
REPORT

Mutations in MED12 Cause X-Linked Ohdo Syndrome

Anneke T. Vulto-van Silfhout,1,2 Bert B.A. de Vries,1,2 Bregje W.M. van Bon,1,2 Alexander Hoischen,1,2,3

Martina Ruiterkamp-Versteeg,1 Christian Gilissen,1,2,3 Fangjian Gao,4 Marloes van Zwam,5

Cornelis L. Harteveld,6 Anthonie J. van Essen,7 Ben C.J. Hamel,1 Tjitske Kleefstra,1,2

Michèl A.A.P. Willemsen,8,9 Helger G. Yntema,1 Hans van Bokhoven,1,9,10 Han G. Brunner,1,2,3,*
Thomas G. Boyer,4 and Arjan P.M. de Brouwer1,9,10

Ohdo syndrome comprises a heterogeneous group of disorders characterized by intellectual disability (ID) and typical facial features,

including blepharophimosis. Clinically, these blepharophimosis-ID syndromes have been classified in five distinct subgroups, including

the Maat-Kievit-Brunner (MKB) type, which, in contrast to the others, is characterized by X-linked inheritance and facial coarsening at

older age. We performed exome sequencing in two families, each with two affected males with Ohdo syndrome MKB type. In the two

families, MED12 missense mutations (c.3443G>A [p.Arg1148His] or c.3493T>C [p.Ser1165Pro]) segregating with the phenotype were

identified. Upon subsequent analysis of an additional cohort of nine simplex male individuals with Ohdo syndrome, one additional

de novo missense change (c.5185C>A [p.His1729Asn]) in MED12 was detected. The occurrence of three different hemizygous missense

mutations in three unrelated families affected by Ohdo syndromeMKB type shows thatmutations inMED12 are the underlying cause of

this X-linked form of Ohdo syndrome. Together with the recently described KAT6Bmutations resulting in Ohdo syndrome Say/Barber/

Biesecker/Young/Simpson type, our findings point to aberrant chromatin modification as being central to the pathogenesis of Ohdo

syndrome.
Ohdo syndrome (MIM 249620) comprises a heterogeneous

group of disorders characterized by intellectual disability

(ID) and typical facial features, including blepharophimo-

sis, ptosis, a round face with a characteristic nose, and

a narrow mouth.1 These blepharophimosis-ID syndromes

have been classified in five distinct subgroups. The first

group can be distinguished from the others because it is

caused by deletions of the short arm of chromosome 3.

The second group is designated as Ohdo type on the basis

of the original report by Ohdo et al.1,2 These persons

present with typical features of prognathism, short phil-

trum, and proteinuria, whereas hypotonia, abnormal

growth, and limb defects are lacking. The Verloes type

is a more severe condition with severe microcephaly,

epilepsy, brain malformations, adducted thumbs, and

abnormal genitals.1 The most clinically distinctive pheno-

type is the Say/Barber/Biesecker/Young/Simpson (SBBYS)

type (MIM 603736), which is characterized by striking

facial dysmorphisms that include a large to bulbous nasal

tip; small and/or dysplastic, thick, simple, or overfolded

pinnae; thick swollen cheeks; and retrognathia. In

addition, hypotonia, hyperextensible joints, cryptorchi-

dism, and a wide range of congenital malformations are

present.1,3 This type was recently shown to be caused by

mutations in lysine acetyltransferase 6B (KAT6B [MIM

605880]).4 Here, we report that the fifth distinct subtype
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of Ohdo syndrome, the Maat-Kievit-Brunner (MKB) type,

which, in contrast to the other types, is characterized by

X-linked inheritance and facial coarsening with thick

alae nasi and a triangular face at older age,1 is caused by

mutations in MED12.

Exome sequencing was performed in two individuals

from two families affected by Ohdo syndrome MKB

type (Figure 1 and Table S1, available online). This study

was approved by the institutional review board Commis-

sie Mensgebonden Onderzoek Regio Arnhem-Nijmegen.

