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Preface 

This study is concerned with the processes that take place from the moment 
that a writer wants to write down a given word, until he or she can inspect the fin
ished result. What types of transformation are needed, going from planned word to 
muscle contraction? Which components of writing behavior are explicitly planned, 
and which components are emergent consequences of neural or biomechanical pro
cesses? The goal of this thesis is to enlighten at least to some extent these intriguing 
but hard-to-solve questions. The approach followed is based on the assumption that 
by trying to build a working generative computer model of handwriting, one will 
be confronted with the same types of problems that a human writer has to solve. 
As will become evident, this assumption is only partly true, since it merely holds 
for models that comprise more than a mere input/output description, and that 
try to reflect, at least partly, the internal architecture of the system under study. 
The starting point for the simulation model is the writing behavior of an adult 
writer, experienced in cursive writing. This implies that we disregard processes 
taking place during early motor development and during the learning of cursive 
handwriting. If we take a recording of writing movements during the production 
of a page of text by such an experienced writer, will it be possible then to analyze, 
transform and adapt these data to produce a completely new text, written in the 
cursive handwriting style of this subject? The aim of the present study is indeed 
to build a computer model that is able to generate handwriting patterns in such 
a way that there is a high correspondence with respect to both the spatial and 
the temporal characteristics between the handwriting production by the computer 
model and that by the human writer. The difference of this approach from most 
other attempts to model handwriting is that these latter models have tried to re
generate existing recordings of handwriting movements, mostly involving isolated 
words. As we shall see, the step from regeneration to new generation of movement 
patterns is far from easy. This thesis describes the research that evolved from the 
interaction between the demands of a working model, the experimental findings, 
and theoretical issues. 

Chapter 1 deals with the theoretical roots of the present endeavor. Many 
viewpoints reveal essential aspects of motor control, but no single viewpoint will 
suffice to provide the building blocks for a working model of handwriting product
ion. Hence, a "vertical" approach is taken, adopting the necessary components for 
the different processing levels from cybernetics, cognitive motor theory, robotics 
and connectionism. 

Chapter 2 discusses an important aspect of the pen-tip kinematics during 
cursive writing: how reproducible are replications of writing movements recorded 
on different occasions? Only if movements are actually reproducible, makes it sense 
to develop a handwriting production model. This chapter forms the starting point 
of the development of the model, since it shows that invariance and replicatability 
are indeed present in movement patterns with the duration of at least a single 
letter. 
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Chapter 3 presents a computer model of handwriting. One of the basic prob
lems that have to be solved is concerned with the transformation of discrete en
tities, i.e., the symbolic representation of a planned letter shape (allograph), into 
a continuous multi-dimensional time function, i.e., the movement of the pen tip. 
This problem is tackled with the first step assumption that there are basic seg
ments in handwriting, strokes, the number of which is known to have a more or 
less quantized influence on the reaction time in the programming of handwriting 
movements by a human writer. The next step is to find a parametrization of these 
strokes. Here, the problem is the fact that movements along more than one axis 
have to be prepared at a specific moment in time. In most models, the movement 
patterns along separate axes are essentially independent, describing the total pat
tern for an isolated word separately for each axis. In contrast, the current model 
aims at handwriting production that proceeds letter by letter. The reason for this 
constraint lies in the findings which seem to indicate that the motor programs used 
in planning cursive handwriting involve movement patterns of a size that corre
sponds to single letters. This assumption, consequently, leads to the definition 
of an abstract representation of allographs and a grammar, dubbed the Cursive 
Connections Grammar, that provides the rules for generating connecting strokes 
between two planned letters. 

Up to this point in the thesis, the model has only been concerned with the kine
matics of the pen-tip movement. However, the important question may be asked if 
movement kinematics are the only domain that is controlled by the "programs" for 
handwriting production. Apart from the intrinsic forces that generate movement, 
the pen is in contact with the writing surface, yielding normal force and friction. 
What is the actual relation between finger and wrist movements and pen force 
(pressure)? If there is a fixed and strong relation between pen force fluctuation 
and movement, it is most parsimonious to consider pen force fluctuations to be 
a passive biomechanical phenomenon. If, on the contrary, pen force appears to 
be independent from the movement, it is likely to be a separate control variable. 
Thus, in Chapter 4, a kinetic aspect of writing is studied: what happens to axial 
pen force during the production of several types of movement patterns and what 
are the implications for movement control as specified in the working model? It 
appears that pen force fluctuations are not a passive biomechanical phenomenon. 
Also, the pen force pattern during letters is invariant across replications, which 
supports the notion that pen force is a separate domain, in some way embedded 
in the "programs" for letter production. 

During the course of our project, rapid new developments took place in the 
field of modeling perceptual and cognitive functions. New techniques in neural 
network simulations, such as back propagation, simulated annealing and neural 
self-organization are being refined and still newer techniques are being developed. 
With respect to motor control, however, there are still some typical problems to 
be solved, notably the representation of time and of continuous functions. 

