Observation of Associated Near-side and Away-side Long-range Correlations in $\sqrt{s_{NN}} = 5.02$ TeV Proton–lead Collisions with the ATLAS Detector

The ATLAS Collaboration

Abstract

Two-particle correlations in relative azimuthal angle ($\Delta \phi$) and pseudorapidity ($\Delta \eta$) are measured in $\sqrt{s_{NN}} = 5.02$ TeV $p+Pb$ collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb$^{-1}$ of data as a function of transverse momentum (p_T) and the transverse energy (ΣE_T^{Pb}) summed over $3.1 < \eta < 4.9$ in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range ($2 < |\Delta \eta| < 5$) near-side ($\Delta \phi \sim 0$) correlation that grows rapidly with increasing ΣE_T^{Pb}. A long-range away-side ($\Delta \phi \sim \pi$) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣE_T^{Pb}, is found to match the near-side correlation in magnitude, shape (in $\Delta \eta$ and $\Delta \phi$) and ΣE_T^{Pb} dependence. The resultant $\Delta \phi$ correlation is approximately symmetric about $\pi/2$, and is consistent with a dominant $\cos 2\Delta \phi$ modulation for all ΣE_T^{Pb} ranges and particle p_T.
Observation of Associated Near-side and Away-side Long-range Correlations in \(\sqrt{s_{_{NN}}}=5.02 \) TeV Proton–lead Collisions with the ATLAS Detector

ATLAS Collaboration

Two-particle correlations in relative azimuthal angle (\(\Delta \phi \)) and pseudorapidity (\(\Delta \eta \)) are measured in \(\sqrt{s_{_{NN}}}=5.02 \) TeV \(p+Pb \) collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 \(\mu b^{-1} \) of data as a function of transverse momentum (\(p_T \)) and the transverse energy (\(\Sigma E_T^{Pb} \)) summed over \(3.1 < \eta < 4.9 \) in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (\(2 < |\Delta \eta| < 5 \)) correlation that grows rapidly with increasing \(\Sigma E_T^{Pb} \). A long-range away-side (\(\Delta \phi \sim \pi \)) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small \(\Sigma E_T^{Pb} \), is found to match the near-side correlation in magnitude, shape (in \(\Delta \eta \) and \(\Delta \phi \)) and \(\Sigma E_T^{Pb} \) dependence. The resultant \(\Delta \phi \) correlation is approximately symmetric about \(\pi/2 \), and is consistent with a dominant \(\cos 2\Delta \phi \) modulation for all \(\Sigma E_T^{Pb} \) ranges and particle \(p_T \).

PACS numbers: 25.75.-q

Proton–nucleus (\(p+A \)) collisions at the Large Hadron Collider (LHC) provide both an interesting environment for the study of QCD at high parton density and important baseline measurements, especially for the interpretation of results from the LHC Pb+Pb program [1]. In particular, it has been suggested that \(p+Pb \) collisions at LHC energies are an important system for the study of a possible saturation of the growth of parton densities at low Bjorken-\(x \).

High-multiplicity events provide a rich environment for studying observables associated with high parton densities in hadronic collisions. An important tool to probe the physics of these events is the two-particle correlation function measured in terms of the relative pseudorapidity (\(\Delta \eta \)) and azimuthal angle (\(\Delta \phi \)) of selected particle pairs, \(C(\Delta \eta, \Delta \phi) \). The first studies of two-particle correlation functions in the highest-multiplicity \(p+p \) collisions at the LHC [2] showed an enhanced production of pairs of particles at \(\Delta \phi \sim 0 \), with the correlation extending over a wide range in \(\Delta \eta \), a feature frequently referred to as a “ridge.” Many of the physics mechanisms proposed to explain the \(p+p \) ridge, including multi-parton interactions [3], parton saturation [4–6], and collective expansion of the final state [7], are also expected to be relevant in \(p+Pb \) collisions. A recent measurement by the CMS collaboration [8] has demonstrated that a ridge is clearly visible over \(|\Delta \eta| < 4 \) in high-multiplicity \(p+Pb \) collisions at the LHC. During final preparation of this Letter, the ALICE collaboration submitted a Letter addressing similar physics, within the range \(|\Delta \eta| < 1.8 \), with some differences in the analysis technique [9].

