Measurement of direct CP violation parameters in $B^\pm \to J/\psi K^\pm$ and $B^\pm \to J/\psi \pi^\pm$ decays with 10.4 fb$^{-1}$ of Tevatron data

(The D0 Collaboration)

1 LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
2 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
3 Universidade Federal do ABC, Santo André, Brazil
4 University of Science and Technology of China, Hefei, People’s Republic of China
5 Universidad de los Andes, Bogotá, Colombia
6 Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
7 Czech Technical University in Prague, Prague, Czech Republic
8 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
9 Universidad San Francisco de Quito, Quito, Ecuador
10 LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
11 LPSC, Université Joseph Fourier Grenoble I, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
12 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
13 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
14 LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France
15 CEA, Ifyu, SPP, Saclay, France
16 IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
17 IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
18 III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
19 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
20 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
21 Institut für Physik, Universität Mainz, Mainz, Germany
22 Ludwig-Maximilians-Universität München, München, Germany
23 Panjab University, Chandigarh, India
24 Delhi University, Delhi, India
25 Tata Institute of Fundamental Research, Mumbai, India
26 University College Dublin, Dublin, Ireland
27 Korea Detector Laboratory, Korea University, Seoul, Korea
28 CINVESTAV, Mexico City, Mexico
29 Nikhef, Science Park, Amsterdam, the Netherlands
30 Radboud University Nijmegen, Nijmegen, the Netherlands
31 Joint Institute for Nuclear Research, Dubna, Russia
32 Institute for Theoretical and Experimental Physics, Moscow, Russia
33 Moscow State University, Moscow, Russia
34 Institute for High Energy Physics, Protvino, Russia
35 Petersburg Nuclear Physics Institute, St. Petersburg, Russia
36 Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain
37 Uppsala University, Uppsala, Sweden
38 Lancaster University, Lancaster LA1 4YB, United Kingdom
39 Imperial College London, London SW7 2AZ, United Kingdom
40 The University of Manchester, Manchester M13 9PL, United Kingdom
41 University of Arizona, Tucson, Arizona 85721, USA
42 Florida State University, Tallahassee, Florida 32306, USA
43 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
44 University of Illinois at Chicago, Chicago, Illinois 60607, USA
45 Northern Illinois University, DeKalb, Illinois 60115, USA
46 Northwestern University, Evanston, Illinois 60208, USA
47 Indiana University, Bloomington, Indiana 47405, USA
48 Purdue University Calumet, Hammond, Indiana 46323, USA
49 University of Notre Dame, Notre Dame, Indiana 46556, USA
50 Iowa State University, Ames, Iowa 50011, USA
51 University of Kansas, Lawrence, Kansas 66045, USA
52 Louisiana Tech University, Ruston, Louisiana 71272, USA
53 Northeastern University, Boston, Massachusetts 02115, USA
54 University of Michigan, Ann Arbor, Michigan 48109, USA
55 Michigan State University, East Lansing, Michigan 48824, USA
56 University of Mississippi, University, Mississippi 38677, USA
57 University of Nebraska, Lincoln, Nebraska 68588, USA
We present a measurement of the direct CP-violating charge asymmetry in B^\pm mesons decaying to $J/\psi K^\pm$ and $J/\psi \pi^\pm$ where J/ψ decays to $\mu^+\mu^-$, using the full Run II data set of 10.4 fb$^{-1}$ of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. A difference in the yield of B^- and B^+ mesons in these decays is found by fitting to the difference between their reconstructed invariant mass distributions resulting in asymmetries of $A^{J/\psi K} = [0.59 \pm 0.37] \%$, which is the most precise measurement to date, and $A^{J/\psi \pi} = [-4.2 \pm 4.5] \%$. Both measurements are consistent with standard model predictions.

PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh, 14.40.Nd

Currently all measurements of CP violation, either in decay, mixing, or in the interference between the two, have been consistent with the presence of a single phase in the CKM matrix. The standard model predicts that for $b \to sc\bar{c}$ decays, the tree and penguin contributions have the same weak phase, and thus no direct CP violation is expected in the decays of B^\pm mesons to $J/\psi K^\pm$. Estimates of the effect of penguin loops [1] show that there could be a small amount of direct CP violation of up to $O(0.3\%)$. A measurement of a relatively large charge asymmetry would indicate the existence of physics beyond the standard model [1,3]. In the transition $b \to dc\bar{c}$, the tree and penguin contributions have different phases, and there may be measurable levels of CP violation in the decay $B^\pm \to J/\psi \pi^\pm$ [4,5].

