Draft Genome Sequence of \textit{Methylomicrobium buryatense} Strain 5G, a Haloalkaline-Tolerant Methanotrophic Bacterium

Valentina N. Khmelenina,a David A. C. Beck,b,c Christine Munk,a Karen Davenport,a Hajnalka Daligault,a Tracy Erkkila,a Lynne Goodwin,a Wei Gu,a Chien-Chi Lo,a Matthew Scholz,a Hazuki Teshima,a Yan Xu,a Patrick Chian,a Francoise Bringel,a Stéphane Vuilleumier,f Alan DiSpirito,g Peter Dunfield,h Mike S. M. Jetten,i Martin G. Klotz,j Claudia Knief,k J. Colin Murrell,l Huub J. M. Op den Camp,m Yasuyoshi Sakai,m Jeremy Semrau,m Mette Svenning,m Lisa Y. Stein,m Yuri A. Trotsenko,m Marina G. Kalyuzhnayaa

aGK Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia; Department of Chemical Engineering, University of Washington, Seattle, Washington, USA;beScience Institute, University of Washington, Seattle, Washington, USA;cDepartment of Microbiology, University of Washington, Seattle, Washington, USA;dLos Alamos National Laboratory, Joint Genome Institute, Biosciences Division Genome Science B6, Los Alamos, New Mexico, USA;eeScience Institute, University of Washington, Seattle, Washington, USA;fDepartment of Microbiology, University of Nijmegen, the Netherlands;gSchool of Environmental Sciences, University of East Anglia, Norwich, United Kingdom;hDepartment of Civil & Environmental Engineering, the University of Michigan, Ann Arbor, Michigan, USA;iDepartment of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway;jOMeGA, The Organization for Methanotrophic Genome Analysis, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada

Robust growth of the gammaproteobacterium \textit{Methylomicrobium buryatense} strain 5G on methane makes it an attractive system for CH\textsubscript{4}-based biocatalysis. Here we present a draft genome sequence of the strain that will provide a valuable framework for metabolic engineering of the core pathways for the production of valuable chemicals from methane.

\textbf{Received} 23 January 2013 \textbf{Accepted} 8 May 2013 \textbf{Published} 27 June 2013

\textbf{Copyright} © 2013 Khmelenina et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

Address correspondence to Marina G. Kalyuzhnaya, mkalyuzh@uw.edu.

\begin{itemize}
\item Methylomicrobium strain 5G was most similar to \textit{Methylomicrobium alcaliphilum} strain 20Z, revealing that 5G was most similar to \textit{M. alcaliphilum}, sharing approximately 70% of its proteome at 90% protein sequence identity.
\item We identified genes encoding membrane-associated methane monooxygenase, soluble methane monooxygenase and an associated chaperon and a transcriptional activator, pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase, an associated \textit{c}-cytochrome, genes for enzyme assembly and PQQ biosynthesis, tetrahydromethanopterin- and tetrahydrofolate-linked \textit{C}\textsubscript{1}-transfer pathways, two formate dehydrogenases, and the ribulose monophosphate pathway. The Embden-Meyerhof-Parnas pathway, the Entner–Doudoroff pathway, and the pentose phosphate pathway (transaldolase variant) are predicted. As with the genomes of other gammaproteobacterial methanotrophs, the genome of \textit{M. buryatense} 5G encodes all genes essential for operation of the citric acid cycle and the serine cycle, except for phosphoenolpyruvate carboxylase, isocitrate lyase, and the ethylmalonyl pathway.
\item Genes for urea uptake and hydrolysis, assimilatory nitrate/nitrite reduction, dissimilatory nitric oxide reduction, and ammonium uptake were identified. A gene homologous to hy-
d Roxylamine oxidoreductase is present (17, 18). The ammonium assimilation inventory includes genes for glutamate and alanine dehydrogenases, glutamate synthase/glutamine synthetase, serine-pyruvate/serine-glyoxylate, and aspartate aminotransferases (19). Genes essential for ectoine biosynthesis were identified.

Nucleotide sequence accession numbers. The *Methylomicrobium buryatense* 5G genome sequence was deposited in GenBank/EMBL under the accession numbers AOTL01000000 and KB455575 and KB455576.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation (MCB-0842686, to M.G.K.), NSERC (L.Y.S.), and the Russian Foundation for Basic Research (RFBR 11-04-00801, to V.N.K.). The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy Joint Genome Institute is supported by the U.S. Department of Energy Joint Genome Institute is supported by DE-AC02-05CH11231.

REFERENCES