Chapter 5 presents a review of some basic artificial neural network models 
and their potential use in modeling handwriting movement control. In the follow-
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ing chapters, three basic issues are raised with respect to motor modeling: the 
coding of quantity, the representation of time, and the representation of the ef
fector system. Chapter β deals with the representation of quantity and learning 
the static transform of a continuous function. It reveals subtle differences between 
basic types of coding of quantity in a neural system: Firing rate control, value 
unit coding, and recruitment. In Chapter 7, the representation of time in neural 
systems and the learning of handwriting time functions is addressed. A new neu
ral network model of the production of time functions is proposed, consisting of 
an ensemble of neuron-intemeuron spike oscillators. The last of the three neural 
modeling experiments is described in Chapter β and concerns the problems of the 
representation of an effector (e.g., an arm) and the transform of two-dimensional 
movement patterns into N-dimensional joint angle patterns: The inverse kinematics 
problem. A final interesting and relevant problem is computer recognition of hand
writing movements which is the focus of Chapter 9. Will the knowledge gathered 
thus far in simulating the production of cursive handwriting and in neural network 
modeling be helpful in the automatic recognition of handwriting movements? An 
algorithm is proposed that performs recognition by actively constructing letter (al
lograph) hypotheses on the basis of chains of individual strokes, instead of storing 
prototypical allographs and performing template matching. 



Chapter 1 

Theoretical perspectives 

Motor processes are studied at a number of observational levels varying from elec-
trophysiology to cognitive psychology. Mostly, a researcher chooses his field of 
interest and thus determines the level of observation for his work. However, in 
the course of developing a generative simulation model of cursive handwriting, 
it became apparent that a single level or perspective would not suffice. In the 
several stages of the current study we were confronted with problems that are 
specific to different observational perspectives. For instance, the problem of the 
internal representation of letter shapes requires an approach that is quite different 
from the approach needed in the problem of trajectory formation or force control. 
Consequently, we had to follow a "vertical" approach, leading to a model of hand
writing that encompasses several levels of observation. Unfortunately, there is a 
great abundance of different theories at each of these levels, all of them addressing 
relevant aspects of motor behavior. The reason for this lack of agreement lies in 
the complexity of the motor processes themselves. Given our goal of developing 
a model of cursive handwriting, a selection of theories had to be made at each 
of the observational levels encountered. First we wiD describe some relevant the
ories from a historical perspective and point out our stance. Cybernetics and 
systems theory, have exerted a profound influence on our insight of motor control. 
Cognitive Motor Theory exposes the need for a description of the represen
tational and computational aspects of motor control. The Systems Dynamics 
Approach is powerful in explaining a number of motor control phenomena, but 
appears to be insufficient as the basis for a handwriting model. The Robotics 
viewpoint exposes problems, that have been implicit in theories on motor control 
for a long time. Connectionism provides neurally inspired models which have 
the attractive property of potentially being closer to the actual biological neural 
motor control system than the models developed in the other approaches. Finally, 
the origin of theories and techniques, used in the Recognition of handwriting 
movements will be mentioned briefly. 

1 
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1.1 Cybernetics 

Cybernetics is defined as "...the study of control and communication in the ma
chine or in the animal..." (Wiener, 1948). In the current context, we will use the 
term cybernetics in a narrower sense, i.e., as referring to the study of control sys
tems. The communication and information-theoretical aspects that were originally 
partly embedded in cybernetics, are currently studied in a different field, called in
formatics or computer science. The name cybernetics comes from the Greek word 
for steersman (κνβερνήτης), and in fact does not have connotations with respect 
to communication or information. More epecifically, even, we will only speak of 
systems controlling a physical parameter. The following quotation clarifies how 
Wiener himself envisaged the control problem: 

"....what we will is to pick the pencil up. Once we have determined 
on this, our motion proceeds in such a way that...the amount by which 
the pencil is not yet picked up is decreased at each stage...." 

N. Wiener (1948, ρ 14) 

Since the development of technical servo systems (Wiener, 1948), interest in 
cybernetics as a paradigm has been increasing and fading in a number of fields, 
varying from engineering, biology and psychology to economics. Research in cyber
netics has led to powerful mathematical tools and theoretical concepts, gathered 
under the heading of Control Theory. Figure 1 shows the basic components of a 
general first-order feedback system and their connections. 

There are four system components: (a) Comparator, (b) effector, (c) sensor, and 
(d) feedback loop. The quantities flowing from one component to the other can be 
weakly separated into information quantities (dotted lines) and energy quantities 
(solid lines). The input to the system is a signal determining a target value for the 
effector output, as measured by the sensor. The output of the system is an amount 
of energy dissipated by the effector. In error-correcting systems, the effective sign 
of the sensory quantity that is fed back to the comparator is the inverse of the sign 
of the energy quantity produced by the effector. In this way, external disturbances 
imposed on the effector output axe counteracted by the system. Feedback can also 
be positive, leading to oscillations or an avalanche process. The central issue in 
the cybernetic paradigm is the identification of these basic system components 
and the determination of their parameters. For instance, the system has a gain 
parameter, each component has a static transfer function (linear or non-linear) 
with a specific operating range, and a frequency domain transfer function. The 
connections between components may introduce a time delay in the propagation 
of quantities. The overall system behavior can be described by sets of differential 
equations. 

With respect to handwriting, the cybernetical paradigm would point to the 
following type of model. From somewhere, a target letter shape enters a system 
composed of (b) the end effector holding a pen, (c) a visual, proprioceptive and 
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Input Internal 
world 

Comparator 

External 
world 

Effector 

Sensor External 
Process 

Figure 1. The basic components of a first-order feedback system: a) Comparator, 
b) effector, c) sensor, and d) feedback loop. 

tactile sensor subsystem delivering a displacement or velocity feedback signal (d) 

which enters a comparator (c) (Figure 1). The muscles of the effector system in use 

are continually activated with an excitation signal that is based on the difference 

between the target shape and the obtained shape. Is such a model realistic? Po

tentially, the model could be justified since the necessary system components are 

existent. However, the credibility of such a model ultimately depends on the actual 

values of the physical parameters of the system components (transfer functions, 

delays etc.). 