The CP-violating charge asymmetry in the decays $B^\pm \to J/\psi K^\pm$ and $B^\pm \to J/\psi \pi^\pm$ are defined as

$$A^{J/\psi K} = \frac{\Gamma(B^- \to J/\psi K^-) - \Gamma(B^+ \to J/\psi K^+)}{\Gamma(B^- \to J/\psi K^-) + \Gamma(B^+ \to J/\psi K^+)}$$

$$A^{J/\psi \pi} = \frac{\Gamma(B^- \to J/\psi \pi^-) - \Gamma(B^+ \to J/\psi \pi^+)}{\Gamma(B^- \to J/\psi \pi^-) + \Gamma(B^+ \to J/\psi \pi^+)}$$

Previous measurements of $A^{J/\psi K}$ [6,10] have been averaged by the Particle Data Group with the result $A^{J/\psi K} = [0.1 \pm 0.7] \%$ [11]. The most precise measurement of $A^{J/\psi K}$ was made by the Belle collaboration [3], with a total uncertainty of 0.54%. The most precise measurement of $A^{J/\psi \pi}$ was made by the LHCb collaboration [12], with a total uncertainty of 2.9%. The LHCb measurement is actually a measurement of the difference, $A^{J/\psi \pi} - A^{J/\psi K}$, and assumes that $A^{J/\psi K}$ is zero. The previous measurement made by the D0 Collaboration [7] has a total uncertainty of 0.68% for $A^{J/\psi K}$ and 8.5% for $A^{J/\psi \pi}$ using a data sample of 2.8 fb$^{-1}$ of proton-antiproton collisions.

This Letter presents substantially improved measurements of $A^{J/\psi K}$ and $A^{J/\psi \pi}$ using the full Tevatron Run II data sample with an integrated luminosity of 10.4 fb$^{-1}$. We assume there is no production asymmetry between B^+ and B^- mesons in proton-antiproton collisions. An advantage of these decay modes into $J/\psi X^\pm$ is that no assumptions on the CP symmetry of subsequent charm decays need to be made.

These updated measurements of $A^{J/\psi K}$ and $A^{J/\psi \pi}$ make use of the methods for extracting asymmetries used in the analyses of the time-integrated flavor-specific semileptonic charge asymmetry in the decays of neutral B mesons [13,14]. We measure the raw asymmetries

$$A_{\text{raw}}^{J/\psi K} = \frac{N_{J/\psi K^}\text{r}-N_{J/\psi K^+}}{N_{J/\psi K^-} + N_{J/\psi K^+}}$$

$$A_{\text{raw}}^{J/\psi \pi} = \frac{N_{J/\psi \pi^-}\text{r}-N_{J/\psi \pi^+}}{N_{J/\psi \pi^0} + N_{J/\psi \pi^+}}$$

where $N_{J/\psi K^-} - (N_{J/\psi K^+})$ is the number of reconstructed $B^- \to J/\psi K^- (B^+ \to J/\psi K^+)$ decays, and $N_{J/\psi \pi^-} - (N_{J/\psi \pi^+})$ is the number of reconstructed $B^- \to J/\psi \pi^- (B^+ \to J/\psi \pi^+)$ decays. The charge asymmetry in B^\pm decays is then given by (neglecting any terms second-order or higher in the asymmetry)

$$A^{J/\psi K} = A_{\text{raw}}^{J/\psi K} + A_K$$

$$A^{J/\psi \pi} = A_{\text{raw}}^{J/\psi \pi} + A_\pi$$
where \(A_K \) is the dominant correction and is the reconstruction asymmetry between positively, \(\epsilon(K^+) \), and negatively, \(\epsilon(K^-) \), charged kaons in the detector [12]:

\[
A_K = \frac{\epsilon(K^+) - \epsilon(K^-)}{\epsilon(K^+) + \epsilon(K^-)}.
\]

The correction \(A_K \) is calculated using the measured kaon reconstruction asymmetry as described below [14]. As discussed later, data collected using regular reversals of magnet polarities results in no significant residual track reconstruction asymmetries, and hence, no correction for tracking asymmetries or pion reconstruction asymmetries need to be applied, hence \(A_\pi = 0 \).