To provide further insight into the physical origin of these long-range correlations, this Letter presents ATLAS measurements of two-particle angular correlations over \(|\Delta \eta| < 5 \) in \(p+Pb \) collisions, based on an integrated luminosity of approximately 1 \(\mu b^{-1} \) recorded during a short run in September 2012. The LHC was configured with a 4 TeV proton beam and a 1.57 TeV per-nucleon Pb beam that together produced collisions with a nucleon–nucleon center-of-mass energy of \(\sqrt{s_{_{NN}}}=5.02 \) TeV and a rapidity shift of \(-0.47 \) relative to the ATLAS rest frame [10].

The measurements presented in this Letter are performed using the ATLAS inner detector (ID), forward calorimeters (FCal), minimum-bias trigger scintillators (MBTS), and the trigger and data acquisition systems [11]. The ID measures charged particles within \(|\eta| < 2.5 \) using a combination of silicon pixel detectors, silicon micro-strip detectors, and a straw-tube transition radiation tracker, all immersed in a 2 T axial magnetic field [12]. The MBTS detect charged particles over \(2.1 < |\eta| < 3.9 \) using two hodoscopes of 16 counters positioned at \(z = \pm 3.6 \) m. The FCal consists of two sections that cover \(3.1 < |\eta| < 4.9 \). The FCal modules are composed of tungsten and copper absorbers with liquid argon as the active medium, which together provide 10 interaction lengths of material. Minimum-bias \(p+Pb \) collisions are selected by a trigger that requires a signal in at least two MBTS counters.

The \(p+Pb \) events used for this analysis are required to have a reconstructed vertex containing at least two associated tracks, with its \(z \) position satisfying \(|z_{\text{vtx}}| < 150 \) mm. Non-collision backgrounds and photonuclear interactions are suppressed by requiring at least one hit in a MBTS counter on each side of the interaction point, and the difference between times measured on the two sides to be less than 10 ns. Events containing multiple \(p+Pb \) collisions (pileup) are suppressed by rejecting events with two reconstructed vertices that are separated in \(z \) by more than 15 mm. The residual pileup fraction is estimated to be \(\lesssim 10^{-4} \). About 1.95 million events pass these event selection criteria.

Charged particle tracks are reconstructed in the ID using an algorithm optimized for \(p+p \) minimum-bias measurements [13]. In this analysis, the tracks are required to have \(p_T > 0.3 \) GeV and \(|\eta| < 2.5 \), at least seven hits
in the silicon detectors (out of a typical value of 11), and a hit in the first pixel layer when one is expected. In addition, the transverse (d_0) and longitudinal ($z_0 \sin \theta$) impact parameters of the tracks measured with respect to the primary vertex are required to be less than 1.5 mm and to satisfy $|d_0/\sigma_{d_0}| < 3$ and $|z_0 \sin \theta/\sigma_z| < 3$, respectively, where σ_{d_0} and σ_z are uncertainties on d_0 and $z_0 \sin \theta$ obtained from the track-fit covariance matrix.

The efficiency, $\epsilon(p_T, \eta)$, for track reconstruction and track selection cuts is evaluated using $p+Pb$ Monte Carlo events produced with the HIJING event generator [14] with a center-of-mass boost matching the beam conditions. The response of the detector is simulated using GEANT4 [15, 16] and the resulting events are reconstructed with the same algorithms as applied to the data. The efficiency increases with p_T by 6% between 0.3 and 0.5 GeV, and varies only weakly for $p_T > 0.5$ GeV, where it ranges from 82% at $\eta = 0$ to 70% at $|\eta| = 2$ and 60% at $|\eta| > 2.4$. It is also found to vary by less than 2% over the range of ΣE^p_T observed in the $p+Pb$ data.

The two-particle correlation (2PC) analyses are performed in different intervals of ΣE^p_T, the sum of transverse energy measured in the FCal with $3.1 < \eta < 4.9$ (in the z-direction of the lead beam) with no correction for the difference in response to electrons and hadrons. The distribution of ΣE^p_T for events passing all selection criteria is shown in Fig. 1. These events are divided into 12 ΣE^p_T intervals (indicated by vertical lines in Fig. 1) to study the variation of 2PC with overall event activity. Two larger intervals, $\Sigma E^p_T > 80$ GeV and $\Sigma E^p_T < 20$ GeV, containing 2% and 52% of the events, respectively, hereafter referred to as “central” and “peripheral,” are used for detailed studies of the 2PC at high and low overall event activity. The quantity ΣE^p_T instead of charged particle multiplicity is used to characterize the event activity, since the latter is observed to have strong correlations with the 2PC measurements, particularly for events selected with low and high multiplicities. However, for reference, the average ($\langle N_{ch} \rangle$) and the standard deviation ($\sigma_{N_{ch}}$) of the efficiency-corrected multiplicity of charged particles with $p_T > 0.4$ GeV and $|\eta| < 2.5$ have been calculated for each ΣE^p_T range, yielding $\langle N_{ch} \rangle = 150 \pm 7, \sigma_{N_{ch}} = 35 \pm 2$ for central events and $\langle N_{ch} \rangle = 25 \pm 1, \sigma_{N_{ch}} = 18 \pm 1$ for peripheral events.