Now, for the sake of argument, let us ask what an ideal, physically realizable, 

error-correcting feedback system for motor control would look like? Such a system 

functions optimally if disturbances are corrected fully, immediately and without 

oscillations. Empirical evidence and theoretical reasoning have led to the following 

five qualitative requirements for this hypothetical and ideal system. 

The external parameter аз well as the effector control signal are of a continuously 

varying (analog) nature. 

An effector whose output cannot be controlled continuously, but can only be 

switched on or off will lead to oscillations in the feedback process. This happens 

with the binary controlled feedback systems that the refrigerator and most home 

thermostats are. The problem can be solved by damping the effector output and 

by decreasing the switch hysteresis, the theoretical optimum is an infinitesimally 
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short switching time. Another solution is the quantization of the effector range 
into a much larger number than two levels. 

Sensory measurement takes place continually during effector activity. 

A sampling sensory system measuring the effector state at regular or irregular 
intervals with a duration that is larger than the duration of output fluctuations, 
misses information and cannot provide stable error correction. In the frequency 
domain, this problem appears as folding or aliasing of the "missed" spectral com
ponents (Bendat & Piersol, 1971). 

There are no transmission delays. 

A feedback system with a transmission delay between sensor and comparator 
will have a strong tendency to oscillate ("hunting"). The reason is that the distur
bance at the time of correction does not match the correction magnitude that was 
based on old sensory information. Thus, the corrective action becomes a distur
bance itself, and so on. A feedback system with a transmission delay may function 
in a stable mode, however, if a damping ("low-pass filtering") component is placed 
between the effector and the sensor. The price to be payed for this solution is an 
increased "sluggishness" in the system behavior. In motor systems, a compara
ble problem is encountered in the mono-synaptic reflex arc of, e.g., the arm and 
hand muscles. The neuroelectric delay between sensor (muscle spindle) and com
parator (the alpha motoneuron pool) is about 20 ms, the neuromechanical delay is 
about 60-100 ms. If muscles were undamped electro-mechanical devices, this would 
surely lead to an unacceptably high-amplitude oscillation at about 8 to 12 Hz. In 
the course of evolution, however, the parameters of this system (visco-elasticity, 
inertia, loop gain) developed in such a way that there exists a compromise be
tween stability and response speed. In the human hand, the result is a critically 
damped system, displaying a small-amplitude oscillation of about 8-12 Hz known 
as physiological tremor (Redfearn, 1957; Lippold, 1970). As an example of the ef
fect of delay at a higher level of motor control, delayed speech feedback by means 
of headphones seriously impairs the process of speaking (Fairbanks, 1955). 

The gain of the system is high. 

If the gain of the system is low, it takes longer to counteract disturbances (Von 
Hamos, 1964). 

The operating range of the effector is bipolar. 

An effector with a monopolar operating range (a heater) is less effective and 
slower than an effector with a bipolar operating range (e.g. in airconditioning: 
Heating as well as cooling) (Klir, 1969). The reason lies in the time constant of 
a monopolar effector, which forces the control system to wait passively until the 
target value is reached by decay. 
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In physiological systems, none of the above conditions is fully met. We have 
seen that in case of delays there may be a compromise between stability and re
sponse speed. Moreover, muscle control is hampered by the fact that the effector 
cannot really be controlled in an analog fashion. Smooth movements are only ap
proximated by a non-ideal (Allum, Dietz & Freund, 1978) statistical summation 
of motor unit activity (De Luca, 1979; Van Boxtel & Schomaker, 1983), filtered 
by visco-elastic damping and inertia (Rack, 1981). Single muscles have a monopo
lar working range, they contract actively but relax passively. Only with agonist-
antagonist pairs can bipolar effector control be achieved. Due to their physical 
limitations, the gain of the physiological feedback systems is much less than in 
technical systems, but often a high gain would only worsen the detrimental effects 
of transmission delays on error correction. Nevertheless, in motor control, physio
logical feedback systems exist, as evidenced by anatomical and experimental data. 
Important feedback loops in motor control are the mono-synaptic reflex arc, the 
Golgi tendon sensor feedback loops (Roberts, Rosenthal & Terzuolo, 1971), and 
the feedback loops between the motor cortex and the cerebellum (Dimond, 1980). 
As compelling examples, posture control and oculomotor control are processes 
that can be described elegantly in terms of cybernetics (Jones, 1972). Apart from 
physiological modeling, cybernetics was a useful paradigm in modeling some types 
of tracking behavior (Grossman, I960). But, is there enough evidence to support a 
"tracking" hypothesis of handwriting? Before answering this question, let us first 
point out some inherent theoretical problem areas. For instance, what is the input 
to a feedback system? If it is a simple and fixed physical goal ("keep standing 
upright"), there is no theoretical problem. But what if the input target value is 
varying over time to obtain a time varying effector output instead of maintaining 
a fixed value? Where does such a signal come from? It does not suffice to say 
that the feedback system being observed is submerged in a larger hierarchically 
organized system of feedback units. Such an explanation introduces, once again, 
the well-known "homunculus" problem. 