The D0 detector has a central tracking system, consisting of a silicon microstrip tracker and the central fiber tracker, both located within a 2 T superconducting solenoidal magnet [15, 16]. A muon system, covering solenoidal magnet [15]. As discussed later, data collected using regular reversals of magnet polarities results in no significant residual track reconstruction asymmetries, and hence, no correction for tracking asymmetries or pion reconstruction asymmetries need to be applied, hence \(A_\pi = 0 \).

The D0 detector has a central tracking system, consisting of a silicon microstrip tracker and the central fiber tracker, both located within a 2 T superconducting solenoidal magnet [15, 16]. A muon system, covering solenoidal magnet [15], consists of a layer of tracking detectors and scintillation trigger counters in front of 1.8 T toroidal magnets, followed by two similar layers after the toroids [15].

The polarities of the toroidal and solenoidal magnetic fields are reversed on average every two weeks so that the four solenoid-toroid polarity combinations are exposed to approximately the same integrated luminosity. This allows for a cancelation of first-order effects related to instrumental asymmetries. To ensure optimal cancelation of the uncertainties, the events are weighted according to the number of \(J/\psi h^\pm \) decays for each data sample corresponding to a different configuration of the magnets’ polarities (polarity-weighting). The weighting is based on the number of events that pass the selection criteria and the likelihood selection (described below) and that are in the \(J/\psi h^\pm \) invariant mass range used to fit the data.

The data are collected with a suite of single and dimuon triggers. The selection and reconstruction of \(J/\psi h^\pm \) events where \(h^\pm \) is any stable charged hadron and \(J/\psi \to \mu^+\mu^- \) requires three tracks with at least two hits in both the silicon microstrip tracker and the central fiber tracker. The muon selection requires a transverse momentum \(p_T > 1.5 \) GeV/c with respect to the beam axis. One of the reconstructed muons is required to have hits in at least two layers of the muon system with segments reconstructed both inside and outside the toroid. The second muon is required to have hits in at least the first layer of the muon system. The muon track segment has to be matched to a particle found in the central tracking system. The dimuon system must have a reconstructed invariant mass between 2.80 and 3.35 GeV/c\(^2\) consistent with the \(J/\psi \) mass, 3.097 GeV/c\(^2\) [11].

An additional charged particle with \(p_T > 0.7 \) GeV/c is selected. Since the D0 detector is unable to distinguish between \(K^\pm \) and \(\pi^\pm \), and since the \(J/\psi K^\pm \) process is dominant, this particle is assigned the charged kaon mass and is required to be consistent with coming from the same three-dimensional vertex as the two muons, with the \(\chi^2 \) of the vertex fit being less than 16 for 3 degrees of freedom. The displacement of this vertex from the primary proton-antiproton interaction point is required to exceed 3 standard deviations for the resolution of the vertex position in the plane perpendicular to the beam direction.

The \(B^\pm \) selection is further improved using a likelihood ratio method taken directly from Refs. [19–22] that combines a number of variables to discriminate between signal and background: the smaller of the transverse momenta of the two muons; the \(\chi^2 \) of the \(B \) decay vertex; the \(B^\pm \) decay length divided by its uncertainty; the significance, \(S_B \), of the reconstructed \(B^\pm \) meson impact parameter; the transverse momentum of the \(h^\pm \); and the significance, \(S_K \), of the \(h^\pm \) impact parameter.

For any particle \(i \), the significance \(S_i \) is defined as

\[
S_i = \frac{1}{\sigma_T} \sqrt{\frac{\epsilon_T}{\sigma_T} \sigma_L}.
\]

where \(\epsilon_T \) (\(\epsilon_L \)) is the projection of the impact parameter on the plane perpendicular to (along) the beam direction, and \(\sigma_T \) \(\sigma_L \) is its uncertainty. The trajectory of each \(B^\pm \) is formed assuming that it passes through the reconstructed \(B^\pm \) vertex and is directed along the reconstructed \(B^\pm \) momentum.

The final requirement on the likelihood ratio variable is chosen to minimize the statistical uncertainty on \(A_{J/\psi K} \). The measurement of \(A_{raw}^{J/\psi\pi} \) makes use of a different selection on the likelihood ratio that minimizes the statistical uncertainty of \(A_{raw}^{J/\psi\pi} \). The asymmetry results extracted with both of these likelihood selections are consistent. No event has more than one possible track and \(J/\psi \) mass combination that passes all of the selection criteria.

From each set of three particles fulfilling these requirements, a \(J/\psi h^\pm \) candidate is constructed. The momenta of the muons are corrected by constraining the \(J/\psi \) mass to the world average [11].