The correlation functions are given [17–19] by:

$$C(\Delta \phi, \Delta \eta) = \frac{S(\Delta \phi, \Delta \eta)}{B(\Delta \phi, \Delta \eta)}, \quad C(\Delta \phi) = \frac{S(\Delta \phi)}{B(\Delta \phi)},$$

where $\Delta \phi = \phi_a - \phi_b$ and $\Delta \eta = \eta_a - \eta_b$ and S and B represent pair distributions constructed from the same event and from “mixed events,” [20] respectively. The labels a and b denote the two particles in the pair (conventionally referred to as “trigger” and “associated” particles, respectively [8]), which may be selected from different p_T intervals. The mixed-event distribution, $B(\Delta \phi, \Delta \eta)$, that measures uncorrelated pair yields was constructed by choosing pairs of particles from different events of similar z_{vtx} and track multiplicity, to match the effects of detector acceptance, occupancy, and material on $S(\Delta \phi, \Delta \eta)$, and of similar ΣE^p_T. The 1D distributions $S(\Delta \phi)$ and $B(\Delta \phi)$ are obtained by integrating $S(\Delta \phi, \Delta \eta)$ and $B(\Delta \phi, \Delta \eta)$, respectively, over $2 < |\Delta \eta| < 5$. This $|\Delta \eta|$ range is chosen to focus on the long-range features of the correlation functions. The normalization $C(\Delta \phi, \Delta \eta)$ is chosen such that the $\Delta \phi$-averaged value of $C(\Delta \phi)$ is unity. To correct $S(\Delta \phi, \Delta \eta)$ and $B(\Delta \phi, \Delta \eta)$ for the inefficiencies, each particle is weighted by the inverse of the tracking efficiency. Remaining detector distortions not accounted for in the efficiency largely cancel in the same-event to mixed-event ratio.

Examples of 2D correlation functions are shown in Figs. 2(a) and 2(b) for charged particles with $0.5 < p_T^a, b < 4$ GeV in peripheral and central events. The correlation function for peripheral events shows a sharp peak centered at $(\Delta \phi, \Delta \eta) = (0, 0)$ due to pairs originating from the same jet, Bose-Einstein correlations, as well as high-p_T resonance decays, and a broad structure at $\Delta \phi \sim \pi$ from dijets, low-p_T resonances, and momentum conservation that is collectively referred to as “recoil” in the remainder of this Letter. In the central events, the correlation function reveals a ridge-like structure at $\Delta \phi \sim 0$ (the “near-side”) that extends over the full measured $\Delta \eta$ range, with an amplitude of a few percent. The distribution at $\Delta \phi \sim \pi$ (the “away-side”) is also broadened relative to peripheral events, consistent with the presence of a long-range component in addition to that seen in peripheral events.

The strength of the long-range component is quantified by the “per-trigger yield,” $Y(\Delta \phi)$, which measures the average number of particles correlated with each trigger particle, folded into the $0 – \pi$ range [2, 17–19]:

$$Y(\Delta \phi) = \left(\frac{\int B(\Delta \phi) d\Delta \phi}{\pi N_a} \right) C(\Delta \phi) - b_{ZYM},$$

![FIG. 1. Distribution of ΣE^p_T for minimum-bias $p+Pb$ events. Vertical lines indicate the boundaries of the event activity classes. Shaded bands indicate the larger peripheral and central intervals having $\Sigma E^p_T < 20$ GeV and $\Sigma E^p_T > 80$ GeV, respectively.](image-url)
are overlaid with functions $1 - \cos \Delta \phi$ shape with an away-side maximum, characteristic of a recoil contribution. In contrast, the yield in the central events has near-side and away-side peaks with the away-side peak having a larger magnitude. These features are consistent with the onset of a significant $\cos 2\Delta \phi$ component in the distribution. To quantify further the properties of these long-range components, the distributions are integrated over $|\Delta \phi| < \pi/3$ and $|\Delta \phi| > 2\pi/3$, and plotted as a function of ΣE_T^{Pb} in Fig. 2(d). The near-side yield is close to 0 for $\Sigma E_T^{Pb} < 20$ GeV and increases with ΣE_T^{Pb}, consistent with the CMS result [8]. The away-side yield shows a similar variation as a function of ΣE_T^{Pb}, except that it starts at a value significantly above zero, even for events with low ΣE_T^{Pb}. The yield difference between these two regions is found to be approximately independent of ΣE_T^{Pb}, indicating that the growth in the yield with increasing ΣE_T^{Pb} is the same on the near-side and away-side.