Before continuing this more or less historical review with the next paradigm in 
motor theories, let me clarify the issue of "closed-loop" control or feedback as it 
was used in psychological theories on motor control. Sometimes, the original ideas 
of "feedback" of the cybernetica! approach were interpreted slightly differently by 
researchers in non-engineering fields. For instance, Adams (1971) proposes a closed-
loop theory of motor control in which the concept "Knowledge of Results" (KR) 1 

plays an important role. Knowledge of Results, as it is usually applied, represents 
feedback that a subject gets about a response after it has terminated. Indeed, 
there exists a large class of human motor actions that, unlike tracking behavior, 
involves discrete patterns, the success of which depends on the final state (e.g. 
catching a ball), so continuous feedback is not possible at all. In fact, however, in 
Adams' closed-loop paradigm, a very special type of feedback system is described. 

1The name (KR) is rather strange since it seems to imply that the experimenter can be certain 
that the subject indeed has acquired knowledge upon the presentation of the feedback stimulus 
that is supposed to represent a response measure. 
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It is a system in which a "one-shot" response is followed by a delayed single 
experimental stimulus conveying information about the quality of that response. 
The time scale is such that the duration of the response relative to the delay time 
of KR can be very small, e.g., 100ms for a single pencil stroke vs 20s delay of 
the feedback about the produced actual stroke length. This temporal dissociation 
is much larger than one expects in physical feedback systems. In fact, a careful 
comparison of the "closed-loop" theory of Adams with standard cybernetics reveals 
many more differences. Adams deeds with "perceptual traces", "memory" and 
"learning", concepts that are absent in basic control theory. What psychological 
"closed-loop" theories and cybernetics have in common is the closed loop from 
effector activity to the comparator (Figure 1). The operating mechanisms of a 
system like the mono-synaptic reflex system on the one hand, and the feedback 
system that is composed of a subject and experimental apparatus in a typical "KR 
experiment" are vastly different. Whereas the mono-synaptic feedback process is 
governed by known, relatively simple, physical and physiological laws, still very 
little is known about the neurophysiologicai and cognitive laws that govern the 
behavior of a subject in a KR feedback experiment. In any case, a failure to confirm 
hypotheses with respect to "closed-loop" control in typical KR experiments should 
not tempt us to dismiss all feedback mechanisms. The line of thought followed in 
the theory of Adams is much more in agreement with the theory to be discussed 
next than the original controversy suggested at the time (Stelmach, 1982). 

Gradually, some shortcomings of a purely cybernetical view on motor control 
predominantly based on feedback became more and more clear. An increasing 
number of findings indicated that there are phenomena in motor behavior that 
cannot be explained in terms of systems with closed loops and negative feedback 
only. Lashley (1951) already noticed that some motor phenomena simply occur 
too fast to be explained by feedback mechanisms: A good piano player can achieve 
a regular frequency of 16 key strokes per second, using several fingers. Dijkstra Sc 
Denier van der Gon (1973) found that target positions in aiming movements could 
be reached after disturbances, without active high-level feedback of the motor 
system taking place. Also, it was shown that unexpected disturbances in fast arm 
movements did not lead to changes in the recorded EMG until 100ms after their 
occurrence (Wadman, 1979). In monkeys, it was shown that "programmed" target 
positions could be reached after functional deaiferentiation (Bizzi, 1980; Morasso, 
1981). Table 1 shows some typical average reaction and delay times in humans. 



The simple reaction time between seeing a light 
flash and pushing a button with the index finger 
(Donders's α-type reaction) is, in adults 
(Kelso et al., 1979): 230 ms 

The reaction time between seeing a light 
flash bar and pushing a button with the index finger in 
a binary decision task is, in adults (Laming, 1968): 419 ms 

The 95 percentile reaction time to brake a car in case 
of an unexpected obstacle (Olson & Si vak, 1986): 1600 ms 

Table la. Typical reaction times. 

The time between a passive stretch of an arm muscle 
and the arrival at the alpha motoneurons in the spine 
of the afferent neuroelectric burst coming from the 
muscle spindles is (Marsden, Merton & Morton, 1973): 23 ms 

The time between a discharge of an alpha motoneuron 
and the peak twitch force of the muscle fibers belonging 
to the motor unit is (Grimby, Hannerz & Hedman, 1979): 
The effective duration of a motor unit twitch is 
(ibid.): 

Estimated time between the occurrence of a motor discharge 
at the motor cortex and the discharge of hand alpha 
motoneurons (type A fiber, conduction speed 100m/s) is: ± lOms 
Idem, measured in monkeys (Schmidt & Mcintosh, 1979): 11ms 

The time between presentation of a light flash and its 
arrival at the visual cortex (Wurtz & Mohler, 1976) 35ms 

30-100 ms 

>60 ms 

Table lb. Typical delay times. 
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As an approximate estimate, 100 ms is assumed to be the minimum time to 
process sensory signals at cerebral levels and initiate corrective muscle contrac
tions. Faster systems exist, e.g. the oculomotor system (Gisbergen, Van Opstal, & 
Roebroek, 1987) with its short connections to the central nervous system. How
ever, the general opinion took hold that the neural system is just too slow to 
react fast enough to the rapid and often sudden perceptual and proprioceptive 
changes that occur in daily actions: Car-driving, sporting and speaking, and to 
produce adaptive corrective activation of the muscles. The conclusion was that 
there process types must exist which do not use feedback loops, but function, as 
it were, with an opened loop. Thus, "open-loop control" was acknowledged more 
and more as an explanation for the timing problems in real-life motor control. Nor
mally, in cybernetics, open-loop control is an artificial situation, produced by an 
experimenter to measure system parameters, such as gain, which can only be de
termined if the feedback loops are cut. It is the engineer who determines what the 
input signals are to the mutilated system, in order to measure the output signals. 
In the case of motor control however, the notion of open-loop control necessarily 
requires the introduction of a new concept. What type of signal or information 
is flowing through this system with its feedback loops inactive or ineffective? It 
must be some signal or "information" that is based on the current state of the 
perceptual systems and that is anticipated to contribute to an adaptive state of 
the motor system by the time the muscle contractions take place. The necessary 
concept is "preparation" or "programming" as it is sometimes called. The term 
"open-loop" is also confusing since it presupposes that all existing feedback loops 
are inactive, which is not the case. Feedback loops varying from the mono-synaptic 
reflex arc and the cortico-cerebellar loops (Dimond, 1980) to the visual feedback 
loop, are continually active, but the relevant information is arriving "too late" in 
the case of rapid movements. 