The number of signal candidates is extracted from the \(J/\psi h^\pm \) mass distribution using an unbinned maximum likelihood fit over a mass range of 4.98 < \(M(J/\psi h^\pm) < 5.76 \) GeV/c\(^2\) as shown in Fig. 1. The dominant peak consists of the overlap of the \(B^\pm \to J/\psi K^\pm \) and the \(B^\pm \to J/\psi \pi^\pm \) (where the \(\pi^\pm \) is mis-identified as a \(K^\pm \)) components. The mis-identified \(B^\pm \to J/\psi \pi^\pm \) decay mode appears as a small peak shifted to a slightly higher mass than the \(B^\pm \). The \(B^\pm \to J/\psi K^\pm \) signal peak is modeled by two Gaussian functions constrained to have the same mean but, with different widths and normalizations to model the detector’s mass resolution, \(G_K(m) \). Taking account the D0 momentum scale, the mean is found to be consistent with the PDG average of the \(B^\pm \) meson mass. To obtain a good fit to the data, the widths have a linear dependence on the kaon energy. We assume that the mass distribution of the \(B^\pm \to J/\psi \pi^\pm \) is identical to that of \(B^\pm \to J/\psi K^\pm \), if the correct hadron mass is assigned. To model the \(J/\psi \pi^\pm \) mass distribu-
tion, $G_\pi(m)$, the $J/\psi\pi^\pm$ signal peak is transformed by assigning the pion track the charged kaon mass. Partially reconstructed decays such as $B_\pi \to J/\psi h^\pm X$ where h^\pm is any stable charged hadron and X is additional charged or neutral particles (e.g., the decay $B^\pm \to J/\psi K^{*\pm}$) can be empirically modeled with a threshold function that extends to the B^\pm mass and is based on Monte Carlo simulations [21]:

$T(m) = \arctan \left[p_1 (m c^2 - p_2) \right] + p_3$, where p_i are fit parameters. In the default fit only the normalization of $T(m)$ is allowed to vary and the other parameters are fixed to the values obtained from simulation. The combinatorial background is described by an exponential function, $E(m)$, with a slope that depends on the kaon energy. The fractions of the $J/\psi K^0$, $J/\psi\pi^0$, and partially reconstructed decays depend on the h^\pm momentum. Empirical studies of the data show that this dependence can be modeled by the same polynomial function with different scaling factors for the $J/\psi K^0$, $J/\psi\pi^0$, and partially reconstructed fractions. The coefficients of the polynomial and the scaling factors are determined from the fit.

The likelihood function is defined to simultaneously fit the raw asymmetries, $A_{raw}^{J/\psi K^0,\pi^0}$, the asymmetry of the partially reconstructed decays, A_T, and the asymmetry in the combinatorial background, A_E:

$$L = (1 - q_h A_{raw}^{J/\psi K^0}) G_{K^0}(m) + \left(1 - q_h A_{raw}^{J/\psi\pi^0} \right) G_{\pi^0}(m) + (1 - q_h A_T) T(m) + (1 - q_h A_E) E(m),$$

where q_h is the charge of the hadron.

The raw asymmetries are extracted by fitting the resulting data sample using the unbinned maximum likelihood fit described above. The resulting $J/\psi h^\pm$ polarity-weighted invariant mass distribution is shown in Fig. 1. The $B^\pm \to J/\psi K^\pm$ signal contains 105562 ± 370 (stat) events, and the $B^\pm \to J/\psi\pi^\pm$ signal contains 3110 ± 174 (stat) events.

The quality of the fit is estimated by projecting the resulting unbinned likelihood fit onto the $J/\psi K^\pm$ invariant mass distribution (65 bins in total). A χ^2 is then calculated with a value of 76.2 for 47 degrees of freedom (the number of bins less the number of fit parameters excluding the asymmetry parameters).

The invariant mass distribution of the differences, $N(J/\psi h^-) - N(J/\psi h^+)$, is shown in Fig. 2 with a resulting χ^2 of 58.5 for 61 degrees of freedom. The resulting raw asymmetries are extracted from the data as:

$$A_{raw}^{J/\psi K^0} = [-0.46 \pm 0.36 \text{ (stat)} \%],$$

$$A_{raw}^{J/\psi\pi^0} = [-4.2 \pm 4.4 \text{ (stat)} \%].$$

The background asymmetries are also determined: $A_T = [-1.3 \pm 1.0 \text{ (stat)} \%]$ and $A_E = [-1.1 \pm 0.6 \text{ (stat)} \%]$.

