complexes by this classifier, we first reconstructed ancestral states for S. cerevisiae protein pairs (A→B) and generated the 11 evolutionary variables for A and B. The functional relationship of A→B is determined as follows: (i) the classifier generates class predictions for A with a probability estimate (s); (ii) identifying predictions with high confidence by a cutoff on s (any prediction where s is smaller than the cutoff remains unclassified); (iii) protein B is predicted in the same way; and (iv) combining the classification result of A and B, A→B is predicted as functional asymmetric when A is dependent and B is independent or vice versa. Otherwise, there is no evidence for functional asymmetry and the pair becomes unclassified (Fig. 2c).

Gene essentiality. Essentiality data were obtained from MIPS database. If a gene is annotated as both essential and non-essential in different sources, the essentiality is assigned according to the majority rule. Otherwise, a gene was marked as ambiguous.

For predicted asymmetric pairs (A→B), we counted cases where only B is essential (nB) and cases where only A is essential (nA). For symmetric pairs (A→B), it is expected that nA is equal to nB. To test against the null hypothesis of no relationship between predicted functional asymmetry and asymmetry in essentiality, we subjected the 2 x 2 contingency table of essential/non-essential versus symmetric/asymmetric to a one-tailed Fisher's exact test.

Growth defect of single-gene knockouts in rich medium. Growth defect of single-gene knockouts was obtained from two studies, which cover 75% of all genes in *S. cerevisiae*. A growth defect was considered as substantial if a gene knockout causes a growth defect >10% (ref. 4).

For predicted asymmetric pairs with two non-essential genes (A→B), we counted cases where a more severe growth defect (nB) and cases where knockout of A causes a more severe growth defect (nA). For functional symmetric pairs (A→B), it is expected that nA is equal to nB. To test against the null hypothesis of no relationship between predicted functional asymmetry and asymmetry in growth defect, we subjected the 2 x 2 contingency table of nA/nB versus symmetric/asymmetric to a one-tailed Fisher's exact test.

Negative genetic interactions in the metabolic network. We obtained fan-in motif A→C pairs for metabolic reactions (Fig. 1c) by using flux coupling between enzymes within the genome-scale metabolic network of *S. cerevisiae* (see above). The fan-in motif A→C pairs have two characteristics: (i) A and C both depend on a third essential protein B (A→B and C→B) and (ii) the A→C pair is uncoupled. For each reaction flux assignment, we used an empirical genetic interaction profile from Szappanos et al. (obtained from the Supplementary Information). If no significant genetic information was available for a pair of genes, we determined it as not measured and excluded it from the analysis.

To test against the null hypothesis of no enrichment of negative genetic interactions in fan-in motif A→C pairs, we summarized the motif A→C/non-motif A→C pairs versus with/without negative genetic interaction in a 2 x 2 contingency table and subjected it to a one-tailed Fisher’s exact test.

Negative genetic interactions in protein complexes. We obtained A→C pairs with evolutionary fan-in motifs (Fig. 1a) from asymmetric functional relationships predicted by the TAN model (Fig. 2c). The evolutionary fan-in motif is characterized by (i) A and C depend on B, but not vice versa and (ii) A does not depend on C and vice versa. To ensure A→C is not an asymmetric pair, we applied the cutoff for significant functional asymmetry to z > 0.7. At this cutoff, the correct classification rate increases the most at the smallest cost of samples size (Supplementary Fig. S4).

Genetic interaction data were obtained from BioGRID11. As BioGRID does not specify whether the genetic interaction of a gene pair has been measured, we integrated the original data from nine high-throughput data sets to generate a list of measured genetic interactions (either positive, negative or no interaction). If a pair of genes has both a negative and a positive genetic interaction, the genetic interaction was assigned according to the majority rule.

To test against the null hypothesis of no enrichment of negative genetic interactions in pairs with a fan-in motif, we summarized motif A→C/non-motif A→C versus with/without negative genetic interaction in a 2 x 2 contingency table and tested using a one-tailed Fisher’s exact test.

Prediction of cancer drug targets. We mapped predicted negative genetic interactions from yeast to human via orthology from STRING7.0 (ref. 29). To retrieve drug targets, we first mapped cancer gene information from the Cancer Genome Project to the predicted genetic interactions to extract predictions involving one oncogene or tumour-suppressor gene. Then we mapped gene essentiality measurements in cancer from Marcotte et al. to the predictions. In addition, non-essentiality of the drug targets in normal cells/tissues was examined by literature mining covering *M. Musculus, D. melanogaster* or *D. rerio*.

To predict targets directly from human protein complexes, we trained our model on negative asymmetric functional relationships from the human genome-scale metabolic network via Flux Coupling Analysis (see also above for yeast and *D. rerio*). Subsequently, we used experimentally determined protein complexes to predict human-specific negative genetic interactions via the evolutionary fan-in motifs. Finally, we examined gene essentiality among predicted drug targets in cancer and normal cells/tissues as outlined above.

References

© 2013 Macmillan Publishers Limited. All rights reserved.