Apart from open-loop control by programming, there is a related but distinct 
principle that was postulated to explain the motor phenomena that appeared to 
operate without feedback: Feedforward control. The essence of feedforward control 
is, that earlier systems in a chain of processing units bypass the activity of inter
mediate processing units and bring about state changes in the units further away 
in the direction of the end of the chain. Feedforward control has the effect of over
ruling the activity of the intermediate processing units. In industrial engineering 
practice, feedforward is often used to implement safety mechanisms that prevent 
the system from overloading in case of input signals reaching ceiling values. The 
explanation that Dijkstra & Denier van der Gon (1973) put forward to account for 
the apparent ability of the motor system to reach a target after a disturbance with
out high-level feedback was the existence of a gamma-efferent feedforward signal 
that designated, a priori, the expected muscle length at the target location. This 
paper is typical for the transition from predominantly feedback-oriented expla
nations towards feedforward and ultimately, open-loop or programming-oriented 
explanations for phenomena in motor control. 
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The preliminary conclusion is, that cybernetics elegantly describes some existing 
phenomena in motor control. With respect to handwriting it can be concluded 
that the existence of feedback loops such as the mono-synaptic reflex arc and 
the cortico-cerebellar loops introduce a self-organizing autonomy into the effector 
system (the writing hand) in the domain of posture and stiffness control. At the 
same time however, the concept of feedback is insufficient to explain the corrective 
properties of motor control in case of absent or delayed sensory information. Also, 
the origin of complex patterns like writing is left implicit in a pure cybernetical 
theory. 

1.2 The Open-Loop Approach: Cognitive Motor Theory 

As stated earlier, the experiments by Bizzi (1980), Bizzi, Polit & Morasso (1976) 
played an essential role in the paradigmatic shift in which feedback as such was in
creasingly considered to be inadequate as an general explanation of motor control. 
It was shown that in fast aiming movements of the head or the arm (Wadman, 
1979), final targets could be reached in the absence of essential feedback infor
mation (visual, vestibular, or proprioceptive feedback). The explanation for this 
phenomenon that was put forward, and that is still accepted for the greater part 
today, is that the central nervous system determines in advance of such an aiming 
movement, the ratios of muscle activation (co-contraction) levels. In this view, the 
motor apparatus is a combination of tunable mass-spring systems. The role of the 
existing feedback loops was consequently limited to (1) slow and fine adjustment 
as in posture control, to (2) adaptation to new or strange postures (Wadman et 
al., 1980), not internalized by the "programming" system, and (3) and to learning. 
These findings, as well as psychologically oriented models on motor preparation 
(Sternberg, Knoll, Monsell, к Wright, 1983) have influenced the development of a 
perspective we will call Cognitive Motor Theory. This field has exerted a marked 
influence, also on the development of theories on handwriting production (Hulstijn, 
& Van Galen, 1983; Hulstijn & Van Galen, 1988; Teulings et al., 1986; Van Galen, 
1980). The paradigm has led to interesting discoveries that have been described 
extensively elsewhere (Teulings, 1988). However, there are some problems to the 
Cognitive Motor Theory. For example, the algorithmic view on motor processes in
herently introduces discrete and sequential processing stages, and computer-based 
metaphors like "buffering" and "unpacking". In retrospect, an attractive aspect of 
cybernetics with respect to modeling motor control was that all the various pro
cesses function inherently parallel, in the models as well as in the neural reality. 
It is only recent that the concept of parallellism regains attention in staged and 
serial modeling (Van Galen, Meulenbroek, & Hylkema, 1986). 

However, two basic aspects of the Cognitive Motor Theory approach are used 
and adhered to in the present thesis. The first is the concept of a motor program as a 
prepared system state that controls actual movement and that is of a more abstract 
nature than simple, stored muscle activation patterns. The second is the finding 
that "programming" is only possible for a motor action of limited duration. In 
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other words, in order to be able to produce cursive handwriting, the motor control 
system must prepare the action in advance, but at the same time, it cannot prepare 
in detail more than a few of the basic movements (strokes) making up a specimen 
of handwriting. 