Written informed consent was obtained for all individuals

participating in this study. The first family showed a clear

X-linked inheritance pattern with two affected males in

two generations and has been reported previously.1,10

The second family comprised two affected brothers. In

both families, 250k NspI SNP array analysis (Affymetrix,

Santa Clara, CA, USA) revealed no significant chromosome

aberrations. Analysis of the X-chromosome-inactivation

status via methylation-sensitive PCR and fragment-length

analysis of the androgen-receptor CAG repeat polymor-

phism11 showed a nonrandom pattern of X inactivation

in individual II:2 from family 1 and individual I:2 from

family 2 (in >90% of the cells, the alleles submitted

to the sons were inactive). In family 2, mutation analysis

of FOXL2 (MIM 605597) did not show any abnormali-

ties. For family 1, DNA was isolated from a transformed
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Figure 1. Overview of Clinical and Genetic Data of Families Affected by Ohdo Syndrome MKB Type and MED12 Mutations
(A) Photographs of individuals with MED12 mutations: family 1 proband (III-1) in infancy (Aa and Ac) and at age 4 years (Ab) and
family 1 uncle (II-3) at age 4 years (Ad) and 18 years (Ae and Af); family 2 proband (II-1) at ages 1 year (Ag), 9 years (Ah), and 15 years
(Ai) and family 2 brother (II-2) at ages 1 month (Aj), 7 years (Ak), and 13 years (Al); and family 3 proband (II-1) at ages 3 years (Am),
10 years (An), and 16 years (Ao). Beside the photographs, the electropherograms show the mutation in bold of an affected individual
(top) and a control (bottom), and the pedigrees show results of segregation analysis. Mutant alleles are represented by a plus sign (þ),
and wild-type alleles are represented by a minus sign (–).
(B) Schematic overview of MED12, including the PQL domain, which is involved in b-catenin and GLI3 binding,5,6 shows previously
published amino acid changes leading to Opitz-Kaveggia syndrome7,8 and Lujan-Fryns syndrome9 and the presently identified amino
acid changes leading to Ohdo syndrome MKB type.
lymphoblastoid cell line of the nephew because both he

and his uncle were deceased; for family 2, DNA was iso-

lated from peripheral blood of the proband according to

standard procedures. Exome enrichment was performed

with the SureSelect Human All Exon 50 Mb Kit (Agilent

Technologies, Santa Clara, CA, USA). Sequencing was per-

formed on the SOLiD 5500xl sequencer (Life Technologies,

Carlsbad, CA, USA). Reads were aligned to the UCSC

Genome Browser hg19 reference genome with the use of

Life Technologies LifeScope software version 2.1. Ninety-

two percent of the X chromosomal exons were covered

at least three times on average in both individuals. Variants

were annotated with a custom pipeline.12 Only nonsynon-

ymous changes in the coding regions or changes affecting

the canonical splice sites were analyzed. Variants present

in dbSNP132 or in our in-house database containing data

of 368 exomes were excluded. Assuming a hemizygous X

chromosomal change, we only considered variants that

were present in at least 70% of the reads on the X chromo-

some (Table S2). After this selection, four and five variants

remained in families 1 and 2, respectively (Tables S2 and

S3). Only one gene showed a private nonsynonymous

variant in both families; this gene was mediator com-

plex subunit 12 (MED12 [MIM 300188]; RefSeq accession
402 The American Journal of Human Genetics 92, 401–406, March 7
number NM_005120.2), which encodes mediator of RNA

polymerase II transcription subunit 12. Each individual

had a missense mutation: c.3443G>A (p.Arg1148His) or

c.3493T>C (p.Ser1165Pro). Sanger sequencing confirmed

the presence of the mutation and showed segregation of

the mutation with the disorder in the families (Figure 1).

We subsequently performed Sanger sequencing of all

45 coding exons of MED12 on DNA from nine simplex

male persons with the clinical diagnosis of Ohdo syn-

drome. Primer sequences and conditions are available

upon request. In this cohort, we detected one additional

MED12 missense mutation (c.5185C>A [p.His1729Asn]),

which was shown to be de novo, in a person with the

MKB type. All three missense mutations in MED12 affect

evolutionary highly conserved amino acids and were pre-

dicted to be damaging to protein function (Table 1). The

amino acid change p.His1729Asn is situated within the

PQL domain of MED12, and the other two amino acid

changes, p.Arg1148His and p.Ser1165Pro, are not situated

in a known domain. The occurrence of three different

hemizygous missense mutations in three unrelated fami-

lies affected by Ohdo syndrome MKB type shows that

mutations in MED12 are the underlying cause of this

X-linked form of Ohdo syndrome. Of note, a second
, 2013



Table 1. MED12 Mutations Causing X-linked ID

Chromosome Positiona
cDNA change
(RefSeq NM_005120.2)

