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Abstract
This paper describes a computational model of speech com-

prehension that takes the acoustic signal as input and predicts
reaction times as observed in an auditory lexical decision task.
By doing so, we explore a new generation of end-to-end compu-
tational models that are able to simulate the behaviour of human
subjects participating in a psycholinguistic experiment. So far,
nearly all computational models of speech comprehension do
not start from the speech signal itself, but from abstract repre-
sentations of the speech signal, while the few existing models
that do start from the acoustic signal cannot directly model reac-
tion times as obtained in comprehension experiments. The main
functional components in our model are the perception stage,
which is compatible with the psycholinguistic model Shortlist
B and is implemented with techniques from automatic speech
recognition, and the decision stage, which is based on the linear
ballistic accumulation decision model. We successfully tested
our model against data from 20 participants performing a large-
scale auditory lexical decision experiment. Analyses show that
the model is a good predictor for the average judgment and re-
action time for each word.
Index Terms: speech comprehension, computational model

1. Introduction
One of the central questions in psycholinguistics is how hu-
mans process speech. Researchers approach this question by
conducting behavioural and (more recently) brain imaging ex-
periments, and by formulating theories that account for the ex-
perimental data. Most theories are ”verbal”, that is, they are
expressed as narratives or scenarios. Some of these verbal theo-
ries have also been implemented in computer programs, which
has the advantage that the theories have to be formulated explic-
itly and in detail. More importantly, computer models make it
easier to determine whether the theories indeed account for all
experimental data and to derive predictions about the outcomes
of experiments which have not yet been conducted. These ex-
periments can subsequently be conducted in order to test the
theory. So far, nearly all computational models of speech com-
prehension start from abstract representations of the speech sig-
nal, often in the form of phonemes, which are hand-crafted by
the researchers themselves, rather than from the actual acoustic
signals [13, 12]. The few models that do start from the acoustic
signal (e.g. FineTracker, [17]) do not directly model reaction
times obtained in comprehension experiments, such as lexical
decision experiments. This paper introduces a model of speech
comprehension that takes the acoustic signal as its input and
predicts reaction times in a lexical decision task. The design of
this model is part of a long-term project aiming at understanding
human speech comprehension with a focus on word represen-

tations and processing of reduction in speech. In this paper we
present the skeleton implementation of the model and show that
it can already simulate the behaviour of subjects in a lexical de-
cision task. In addition, we discuss several fundamental issues
that play a role in designing and testing computational models
of human speech comprehension.

The structure of this paper is as follows. Section 2 de-
scribes the data from a large-scale lexical decision experiment.
The computational model is presented in section 3. Sections 4
present some results of the lexical decision experiment, and the
approximation of these results by the model. In section 5 we
discuss several issues that emerged from the modelling exer-
cise. Section 6 presents the main conclusions of our work.

2. The lexical decision experiment
In an auditory lexical decision experiment, participants must de-
cide whether a spoken item is, or is not, an existing word in a
predefined language (e.g. English). Behavioural measures in-
clude reaction times (RTs) and proportions of erroneous deci-
sions. The RTs have been shown to correlate, among others,
with the frequency of occurrence of the word, the number of
similar sounding words (density of the lexical neighborhood),
and the position of the uniqueness point.

The lexical decision experiment that we aim to model uses
Dutch words and non-words as auditory stimuli, carefully spo-
ken in isolation by a Dutch female speaker in a neutral voice.
The entire experiment contained 5541 different items (words
and non-words). Subjects were 10 female and 10 male na-
tive speakers of Dutch, who heard all these stimuli. In our
simulation experiment we focused on modelling the RTs in a
subset consisting of 613 bisyllabic monomorphemic existing
words. Furthermore, since RT distributions typically comprise
some extremely fast and a long tail of very slow reactions that
arguably are not representative of the ’normal’ cognitive pro-
cesses, we ignored all RTs shorter than 550 ms and all RTs
> µ+2σ. This removed approximately 1% and 7% of the RTs,
respectively. As a result we had 9986 RTs from 20 subjects to
be modeled.