A corollary of the open-loop approach is that the internal representations used 
in motor control can be used by the organism to process the (delayed) feedback 
information. Although the peripheral feedback information arrives too late to in
fluence the individual stroke production, it can be used in the learning of hand
writing (adjusting the "motor programs") and to compensate future strokes. As 
an example, deviations from the base line in handwriting can be compensated by 
adapting the vertical size of subsequent strokes. From a study in blindfolded writ
ing (Schomaker & Van der Plaats, in prep.), it appeared that a striking difference 
between sighted and blindfolded writing lies in the reduced linearity of the base 
line. Figure 2 shows two samples of handwriting of a single subject, in a normal 
(2a) and a blindfolded condition (2b). Apart from the non-horizontal orientation, 
the baseline is not linear because of within-word and between-word fluctuations. 
The between-word fluctuations are of a "staircase" type, caused by the positioning 
uncertainty at each pen lift. The positioning of the first word of a line of text was 
guided by the experimenter. It should be noted, that the mode of feedback that 
is involved here differs strongly from the physiological feedback in Section 1.1, in 
that it requires cognitive activity. The writer must see the handwriting base line 
or visually estimate it, in case of unruled paper, and he or she must know if the 
subsequent strokes have an end point that is located on the base line in order 
to produce an adapted "program" for the movements to come. The example also 
indicates that visual information is used to calibrate the global writing parame
ters size and orientation. In blindfolded writers, the orientation mostly deviates 
from the horizontal base line, but there are no systematic biases in the group of 
subjects. All 10 subjects wrote larger in the blindfolded condition. Apparently, 
the visual information is also needed for a feedforward "Einstellung" of global 
parameters like orientation and size before the initiation of this motor task. The 
fact that writing size is systematically larger instead of smaller may be caused 
by the fact that larger movements compensate for the lack of visual feedback by 
larger muscle-length variations and a consequently enhanced proprio ceptic feed
back. Another effect caused by the removal of visual information is the so-called 
"stroke counting error", here exemplified by the erroneous spelling of the words 
huis (house) and zee (sea) (Figure 2b, line 1 and 4 respectively) where a perse
veration of strokes from the digram /ui/1 or the letter / e / takes place. This effect 
has also been reported by others (Ellis, Young & Flude, 1987). This phenomenon 
points to the necessity of the visual detection of an "end-of-allograph" condition, 
especially in the case of a repeating pattern. 

aThe /../notation will be used throughout the dissertation to refer to handwritten characters, 
i.e., "graphemes" or strings of graphemes. 



Ол. At. гол и идіиіли«- ЛЛЛІІДІЛ ил, wwJc іг смил &- Xu. 

Kw ìtymjn. ÚCUV di«. uAAitWwAuí- •bWíL чА т м і^ильт. 

Oom. ckt uwnMiüxn. ост. OÜL wvirwjW υνιου^νίίΛΐΙί f t υ«1 

Олл «иЛ ий MwA. rvvd кл и«л de i obwWdeo í a 

^ к ^ ' 7 ^ b 

Figure 2. 
The effect of blindfolding on cursive handwriting, a) normal handwriting, eyes 
opened, b) blindfolded handwriting. Writer: Male, age 20 (Schomaker & Van der 
Plaats, in prep.). 
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1.3 The ecological viewpoint: The Systems Dynamics Approach 

The ecological or "Gibsonian" perspective (Gibson, 1979) evolved from a grow
ing discontent of several researchers who felt that the cogniti vist, computational, 
approach complicated matters rather than explaining basic features of motor 
behavior and providing "deep" insight in these features. The cognitivist ap
proach yielded complex models (Sanders, 1983), graphically depicted by connected 
"boxes", hence the term "boxology" (Bootsma, 1988). This type of model often 
appears to be somewhat remote from both the physical motor behavior and the 
physiological processes. More specifically, doubt can be cast whether all behav
ioral phenomena are explicitly programmed (computed). It is very well possible 
that motor control is brought about by a more autonomous process. In this latter 
approach, the idea of an internal representation of movement such as a stored 
pattern of receptor activity typical for a specific motor task is rejected. 

Although the ecologists' criticism with respect to the cognitive approach is re
viewed extensively elsewhere (Bootsma, 1988), it is useful to elaborate on some 
points. Interestingly, the ecological approach also partly rejects cybernetical expla
nations for motor behavior. For example, a given oscillatory component in a motor 
action pattern can be explained as the consequence of non-ideal servo behavior, 
but the same data can be described as being produced by a mass-spring system 
(Table 2), without the need for concepts like comparator, error correction and 
the like (Figure 1). In other words, in the eyes of the Gibsonians, a system may 
behave like some technical contraption, but it is considered more parsimonious to 
look at simple physical analogs for the description of the system as a whole. It is 
considered inappropriate to look for active system components if the data can be 
explained by passive mechanisms like attraction to equilibrium states. In a sense, 
the ecological perspective is holistic, not using concepts of physics in the regular 
reductionistical sense. 
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In many theories of the motor system the concept of mass-spring systems is 
used. In fact, it is used so often that hearing the words will cause an overhasty 
"Aha Erlebnis" in many listeners. I would like to point out here, that there 
are very large, sometimes subtle differences in the way the mass-spring analog 
is used. 

1. The mass-spring system as a direct analog for the biomechanical 
behavior of the motor system. 
This is the most direct analog, with physical parallels in the motor system for 
each subconcept of the theoretical mass-spring system, determining the trans
fer function of the system. Mass and visco-elasticity may refer to a parameter 
of a single muscle, or to parameters of a compound motor system consisting 
of limbs etc. (Rack, 1981). 

2. The mass-spring system as an explanation for feedback-less error 
adjustment. 
In fact, what is meant here is a system consisting of one limb, (mass), con
nected to two counteracting springs around a joint. The elasticity coefficient 
of the springs (muscles) is pre-programmed, so that after a disturbance the 
system will return to the equilibrium joint angle itself, without neuromuscular 
feedback being involved. Here the analog is specifically used to account for an 
aspect of motor behavior (Bizzi et al., 1976; Hogan, 1985). 