Protein change
(RefSeq NP_005111.2) PhyloPb PolyPhen-213 SIFT14 Reference

Ohdo Syndrome Maat-Kievit-Brunner (MKB) Type

chrX: 70,348,536 c.3443G>A p.Arg1148His 5.0 probably damaging deleterious family 1

chrX: 70,348,981 c.3493T>C p.Ser1165Pro 4.3 probably damaging deleterious family 2

chrX: 70,356,290 c.5185C>A p.His1729Asn 5.4 probably damaging deleterious family 3

Opitz-Kaveggia Syndrome

chrX: 70,347,217 c.2881C>T p.Arg961Trp 5.6 probably damaging deleterious Risheg7

chrX: 70,347,209 c.2873G>A p.Gly958Glu 2.8 probably damaging deleterious Rump8

Lujan-Fryns Syndrome

chrX: 70,347,781 c.3020A>G p.Asn1007Ser 3.1 probably damaging deleterious Schwartz9

aUCSC Genome Browser hg19.
bBased on 46 vertebrate species.
segregating change was identified in family 2: c.4638A>C

(p.Lys1546Asn) in alpha-thalassemia/mental retardation

syndrome X-linked (ATRX [MIM 300032]; RefSeq NM_

000489.3), mutations in which can cause ATRX syndrome

(MIM 301040) (Table S3). This change is not present in

any of the available databases. It was predicted to be

detrimental to protein function by PolyPhen-2 and to

be neutral according to SNPs&GO.13,15 For the proband,

hematological analysis including high-performance liquid

chromatography and capillary electrophoresis16,17 showed

no indication of alpha-thalassemia. In addition, HbH in-

clusions were absent in over 2,000 cells (data not shown).

This does not support pathogenicity of the mutation,

although it does not exclude ATRX syndrome because

HbH inclusions are not seen in 12% of persons with

ATRX syndrome.18 In combination with the facial dysmor-

phisms that differ from those of ATRX syndrome and over-

lap with those of the other families affected by MED12

mutations (Figure 1), this strongly suggests that the muta-

tion in MED12 is the main cause of the phenotype in

family 2. However, we cannot exclude an additional effect

of the ATRXmutation on the family 2 phenotype, which is

at the relatively severe end of the spectrum associated with

MED12 mutations.

Specific mutations at different positions in MED12 have

previously been reported in Opitz-Kaveggia syndrome (or

FG syndrome) (MIM 305450) and Lujan-Fryns syndrome

(MIM 309520).7–9 Currently, ten families affected by

Opitz-Kaveggia syndrome and the recurrent amino acid

substitution p.Arg961Trp19 and one family affected by

a p.Gly958Glu change8 have been described, whereas

the p.Asn1007Ser substitution has been described in two

families affected by Lujan-Fryns syndrome.9 Clinically,

clear differences can be seen between Ohdo syndrome

and these two syndromes (Figure S1). In contrast to the

facial features associated with Opitz-Kaveggia and Lujan-

Fryns syndrome, ptosis, blepharophimosis, a bulbous nasal

tip, a long philtrum, and maxillar hypoplasia with full
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cheeks are unique to Ohdo syndrome. Moreover, dental

anomalies and hearing loss are frequent, whereas anal mal-

formations, agenesis of the corpus callosum, and macro-

cephaly are not present in the individuals with Ohdo

syndrome. Overlapping characteristics are the following

relatively nonspecific features: ID, hypotonia, behavioral

problems, and some facial dysmorphisms, mainly hyperte-

lorism, micrognathia, small low-set ears, and a high fore-

head, especially in family 3.