3. Description of the model
3.1. A three stage architecture

Our model hinges on the concept of activation and competition
between words in the mental lexicon as a function of phonetic
information at the input, which was introduced in previous mod-
els such as Shortlist [13] and TRACE [12]. Similar to Shortlist
B [14], words (and word sequences) are represented as compet-
ing paths in a phone lattice; therefore, there is no lateral inhi-
bition. Contrary to Shortlist and Shortlist B, the input of our
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Figure 1: Overview of the computational model simulating a
lexical decision experiment as performed by human subjects.
The model consists of three interrelated stages (1) a perception
stage that takes speech as input; its output is a weighted lattice
of hypotheses, evolving over time (2) a decision stage, which
outputs the recognised word/non-word item and an estimated
reaction time (3) a stage modelling the time it takes from the
mental decision until the eventual action (e.g. pressing a button)
is actually performed.

model is real speech, so that it can be tested with the speech
heard by the subjects in the lexical decision experiment. While
previous models only accounted for the recognition process per
se, our model incorporates two additional stages, a decision
stage and an action stage. The resulting three-stage architec-
ture is depicted in Fig. 1. In each stage, a number of model
parameters play a role that govern the behaviour of that stage
and thereby the behaviour of the entire model. Depending on
the exact parameter settings in the different stages, the model
can be entirely deterministic or rather probabilistic.

3.2. Perceptual stage

The perceptual stage is implemented in the form of an Auto-
matic Speech Recognition (ASR) algorithm. Speech is trans-
formed into a sequence of 13 Mel Frequency Cepstral Coeffi-
cients vectors (’frames’) augmented with delta and delta-delta
parameters (cf. [7]) at a rate of 100 frames/s. Therefore, the
phonetic evidence in the model is updated at 10 ms intervals.
ASR systems consist of acoustic models of the phone(me)s of
a language, a lexicon in which words are represented as se-
quences or networks of phones and a language model that spec-
ifies the prior probability of sequences of discrete units such as
phones, morphemes and words.

The acoustic models used in the model were taken from an
existing speaker-independent ASR system [5] (Gaussian Mix-
ture Model, 32 gaussians/state, 3-state HMM per phone) and
adapted to the speaker that produced the stimuli used in the
lexical decision experiment. We adapted the means and the
weights of the Gaussians in the mixtures, by using HERest in
HTK [8], on a randomly chosen subset of 500 stimuli from the
target speaker that did not include the stimulus set used for the
reaction time modelling. The resulting acoustic models were as-
sessed by performing a word recognition task for this speaker:
on an independent test set of 2780 words we obtained a word
accuracy of 95.2%.

Because the model must be able to distinguish between ex-
isting words and non-words, each stimulus is processed in two
ways, as is usual in keyword detection in ASR [9]. The first
way is a conventional ASR decoding using a lexicon that con-
tains the canonical pronunciation of all words in the task. In this
decoding all words had the same prior probability. In parallel,

the input speech is decoded using a lexicon that only contains
the phones, in combination with a language model that reflects
the canonical phone sequences of all 2780 existing words that
were used in the lexical decision experiment.

The parallel decoders each produce list of the 20 most likely
outputs (words in the first decoder, phone sequences in the sec-
ond), together with the likelihood of each output given the input
speech. These scores are computed by accumulating the scores
of all 10 ms frames on the path in the lattice, and therefore the
final scores depend on the duration of the input speech. To al-
low comparison of the scores for inputs of different durations,
the final scores were divided by the number of frames in the
path. The resulting ”normalised” scores are the input for the
next model stage. In the current implementation of the model
these scores are only available after the processing of the input
speech is completed.

A stimulus is likely to be a ’word’ if the first decoder wins,
i.e. if the score of the first entry in the word-based output ex-
ceeds the score of the first entry in the phone-based output.
Since words also are phone sequences, it may happen that the
corresponding phone sequence receives a higher score than the
full word. To avoid erroneous non-word decisions, the model
has a balance parameter λ to give preference to deciding ’word’;
the value of λ is negative, stimulus-independent, and added to
the phone sequence score (see section 4.2).

3.3. Decision stage

The decision stage in our model is based on a recent
mathematical-psychological model of decision and reaction
times [2], [3]. Decision models, and in particular models aim-
ing at modelling reaction times, can be complex, even for binary
choices. RT distributions of correct and incorrect responses tend
to be complex, and attempts to simulate these distributions have
resulted in ever more complex models (e.g. [11, 16, 18]; see
[1]). Recently, [2] showed that it is possible to generate all dis-
tributions obtained in behavioural experiments by means of a
relatively simple model, the linear ballistic accumulator (LBA)
model. The LBA model is based on the idea that items on which
decisions must be made accumulate evidence over time. Com-
peting hypotheses are represented by individual accumulators,
which may grow at different rates. Also, different accumu-
lators may start from different levels. The decision is deter-
mined by the accumulator that first races across a common ev-
idence threshold θ, while the time point at which the threshold
is crossed determines the reaction time. In the LBA, this rate
of growth is constant for each accumulator: evidence thus in-
creases in a linear and deterministic manner. RT distributions
can be obtained by randomly choosing initial evidence values
from a uniform distribution and growth rates from a Gaussian
distribution. The LBA model successfully simulates empirical
phenomena that have proven difficult to simulate by concurrent
models, in both binary and multi-class tasks (see [19]).