3. Oscillations of a mass-spring system as a metaphor for the 
organism-environment interaction. 
Here the mass-spring system is used to show that oscillation can occur in a 
physical system without components such as feedback loops. In the Gibsonian 
approach, the very high-level concept of organism-environment interaction is 
linked to the low-level concept of an oscillating mass-spring system (Gibson, 
1979). 

Table 2. The ubiquitous m a s s - s p r i n g analog. 

In a paper by Saltzman & Kelso (1987), many basic concepts of the Gibsonian 
approach in motor theories are dealt with. These authors prefer to talk about 
the "task-dynamic approach" when referring to their theory. However, the term 
dynamic or dynamics is a frequent source of ambiguity (Table 3). 
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Often the terms d y n a m i c and dynamics are used in a confusing way. There 
are at least three interpretations. 

1. D y n a m i c as opposed to S ta t i c 
In this case the term is used to refer to time-variant properties as opposed to 
time-invariant properties. This use of the term dynamic is particularly confus
ing in the context of motor theory. 

2. D y n a m i c vs K i n e m a t i c 
Here, the distinction between the two basic aspects of Mechan ic s is meant, 
i.e., "Dynamic" refers to force as opposed to movement. The Newtonian equa
tion of movement F — ma + βυ + ks contains three force terms (Dynamics), 
each term determined by a Kinematic factor (a, υ, s) for acceleration, velocity 
and displacement, respectively, and a constant (m,ß,k) for mass, viscosity 
and stiffness, respectively. 

3 . D y n a m i c s as a m e t h o d of analysis 
In this case, the term Dynamics refers to the theory of Systems Dynamics 
which evolved from Mechanics (see 2), Mathematics, and Control Theory. The 
field is evolving rapidly, yielding many useful methods and insights, including 
well-known phenomena as chaos (Parker & Chua, 1987) and fractals. In simple 
terms, the theory shows that very complex behavior can occur in non-linear 
systems of limited complexity. See Abraham к Shaw (1984) for an excellent 
introduction. 

Table 3. T h e terms D y n a m i c and D y n a m i c s a n d their meaning 

In t h e sequel of this chapter, interpretat ions 2 a n d 3 (Table 3) will be referred 

t o using t h e te rms D y n a m i c s a n d S y s t e m D y n a m i c s , respectively. In general, 

it would b e profitable if t h e t e r m k i n e t i c s were used in case t h e force domain is 

referred t o . 

We will t ry t o find arguments against t h e ecological approach a n d analyze two 

p a p e r s (Sa l tzman & Kelso, 1987; Beek & Beek, 1988) t o see if t h e approach of 

Systems Dynamics is t h e u l t i m a t e panacea for t h e complexity problem in m o t o r 

theories, a n d a good candidate for a handwrit ing product ion model . 

Arguments against a motor theory that is solely based on Systems Dynamics. 

1. It seems as if t h e differences in terminology between Cognitive Motor Theory 

a n d t h e Systems Dynamics Approach obscure t h e fact t h a t it is t h e same motor 

system a n d t h e same m o t o r processes t h a t are the subject of study. This difference 

m terminology is mainta ined on purpose, carefully avoiding each other ' s concepts. 

In Sa l tzman & Kelso (1987), t h e t e r m motor programming is carefully avoided, 

a l though t h e configuration of a Task n e t w o r k on t h e basis of Task s p a c e a n d 

B o d y s p a c e (ibid.) is clearly something like " p r e p a r a t i o n " or motor "program

m i n g " . 
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2. There is a tendency to peruse anecdotal evidence. Example are the "diving 
gannet" (Lee & Reddish, 1981) and the "skilled maxksperson" (Tuller, Turvey & 
Fitch, 1982). There is no methodical, falsifiable approach in modeling as is used 
in some cognitive theories (Sanders, 1983). 
3. The Systems Dynamics Approach virtually completely ignores the internals of 
the neural systems involved. In this sense it is purely descriptive. Only a very 
complex and matured device such as the human nervous system is capable of 
learning the task dynamics for a wide spectrum of motor tasks during an individ
ual's lifetime, no matter how simple and parsimonious a dynamics description for 
the behavior in a specific task might be in terms of its mathematics. 
4. The Systems Dynamics Approach is suited best for a limited class of motor 
tasks, i.e., oscillatory behavior, like walking which has since long been known to 
be produced by relatively independent and self-organizing low-level spinal and 
brain-stem modules. It can be fairly effective to describe other pure oscillatory 
tasks (Beek, 1989). 
5. The parsimony of the Systems Dynamics Approach breaks down in complex 
patterning tasks. As an example we can take cursive handwriting. In this motor 
task, discrete action pattern units are concatenated. The model of Hollerbach 
(1981), assuming that the oscillator for a complete word is installed in advance does 
not hold. Writers only plan the movements for one or two letters ahead (Hulstijn 
& Van Galen, 1983; Stelmach & Teulings, 1983; Schomaker & Thomassen, 1986). 
Even if we would succeed in describing an oscillator configuration for a single letter, 
or even two letters, how then are the basic action units concatenated? Is this done 
by an associative process, or by "buffering"? Eventually, representational concepts 
will be needed, similar to those that are currently in use in Cognitive Motor Theory. 
6. Looking at the Systems Dynamics Approach with a skeptical attitude, the 
method appears as an elaborate form of curve fitting, especially if one were to 
use it for modeling oscillatory behavior that is subtly modulated in phase, fre
quency and amplitude, like cursive handwriting movements. In this case the rela
tion between the actual movement process and the original Newtonian equation 
of movement can be quite far-fetched, losing contact with the original physical pa
rameters. The famous oscillator model of handwriting by Hollerbach (1981) needs 
13 parameters. In a paper by Beek & Beek (1988), the phrase "scouting for" (a 
non-linear function) can be found, conveying an essential problem of the approach 
that is characteristic of all curve fitting attempts. To understand the essence of 
this criticism, let us take a look at the method in more detail. Again, assuming 
the special case of cyclic tasks, an equation of motion can be given that describes 
a time-invariant periodic attractor: 

ma + ßv + k(s-3o) =ƒ(«,«) (1.1) 

