Methanotrophic bacteria are found in diverse environments and utilize methane as their sole source of energy, reductants, and carbon (1). Methanotrophs attenuate the emission of methane, the second most important greenhouse gas (2), and have applications in bioremediation and bioprocessing (3). Methylobacter albus strain BG8 (also known as Methylomonas alba, Methylomonas albus, and Methylobacter albus) is a mesophilic, aerobic gammaproteobacterium isolated from freshwater by Roger Whittenbury et al. (4).

The complete genome sequence of Methylomicrobium album strain BG8, a methane-oxidizing gammaproteobacterium isolated from freshwater, is reported. Aside from a conserved inventory of genes for growth on single-carbon compounds, M. album BG8 carries a range of gene inventories for additional carbon and nitrogen transformations but no genes for growth on multicarbon substrates or for N fixation.
homologues in other methanotrophs (12, 13). Analysis of the M. album BG8 genome sequence enables further understanding of single-carbon metabolism and the environmental adaptation strategies of methanotrophs.

Nucleotide sequence accession numbers. The genome sequences of the chromosome and plasmid of M. album BG8 have been deposited in GenBank under accession no. CM001475 and CM001476, respectively.

ACKNOWLEDGMENTS

The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231.

We thank additional members of the Organization for Methanotroph Genome Analysis (OMeGA).

L.Y.S. was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada. M.G.K. was supported by the U.S. NSF (0541797 and 0948202).

REFERENCES