In our model we use a simplified version of LBA. All alter-
natives (the 20 hypotheses from the word decoder and the 20 hy-
potheses from the phone sequence decoder) are given the same
starting value (so we do not model yet a possible prior effect of
the relative frequency of existing words), while the growth rate
of the 40 accumulators is determined by the normalized score
of the 40 hypotheses, computed in the perception stage.

3.4. Action stage

The action stage models the process from mental decision to
overt behaviour (e.g., pressing a button). In the present version
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Figure 2: Reaction times on stimuli, grouped per subject.

of our model this stage only adds a fixed delay (100 ms) be-
tween the output of the decision stage and observable action. It
is easy to make this delay subject-dependent, and to add random
variation to each stimulus.

4. Results
4.1. Behavioural data

Figure 2 shows the RT data of the 20 subjects in the lexical deci-
sion experiment. The inverses of the RTs (in ms) are displayed
along the vertical axis; the stimuli are displayed along the hori-
zontal axis. It is obvious that some subjects are relatively slow
and others are relatively fast. Also, the variance differs between
the subjects. Pearson correlation values (paired by stimuli) be-
tween pairs of subjects ranged between 0.1 and 0.3 (with mean
0.18) when measured using 1/RT instead of RT, a transforma-
tion that makes the per-subject distributions more Gaussian.

The apparent differences between the 20 subjects raise the
question what a computational model should simulate. Is there
a unique set of cognitive processes shared by all subjects, so
that a model with a unique set of parameter values should be
used, or are the processes different between individual subjects
or groups of subjects, in which case it would be necessary to
have the model operate with different set of parameter values?

4.2. Word/non-word modelling

The word/non-word decisions made by our model are based on
the score sw for the first hypothesis in the word list output and
the score sp of the best-scoring phone sequence in the percep-
tion stage. If sw − (sp + λ) > 0 the stimulus is labelled as an
existing word. The value of λ was optimised on a held-out set
consisting of 200 words and non-words to minimise the equal-
error-rate (EER) between the word and non-word sets. The min-
imal EER obtained was 6.0% for a value of λ = −2.8. In Fig. 3,
the separation of the word and the non-word stimuli is visu-
alised. Along the horizontal axis, the parameter sw − (sp + λ)
is plotted. The left and right histograms are associated to non-

Figure 3: This plot shows the separability of items linguisti-
cally tagged as words (blue, right distribution, N=2780) and
non-word items (red, left distribution, N=2761)). The horizon-
tal axis represents the difference between two model scores: the
model score based on the decoding lexicon with words, and the
model score based on the phonotactically constrained phone
loop. Positive and negative values indicate ’words’ and non-
words as classified by the model, respectively.

word and word items, respectively. The estimation is not error-
free: of the words (right histogram) about 4% is classified as
non-word; of the non-words, about 7% is classified as words.
For the human subjects, these percentages are 6% and 5%, re-
spectively.

4.3. Modelling reaction times

We assess the accuracy with which our model simulated RTs
by means of Pearson correlations between the (noise free) RTs
predicted by the model and the (noisy) RTs obtained for the 20
individual subjects in the lexical decision experiment. Again,
RTs were transformed into 1/RT to enhance the Gaussianity of
the distributions. Figure 4 shows the correlations of the 1/RT
in the form of a heat plot, in which the model serves as the
21th subject. The average correlation between the model and
each of the subjects is 0.47, significantly larger than the aver-
age subject-subject correlations (0.1–0.3). This suggests that
the model captures cognitive processes that are shared by all
subjects, and that the seemingly low correlations between pairs
of subjects are due to the presence of substantial noise in the
RTs of individual subjects to individual stimuli. At the moment
it is not possible to say where that noise is generated, in the
perception, decision or action stage.