To further investigate the connection between the near-side and away-side, the $Y(\Delta \phi)$ distributions for peripheral and central events are shown in Fig. 3 in various p_T^a ranges with $0.5 < p_T^a < 4$ GeV. Distributions of the difference between central and peripheral yields, $\Delta Y(\Delta \phi)$, are also shown in this Figure. This difference is observed to be nearly symmetric around $\Delta \phi = \pi/2$. To illustrate this symmetry, the $\Delta Y(\Delta \phi)$ distributions in Fig. 3 are overlaid with functions $a_0 + 2a_2 \cos 2\Delta \phi$ and $a_0 + 2a_2 \cos 2\Delta \phi + 2a_3 \cos 3\Delta \phi$, with the coefficients calculated as $a_n = \langle \Delta Y(\Delta \phi) \cos n\Delta \phi \rangle$. Using only the a_0 and a_2 terms describes the ΔY distributions reasonably well, indicating that the long-range component of the two-particle correlations can be approximately described by a recoil contribution plus a $\Delta \phi$-symmetric component. The inclusion of the a_3 term improves slightly the agreement with the data.

The analysis procedure is validated by measuring correlation functions in fully simulated HIJING events [15, 16] and comparing it to the correlations measured using the generated particles. The agreement is better than 2% for $C(\Delta \phi)$ and better than 3% for $Y(\Delta \phi)$.

Figure 2(c) shows the $Y(\Delta \phi)$ distributions for $2 < |\Delta \eta| < 5$ in peripheral and central events separately. The yield for the peripheral events has an approximate $1 - \cos \Delta \phi$ shape with an away-side maximum, characteristic of a recoil contribution. In contrast, the yield in the central events has near-side and away-side peaks with the away-side peak having a larger magnitude. These features are consistent with the onset of a significant $\cos 2\Delta \phi$ component in the distribution. To quantify further the properties of these long-range components, the distributions are integrated over $|\Delta \phi| < \pi/3$ and $|\Delta \phi| > 2\pi/3$, and plotted as a function of ΣE_T^{Pb} in Fig. 2(d). The near-side yield is close to 0 for $\Sigma E_T^{Pb} < 20$ GeV and increases with ΣE_T^{Pb}, consistent with the CMS result [8]. The away-side yield shows a similar variation as a function of ΣE_T^{Pb}, except that it starts at a value significantly above zero, even for events with low ΣE_T^{Pb}. The yield difference between these two regions is found to be approximately independent of ΣE_T^{Pb}, indicating that the growth in the yield with increasing ΣE_T^{Pb} is the same on the near-side and away-side.

To further investigate the connection between the near-side and away-side, the $Y(\Delta \phi)$ distributions for peripheral and central events are shown in Fig. 3 in various p_T^a ranges with $0.5 < p_T^a < 4$ GeV. Distributions of the difference between central and peripheral yields, $\Delta Y(\Delta \phi)$, are also shown in this Figure. This difference is observed to be nearly symmetric around $\Delta \phi = \pi/2$. To illustrate this symmetry, the $\Delta Y(\Delta \phi)$ distributions in Fig. 3 are overlaid with functions $a_0 + 2a_2 \cos 2\Delta \phi$ and $a_0 + 2a_2 \cos 2\Delta \phi + 2a_3 \cos 3\Delta \phi$, with the coefficients calculated as $a_n = \langle \Delta Y(\Delta \phi) \cos n\Delta \phi \rangle$. Using only the a_0 and a_2 terms describes the ΔY distributions reasonably well, indicating that the long-range component of the two-particle correlations can be approximately described by a recoil contribution plus a $\Delta \phi$-symmetric component. The inclusion of the a_3 term improves slightly the agreement with the data.