The systematic uncertainties in the fitting method are evaluated by varying the fitting procedure. For each of the following variations the systematic uncertainty is assigned to be half the maximum variation in the central value. The mass range of the fit is modified so that the lower edge is varied from 4.95 to 5.01 GeV/c^2, and the upper edge from 5.73 to 5.79 GeV/c^2, in 10 MeV/c^2 steps. This results in an uncertainty in $A_{raw}^{J/\psi K^0}$ of 0.022% and in $A_{raw}^{J/\psi\pi^0}$ of 0.55% (labeled “Mass range” in Table 1).

The following modifications are made to the functions used to model the data. The mean of the Gaussian function is modeled with a quadratic and a cubic polynomial. The parameters of the threshold function are allowed to float. The ratio of branching fractions for the decays $B^\pm \to J/\psi K^\pm$ and $B^\pm \to J/\psi\pi^\pm$ which are not constrained in the default fit are fixed to the current ratio from the Particle Data Group, 0.0482 [11], and the latest measurement by the LHCb experiment, 0.0381 [12].

This results in an uncertainty in $A_{raw}^{J/\psi K^0}$ of 0.011% and in $A_{raw}^{J/\psi\pi^0}$ of 0.69% (labeled “Fit function”). The effect of the event weighting is studied by varying the number of events for each magnet configuration by the statistical uncertainty (\sqrt{N}). This results in uncertainties of less than 0.0005% in $A_{raw}^{J/\psi K^0}$ and 0.014% in $A_{raw}^{J/\psi\pi^0}$, which
are small compared to the other uncertainties and is not included in the summary table.

The resulting systematic uncertainties are added in quadrature to obtain:

\[A_{J/\psi K}^{\pm} = [-0.46 \pm 0.36 \text{ (stat)} \pm 0.025 \text{ (syst)}] \%, \quad (11) \]
\[A_{J/\psi \pi}^{\pm} = [-4.2 \pm 4.4 \text{ (stat)} \pm 0.88 \text{ (syst)}] \%. \quad (12) \]

As a cross-check the following variations of the various asymmetry models are also examined. The asymmetries representing the threshold function and the combinatoric background are set to the same value, \(A_T = A_E \). The asymmetry of the combinatoric background is set to zero, \(A_E = 0 \). The asymmetry of the threshold function is set to zero, \(A_T = 0 \). The asymmetries representing the threshold function and the combinatoric background are both set to zero, \(A_E = A_T = 0 \). When extracting \(A_{J/\psi K}^{\pm} \), the asymmetry \(A_{J/\psi K}^{\pm} \) is set equal to zero. When extracting \(A_{J/\psi \pi}^{\pm} \), the asymmetry \(A_{J/\psi K}^{\pm} \) is set equal to zero. This results in variations in \(A_{J/\psi K}^{\pm} \) of 0.038\% and in \(A_{J/\psi \pi}^{\pm} \) of 1.59\%. Given the statistical and systematic uncertainties, the observed variations are consistent with no significant biases.

To test the sensitivity of the fitting procedure, the charge of the charged hadron in the data is randomized to produce samples with no asymmetry, and 1000 trials are performed, each with the same statistics as the measurement. The central value of the asymmetry distribution, (+0.008 ± 0.011)\%, is consistent with zero with a width of 0.37\%, consistent with the statistical uncertainty found in data. These studies are repeated with introduced asymmetries of -1.0, -0.5 and 1.0\%, each of which returns the expected asymmetries and statistical uncertainties with no significant bias.

The residual detector tracking asymmetry has been studied in Ref. [13, 14, 23] using \(K_S^0 \rightarrow \pi^+\pi^- \) and \(K^+ \rightarrow K_S^0 \pi^\pm \) decays. No significant residual track reconstruction asymmetries are found and no correction for tracking asymmetries need to be applied. The tracking asymmetry of charged pions has been studied using MC simulations of the detector. The asymmetry is found to be less than 0.05\%, which is assigned as a systematic uncertainty (labeled \(\Delta A_{\text{tracking}} \)).

The correction \(A_K \) (Eq. 4), is calculated using the measured kaon reconstruction asymmetry presented in Ref. [14]. Negative kaons can interact with matter to produce hyperons, while there is no equivalent interaction for positive kaons. As a result, the mean path length for positive kaons is larger, the reconstruction efficiency is higher, and the kaon asymmetry, \(A_K \), is positive.