5. Discussion
The three-stage model for predicting RTs in a lexical deci-
sion task is able to simulate reaction times and the associated
word/non-word decisions on the basis of real speech input. A
comparison of the reaction times obtained in an auditory lexical
decision experiment to the model simulations shows a corre-
lation with each of the human subjects (Fig. 4) that is signif-
icantly higher than the subject-subject correlations in this ex-
periment, which range between 0.1 and 0.3. These between-
human-subject values are low, but it is still reasonable to as-
sume that the subjects participating in a lexical decision task
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Figure 4: Matrix plot of Pearson correlations of 1/RT between
all 20 subjects and the model, the model serving as 21st subject.
The correlation between the model and each of the subjects is
significantly larger than the between-subject correlations.

share a common underlying cognitive processes, which are in-
herently quite noisy. The fact that the average correlation be-
tween the model output and individual subjects is much higher
(0.47) suggests that if we could remove the noise from the sub-
jects’ responses, the between-subject correlation will improve
by at least 0.1-0.15. This finding raises the question what the
behaviour of a virtual ’average’ subject Svirt would be. To in-
vestigate this, a virtual subject was designed by assigning an
RT to each word based on the RTs from the 20 human subjects
(Si, i = 1, . . . , 20) as follows:

1

RTSvirt

= mean
(

1

RTSi

)
i=1,...,20

(1)

Not surprisingly, this virtual subject has a high average
Pearson correlation with the 20 human subjects (0.52). (The
averaging in eq. 1 takes place in the 1/RT-domain, as all corre-
lations are based on 1/RT values.) It is remarkable, however,
that the computational model (with its average correlation with
the subjects of 0.47) comes close to this virtual ’average’ sub-
ject.

From the scatter plots in Fig. 2 it can be seen that sub-
jects differ in two aspects: the location of their RT distribution
(slow versus fast subjects), and the variance of the RTs. In our
model the location of the RT distribution can be simulated in at
least two ways: by making the growth rate in the decision stage
subject-dependent and by making the delay in the action stage
subject-dependent. Future simulation experiments must show if
the two options yield different results (within reasonable limits
of the parameter values). In addition, behavioural experiments
must be designed that can tear apart the contributions of these
stages in the human subject.

The model presented in this paper was deliberately simpli-
fied. For one thing, it does not model the effect of the relative
frequency of the words. Even with reliable estimates of these

relative frequencies, their application must be conceptually jus-
tified: in the perception stage (as a language model in de de-
coding stage, in which the scores of paths are a weighted sum
of acoustic and language model scores, in accordance with the
conventional ASR-based approach) and/or in the decision stage
(as prior evidence, where accumulators start with this prior ev-
idence before stimulus onset). We also refrained from adding
random noise in any stage of the model. In future versions of
this model these additions will be made, for example by adding
frequency information, by sampling the delay in the action stage
from a Gaussian distribution, and by adding noise to the starting
levels of the accumulators and the growth rates in the decision
stage. For refinements of the updated model, especially of the
first stage, we will attempt to take into account findings about
lexical access (e.g. [4]), phonetic details (e.g. [6]), and word
representations (e.g. [10], [15]).

In the current implementation of our model (as in the LBA
model) the growth rate is assumed to be constant over time.
This is equivalent to assuming that the phonetic evidence for a
word increases linearly over time, an assumption that may not
be valid. The constant rate assumption allowed us to make the
operation of the perception and decision stages fully sequential.
In future versions of the model we intend to have the two stages
operate in parallel, such that the growth rate of the accumula-
tors can be adapted at 10 ms intervals based on the phonetic
evidence generated in the perception stage.

The comparison between a computational model of human
behaviour on the one hand and experimental behavioural data
on the other hand is arguably the most difficult issue in com-
putational modelling. Such a comparison can be performed in
various ways. In this paper, we decided to assess the model on
the basis of its correlation with RTs obtained from 20 subjects,
as if the model were the (N + 1)th subject. However, corre-
lations disregard differences between the means and variances
of the RTs of individual subjects. As long as we do not know
whether these differences are due to different values of param-
eters in essentially the same cognitive processes in all subjects,
so that it is safe to assume that all subjects use the same pro-
cesses, it is necessary to also try to simulate the absolute values
of the RTs of individual subjects. The extent to which such sim-
ulations are successful allows us to estimate the probability that
the assumption that all subjects use essentially the same cogni-
tive processes can be maintained.

6. Conclusions
A computational model of word comprehension has been pre-
sented. It is the first computational model of speech compre-
hension that is able to take speech as input and simulate reac-
tion times. It architecture consists of three interrelated stages
(perception, decision, and action). The model has been used
to simulate reaction times and word/non-word judgements ob-
tained from a lexical decision experiment based on nearly 10000
measurements. The model estimates reaction times with a cor-
relation of about 0.47 with human subjects, which is substan-
tially larger than the between-subject correlations which lie in
the range 0.1-0.3. Using correlation as a measure for similarity,
the model is very similar to a virtual ’average’ subject, which
reaches an average correlation with the human subjects of 0.52.
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