The near-side and away-side yields integrated over $|\Delta \phi| < \pi/3$ and $|\Delta \phi| > 2\pi/3$, respectively (Y_{int}), and the differences between those integrated yields in central and peripheral events (ΔY_{int}) are shown in Fig. 4 as a function of p_T^a. The yields are shown separately for the two ΣE_T^{Pb} ranges in panels (a)–(b) and the differences are shown in panels (c)–(d). Qualitatively, the differences have a similar p_T^a dependence and magnitude on the near-side and away-side; they rise with p_T^a and reach a maximum around 3–4 GeV. This pattern is visible for the near-side even before subtraction, as shown in panel (a), but is less evident in the unsubtracted away-side due to the dominant contribution of the recoil component.

where N_a denotes the number of efficiency-weighted trigger particles, and b_{ZYM} represents the pedestal arising from uncorrelated pairs. The parameter b_{ZYM} is determined via a zero-yield-at-minimum (ZYAM) method [17, 21] in which a second-order polynomial fit to $C(\Delta \phi)$ is used to find the location of the minimum point, $\Delta \phi_{ZYM}$, and from this to determine b_{ZYM}. The stability of the fit is studied by varying the $\Delta \phi$ fit range. The uncertainty in b_{ZYM} depends on the local curvature around $\Delta \phi_{ZYM}$, and is estimated to be 0.03%–0.1% of the minimum value of $C(\Delta \phi)$. At high p_T where the number of measured counts is low, this uncertainty is of the same order as the statistical uncertainty.

The systematic uncertainties due to the tracking efficiency are found to be negligible for $C(\Delta \phi)$, since detector effects largely cancel in the correlation function ratio. However $Y(\Delta \phi)$ is sensitive to the uncertainty on the tracking efficiency correction for the associated particles. This uncertainty is estimated by varying the track quality cuts and the detector material in the simulation, re-analyzing the data using corresponding Monte Carlo efficiencies and evaluating the change in the extracted $Y(\Delta \phi)$. The resulting uncertainty on $Y(\Delta \phi)$ is estimated to be 2.5% due to the track selection and 2%–3% related to the limited knowledge of detector material.
A similar dependence is observed for long-range correlations in Pb+Pb collisions at approximately the same \(p_T \) [22, 23].

The relative amplitude of the \(\cos n \Delta \phi \) modulation of \(\Delta Y (\Delta \phi) \), \(c_n \), for \(n = 2, 3 \) can be estimated using \(a_n \), and the extracted value of \(b_{ZYAM}^C \) for central events:

\[
c_n = a_n / (b_{ZYAM}^C + a_0). \tag{3}
\]

Figure 4(e) shows \(c_2 \) and \(c_3 \) as a function of \(p_T^A \) for \(0.5 < p_T^A < 4 \text{ GeV} \). The value of \(c_2 \) is much larger than \(c_3 \) and exhibits a behavior similar to \(\Delta Y (\Delta \phi) \) at the near-side and away-side. Using the techniques discussed in Ref. [23], \(c_n \) can be converted into an estimate of \(s_n \), the average \(n^{th} \) Fourier coefficient of the event-by-event single-particle \(\phi \) distribution, by assuming the factorization relation \(c_n (p_T^A, p_T^B) = s_n (p_T^A) s_n (p_T^B) \). From this, \(s_n (p_T^A) \) is calculated as

\[
s_n (p_T^A) = c_n (p_T^A, p_T^B) / \sqrt{c_n (p_T^A, p_T^A)},
\]

where \(c_n (p_T^A, p_T^B) \) is obtained from Eq. (3) using the \(a_n \) extracted from the difference between the central and peripheral data shown in Fig. 2(c). The \(s_2 (p_T^A) \) values obtained this way exceed 0.1 at \(p_T \sim 2-4 \text{ GeV} \), as shown in Fig. 4(f). The \(s_3 (p_T^A) \) values are smaller than \(s_2 (p_T^A) \) over the measured \(p_T \) range. The factorization relation used to compute \(s_2 (p_T^A) \) is found to be valid within 10%-20% when selecting different sub-ranges of \(p_T^A \) within 0.5-4 GeV, while the precision of \(s_3 (p_T^A) \) data does not allow a quantitative test of the factorization. The analysis is also repeated for correlation functions separately constructed from like-sign pairs and unlike-sign pairs, and the resulting \(c_n \) and \(s_n \) coefficients are found to be consistent within their statistical and systematic uncertainties.