MED12 is a component of the multisubunit RNA

polymerase II transcriptional Mediator.20 This complex is

involved in transcriptional regulation by conveying infor-

mation from gene-specific regulatory elements to the

RNA polymerase II transcription machinery.21 Mediator

consists of four distinct modules.22,23 The head, middle,

and tail modules together form the core Mediator complex

that interacts directly with RNA polymerase II and both

general and gene-specific transcription factors.24 MED12,

along with MED13, CCNC, and CDK8, composes a fourth

‘‘kinase’’ module that reversibly associates with the core

complex.25 This module was primarily thought to be

involved in transcriptional repression through blocking

the binding of the core Mediator complex to RNA poly-

merase II because Mediator containing this module is less

active than Mediator lacking this module.23,26 However,

the kinase module was recently also found to be in-

volved in transcriptional activation.27 Through MED12,

the kinase module modulates, for example, Wnt/b-catenin

signaling5 and Gli3-dependent sonic hedgehog sig-

naling.6,28 In addition, MED12 is involved in epigenetic

silencing of neuronal gene expression imposed by the

RE1-silencing transcription factor REST.29 In this regard,

we previously showed that the MED12 interface in

Mediator links REST with euchromatic histone-lysine

N-methyltransferase 2 (EHMT2) in epigenetic repression

of neuronal genes in nonneuronal cells.29 Importantly,

we also found that the MED12 mutations identified

in Opitz-Kaveggia and Lujan-Fryns syndrome disrupted
rican Journal of Human Genetics 92, 401–406, March 7, 2013 403



Figure 2. Ohdo Syndrome Mutations in MED12 Disrupt Its Gene-Repression Function
(A) HEK293 cells were transfected with control (siCNTL) or MED12-specific (siMED12) siRNAs. Where indicated (FLAG-MED12),
MED12-knockdown cells were transfected with FLAG-tagged siRNA-resistant WT, p.Arg1148His (R1148H), or p.Ser1165Pro (S1165P)
MED12 expression plasmids. RNA-expression levels of CHRM4, SNAP25, or SYN1were determined by quantitative RT-PCR. mRNA levels
are expressed relative to mRNA levels in control siRNA-transfected cells. Data represent the mean 5 the SEM of at least three indepen-
dent experiments performed in duplicate. Asterisks denote statistically significant differences compared to WT FLAG-MED12 (Student’s
t test, *p< 0.05, **p< 0.01). FLAG-taggedMED12mutants p.Arg1148His and p.Ser1165Pro were unable to repress CHRM4, SNAP25, and
SYN1 expression.
(B) Nuclear extracts5 from a representative transient expression assay were resolved by SDS-PAGE and processed by immunoblot analysis
with antibodies specific to MED12, the FLAG epitope on FLAG-MED12 derivatives, or the TFIIEb that was used as an internal loading
control. Representative immunoblots show that siMED12 significantly diminished expression of MED12. Cotransfection with FLAG-
MED12 restored MED12 expression for the WT and both mutants. For the doublet bands, the band with the higher molecular mass
was previously shown to represent full-length MED12.28 The relative levels of ectopically expressed FLAG-MED12 WT and mutant
proteins averaged over four independent experiments are given below the immunoblots and were calculated first by normalization
of FLAG-MED12 immunoblot signals to internal-control TFIIEb signals (within the linear range of detection; Figure S2) and subsequent
division of the normalized expression levels of FLAG-MED12 mutants by those of FLAG-MED12 WT. Immunoblot signals were quanti-
fied with ImagQuant TL software. No statistically significant differences in expression levels were observed (Student’s t test; p values are
given above the bars).
(C) Nuclear extracts from untransfected (CNTL) or transfected HEK293 cells transiently expressing FLAG epitope-tagged WT,
p.Arg1148His, or p.Ser1165Pro MED12 derivatives were subjected to immunoprecipitation (IP) with IgG or antibodies specific to
MED30, as indicated. Mediator immunoprecipitates were resolved by SDS-PAGE and processed by immunoblot analysis with antibodies
specific to the FLAG epitope or the indicated Mediator subunits. Input corresponds to 10% of the nuclear extracts subjected to IP. FLAG-
tagged MED12 mutants p.Arg1148His and p.Ser1165Pro were incorporated into Mediator comparably to WT MED12.
(D) HA-tagged G9a was expressed without or with FLAG-tagged MED12WT, p.Arg1148His, or p.Ser1165Pro derivatives in HEK293 cells
prior to the processing of nuclear extracts by IP with antibodies specific to the HA epitope. Immunoprecipitates were resolved by SDS-
PAGE and processed by immunoblot analysis with FLAG- or HA-specific antibodies, as indicated. Input corresponds to 10% of the
nuclear extracts subjected to IP. FLAG-taggedMED12mutants p.Arg1148His and p.Ser1165Pro bound to G9a comparably toWTMED12.
REST-imposed extraneuronal gene silencing by impairing

REST-directed recruitment of Mediator to RE1-silencing

elements.29

To explore the pathogenicity of the MED12 missense

mutations identified in Ohdo syndrome, we monitored

the impact of two of the three identified mutations on

repression of REST target genes. To this end, we compara-

tively examined siRNA-resistant wild-type (WT) FLAG-

tagged MED12 (FLAG-MED12) and its corresponding

p.Arg1148His and p.Ser1165Pro mutant derivatives for

their respective abilities to suppress enhanced REST-

target-gene expression triggered by RNAi-mediated deple-
404 The American Journal of Human Genetics 92, 401–406, March 7
tion of endogenous MED12 in HEK293 cells (Figure 2).