The kaon asymmetry is measured using a dedicated sample of \(K^{*0}(K^{*0}) \rightarrow K^+\pi^-(K^-\pi^+) \) decays, based on the technique described in Ref. [23]. The \(K^+\pi^- \) and \(K^-\pi^+ \) signal yields are extracted by fitting the charge-specific \(M(K^{\pm}\pi^{\mp}) \) distributions, and the asymmetry is determined by dividing the difference by the sum. The track selection criteria are the same as those required for the \(J/\psi h^\pm \) signal.

As expected, an overall positive kaon asymmetry of approximately 1\% is observed. A strong dependence on kaon momentum and the absolute value of the pseudo-rapidity is found, and hence the final kaon asymmetry correction to be applied in Eq. 5 is determined by the polarity-weighted average of \(A_K[p(K), |\eta(K)|] \) over the \(p(K) \) and \(|\eta(K)| \) distributions in the signal events. A relative systematic uncertainty of 5\% is assigned to each bin to account for possible variations in the yield when different models are used to fit the signal and backgrounds in the \(K^{*0} \) mass distribution. Following studies over a range of fit variations, a relative systematic uncertainty of 3\% on the \(J/\psi h^\pm \) yields is applied. The resulting kaon correction is found to be (the uncertainty is labeled \(\Delta A_K \) in Table I):

\[A_K = [1.046 \pm 0.043 \text{ (syst)}] \%. \quad (13) \]

The value of \(A_K \) is consistent with that presented in Ref. 7 taking into account the changes in the data selection and the resulting changes in the \(p(K) \) and \(|\eta(K)| \) distributions.

The final uncertainties are summarized in Table I where their combination assumes that they are uncorrelated. We obtain final asymmetries of

\[A_{J/\psi K}^{\pm} = [0.59 \pm 0.36 \text{ (stat)} \pm 0.07 \text{ (syst)}] \%, \quad (14) \]
\[A_{J/\psi \pi}^{\pm} = [-4.2 \pm 4.4 \text{ (stat)} \pm 0.9 \text{ (syst)}] \%. \quad (15) \]

This is the most precise measurement of \(A_{J/\psi K}^{\pm} \) to date and is a reduction in uncertainty by approximately a factor of two from the previous D0 result [12].

Several consistency checks are performed by dividing the data into smaller samples using additional selections.
TABLE I. The statistical and systematic uncertainties for extracting the asymmetries $A_{J/\psi K}$ and $A_{J/\psi \pi}$.

<table>
<thead>
<tr>
<th>Type of uncertainty</th>
<th>$A_{J/\psi K}$ (%)</th>
<th>$A_{J/\psi \pi}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>0.36</td>
<td>4.4</td>
</tr>
<tr>
<td>Mass range</td>
<td>0.022</td>
<td>0.55</td>
</tr>
<tr>
<td>Fit function</td>
<td>0.011</td>
<td>0.69</td>
</tr>
<tr>
<td>$\Delta A_{\text{tracking}}$</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>ΔA_K</td>
<td>0.043</td>
<td>n/a</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>0.07</td>
<td>n/a</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>0.37</td>
<td>4.5</td>
</tr>
</tbody>
</table>

based on data-taking periods, magnet polarities, transverse momentum, and rapidity of the charged track representing the kaon. The resulting variations of $A_{J/\psi K}$ and $A_{J/\psi \pi}$ are statistically consistent with the results of Eqs. [14] and [15].

In summary, we have presented the most precise measurement to date of the charge asymmetry $A_{J/\psi K} = [0.59 \pm 0.36 \text{ (stat)} \pm 0.07 \text{ (syst)}] \%$ using 10.4 fb$^{-1}$ of data. In addition we have improved our measurement of $A_{J/\psi \pi} = [-4.2 \pm 4.4 \text{ (stat)} \pm 0.9 \text{ (syst)}] \%$. Both measurements are in agreement with standard model predictions.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, NRC KI and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

[17] $\eta = -\ln(\tan(\theta/2))$ is the pseudorapidity and θ is the polar angle between the track momentum and the proton beam direction. ϕ is the azimuthal angle of the track.
[20] K. Holubych, Measurement of direct CP violation in $b \to s c \bar{c}$ and $b \to s c \bar{c}$, Ph.D. Dissertation, Lancaster University, UK, FERMILAB-THESIS-2008-89 (2008).