In summary, ATLAS has measured two-particle correlation functions in \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \) \(p+Pb \) collisions in different intervals of \(\Sigma E_{T}^{h} \) over \(2 < |\Delta \eta| < 5 \). An away-side contribution is observed that grows rapidly with increasing \(\Sigma E_{T}^{h} \) and which matches many essential features of the near-side ridge observed here, as well as in previous high-multiplicity \(p+p \), \(p+Pb \) and \(Pb+Pb \) data at the LHC. Thus, while the ridge in \(p+p \) and \(p+Pb \) collisions has been characterized as a near-side phenomenon, these results show that it has both near-side and away-side components that are symmetric around \(\Delta \phi = \pi/2 \). With \(\Delta \phi \) dependence that is approximately described by a \(\cos 2 \Delta \phi \) modulation. A Fourier decomposition of the correlation function, \(C(\Delta \phi) \), yields a pair \(\cos 2 \Delta \phi \) amplitude of about 0.01 at \(p_T \sim 3 \text{ GeV} \), corresponding to a single-particle amplitude of about 0.1. Similar
findings are obtained independently by the ALICE collaboration [9], albeit over a more restricted phase space ($|\Delta y| < 1.8$ and $p_T < 2 - 4$ GeV). The two results are found to be consistent within this common region.

Some of the features of the data, including the presence of an away-side component, are qualitatively predicted in the Color Glass Condensate approach [6] which models saturation of the parton distribution in the Pb nucleus. The estimated amplitudes of the modulation on the single-particle level are also found to be comparable in magnitude and p_T dependence to similar modulations observed in heavy-ion collisions, commonly attributed to collective expansion of the hot, dense matter [23]. Thus, although the original motivation for this work was to study the possible effects of high parton density in the initial state of $p+Pb$ collisions, the results presented here are also consistent with contributions of final-state collective effects in high-multiplicity events [24, 25].

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNIS, Poland; GRICES and ICTS, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CERN-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[10] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. For the $p+Pb$ collisions, the incident Pb beam traveled in the $+z$ direction. The pseudorapidity is defined in laboratory coordinates in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.
24 (a)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b)Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c)Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d)Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a)National Institute of Physics and Nuclear Engineering, Bucharest; (b)University Politehnica Bucharest, Bucharest; (c)West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a)Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b)Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b)Department of Modern Physics, University of Science and Technology of China, Anhui; (c)Department of Physics, Nanjing University, Jiangsu; (d)School of Physics, Shandong University, Shandong; (e)Physics Department, Shanghai Jiao Tong University, Shanghai, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a)INFN Gruppo Collegato di Cosenza; (b)Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States of America
41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham NC, United States of America
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a)INFN Sezione di Genova; (b)Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a)E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b)High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b)Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c)ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 Department of Physics, Indiana University, Bloomington IN, United States of America
61 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
62 University of Iowa, Iowa City IA, United States of America
63 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
66 Graduate School of Science, Kobe University, Kobe, Japan
67 Faculty of Science, Kyoto University, Kyoto, Japan
68 Kyoto University of Education, Kyoto, Japan
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Department of Physics, University of Warwick, Coventry, United Kingdom

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison WI, United States of America

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven CT, United States of America

Yerevan Physics Institute, Yerevan, Armenia

Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Department of Physics, King’s College London, London, United Kingdom

b Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal

c Also at Facultade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal

d Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

e Also at Department of Physics, University of Johannesburg, Johannesburg, South Africa

f Also at TRIUMF, Vancouver BC, Canada

Also at Department of Physics, California State University, Fresno CA, United States of America

Also at Novosibirsk State University, Novosibirsk, Russia

Also at Department of Physics, University of Coimbra, Coimbra, Portugal

Also at Università di Napoli Parthenope, Napoli, Italy

Also at Institute of Particle Physics (IPP), Canada

Also at Department of Physics, Middle East Technical University, Ankara, Turkey

Also at Louisiana Tech University, Ruston LA, United States of America

Also at Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

Also at Department of Physics, University of Cape Town, Cape Town, South Africa

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany

Also at Manhattan College, New York NY, United States of America

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan

Also at School of Physics, Shandong University, Shandong, China

Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy

Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

Also at Section de Physique, Université de Genève, Geneva, Switzerland

Also at Departamento de Física, Universidade de Minho, Braga, Portugal

Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America

Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary

Also at International School for Advanced Studies (SISSA), Trieste, Italy

Also at Institute of Physics, Jagiellonian University, Krakow, Poland

Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia

Also at Nevis Laboratory, Columbia University, Irvington NY, United States of America

Also at Department of Physics, Oxford University, Oxford, United Kingdom

Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa

* Deceased