As expected, MED12 knockdown triggered derepression

of REST target genes, including cholinergic receptor,

muscarinic 4 (CHRM4 [MIM 118495]), synaptosomal-

associated protein, 25 kDa (SNAP25 [MIM 600322]), and

synapsin I (SYN1 [MIM 313440]). Introduction of WT

FLAG-MED12 in these cells reversed this effect; in con-

trast, the p.Arg1148His and p.Ser1165Pro mutants were

significantly compromised in this ability (Figure 2A). This

indicates that the MED12 mutations in Ohdo syndrome

impair the repressive function of MED12. Neither amino

acid change deleteriously affected the incorporation of
, 2013



MED12 into Mediator (Figure 2C) or its direct interaction

with G9a (Figure 2D), indicating that the Ohdo syndrome

MED12 mutations do not disrupt the function of MED12

as a stable G9a interface in Mediator. It is thus possible

that the Ohdo syndrome mutations in MED12 impair

recruitment of Mediator to RE1-bound REST, as was shown

previously for the Opitz-Kaveggia and Lujan-Fryns muta-

tions in MED12.29 Impaired Mediator recruitment to RE1

elements could explain how these amino acid substitu-

tions disrupt REST-imposed epigenetic restrictions on neu-

ronal gene expression, given that MED12 and/or Mediator

is essential to link RE1-bound REST with EHMT2.

It is of particular interest that MED12 is implicated in

chromatin modification through H3K9 methylation,

given that Ohdo syndrome SBBYS type has recently been

shown to be caused by mutations in KAT6B, a component

of the MOZ/MORF complex that has histone H3 acetyl-

transferase activity.30 Apart from their role in Ohdo

syndrome, both MED12 and KAT6B have also been impli-

cated in tumor development. In acute myeloid leukemia,

translocations leading to a fusion gene of KAT6B and

opsin 1 (cone pigments) long-wave-sensitive have been

identified,31 and MED12 mutations have recently been

identified in prostate cancer.32 With that in mind, it is

noteworthy that one of our family members died of pros-

tate cancer at the age of 25 years. Moreover, both genes

are implicated in uterine leiomyomata. KAT6B was

previously mapped to the breakpoint of recurrent 10q22

aberrations,33 which are present in 2% of uterine leiomyo-

mata,34 and exon 2 ofMED12 is mutated in 70% of uterine

leiomyomata.35 For uterine leiomyomata, involvement of

other genes has been suggested, but only a few have

been identified.36 Therefore, the observation that both

MED12 and KAT6B are chromatin-modifying enzymes

implicated in Ohdo syndrome and the development of

uterine leiomyomata and other tumors strongly suggests

that both genes are functionally related.

Ohdo syndrome, especially SBBYS type, is generally

considered a de novo dominant disorder with a low recur-

rence risk. Our study shows that Ohdo syndrome can also

be an X-linked disorder. Moreover, by screening only

nine simplex male individuals with Ohdo syndrome, we

identified one additional pathogenic MED12 mutation.

Although Ohdo syndrome MKB type can be distinguished

from Ohdo syndrome SBBYS type at older age through the

triangular face and the increasingly bulbous nose with

thick alae nasi, its facial phenotype can be very similar to

that of Ohdo syndrome SBBYS type at a young age. There-

fore, we recommend sequencing of MED12 in all young

male individuals with Ohdo syndrome because this can

have great implications for the recurrence risk in the

respective families.

In conclusion, we show that mutations in MED12 cause

X-linked Ohdo syndrome. The identification of this gene

in Ohdo syndrome, together with KAT6B, points to aber-

rant chromatinmodification as central to the pathogenesis

of Ohdo syndrome.
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Supplemental Data

Supplemental Data include two figures and three tables and can be

found with this article online at http://www.cell.com/AJHG.
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