Saltzman & Kelso (1987) 
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where πι is mass, α is acceleration, β is the viscosity coefficient, ν is velocity, к 
is the stiffness coefficient, a is displacement, and θο is the equilibrium position. 
The non-linear escapement function f(a,v) is needed to counteract the energy loss 
caused by viscous friction. Given an appropriate f(s,v), the system described by 
this equation will tend to oscillate at a fixed frequency and a fixed amplitude, for 
all initial conditions of a and v, except for a = So Λ ν = 0. The stable oscillating 
state occurs at the limit cycle in the system's phase portrait (v plotted vs a). A 
more realistic equation is given by Beek & Beek (1988), assuming that we cannot 
be certain that the friction (βν) is really viscous, or that the elasticity is linear 
and can be described by the term к(з — Зо): 

a + a + W(a,v) = 0 (1.2) 

Beek & Beek (1988) 

where Pf(a,v) comprises all deviations of the ideal mass-spring system in terms 
of friction and non-linear elasticity, including the escapement needed to keep the 
oscillation going. In other words \ (з, ) is an extension of f(a,v). Note, however, 
that we are moving away from the idealized mass-spring system even further, 
and that the system described is a kinematic one, unlike equation (1). Given 
kinematic data, the goal now is to find a W(s,v) that is appropriate to model 
these data. Beek & Beek (1988) introduce several methods to decide if W(syv) 
is one (combination) of a catalogue of non-linear functions (Duffing, Van de Pol, 
Rayleigh). What is the real purpose of searching after such an equation? A valid 
reason can be the fact that the domain described with the equation contains all 
temporal, spatial and/or force invariances (autonomously corrective effects) in a 
parsimonious way. But what if the complexity of W(3,v) exceeds other possible 
functional approximations to the term а + al In other words, is the researcher 
allowed to fill in any non-linear function (polynomial, Fourier etc.) as long as the 
curve fits? It is essential that the Systems Dynamics Approach is adhered to as 
long as it describes motor phenomena in the most parsimonious way, keeping into 
account the physical and physiological limitations of the system under study. It 
appears however, that even in an evidently oscillatory task like juggling, other non-
linear components like actively injected Dirac pulses have to be added to describe 
the behavior properly. Quoting: 

In conclusion, all our evidence points to momentary action in the 
form of Dirac forcing pulses ('kicks') along the loop of the hand in 
addition to non-linear (and oscillatory^ LS) behaviour. Hence the main 
tenets of the ecological approach are preserved, but dynamical research 
programmes, taking an a priori stand in favour of full autonomy and, 
thus not designed to reveal the presence of pulsed forcing, might well, 
through prejudice, miss the point. 

Beek & Beek (1988), p. 341. 
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And the point is, of course, that some active central nervous system process is 
involved in keeping the oscillation going, by intentional kicks (ibidem). 

Looking at the modeling of cursive handwriting movements again, it can be 
reasoned that here a time-variant W(3,v,tk) would be needed for each tempo
ral segment Jfc coinciding with pieces of movement (letters or combinations of a 
very limited number of letters) that are produced by a corresponding non-linear 
oscillator. Most probably, just as in the juggling problem above, a time function 
of Dirac pulses has to be added if the influence determined by W(s,v,tk) is not 
sufficient to produce the trajectory. In both cases, parsimony is lost, leaving us 
with the usual non-autonomous patterning problem. This shortcoming of a pure 
"autonomous" approach makes it inappropriate as the sole basis for the develop
ment of a handwriting model. However, there are also several strong points in the 
Systems Dynamics Approach. We will discuss four of them. 

1. Empirical findings indicating that a parsimonious dynamical system description 
is applicable to a specific motor task are intriguing. Indeed, a repertoire of complex 
pattern generators or oscillators will lead to a simplified mode of control. In terms 
of the Cognitive Motor Theory, the specification of parameters for a general task 
program is simplified. But then again, the non-linear dynamical system will have 
to be configured or "geared up" somehow, requiring active neural intervention on 
the part of the organism. 
2. It is a misconception, indeed, that all kinematic phenomena must be planned 
explicitly. But apart from the Systems Dynamics Approach, also system-theoretical 
pulse-oriented models (Plamondon L· Maarse, 1989; Dooijes, 1984) assume that the 
kinematic details are largely caused by the impulse response of the effector system. 
3. The emphasis on the tight coupling between perception and movement does 
justice to the essence of behavior: The organism's goal is to survive in a chaotic 
and hostile environment. The study of perception and motor control in isolation 
would ultimately be detrimental to the development of cognitive science. The 
current approach in perception studies can be described as analyzing the facilities 
of a hypothetical philosopher who lives in a box and looks at the strange world 
outside through a hole. The study of motor control can be described as an attempt 
at analyzing hand and arm movements at a microscopic level while ignoring or 
forgetting about perceptual (visual, proprioceptive and tactile) processes. 
4. The minimization of the assumed required cognitive (computational) resources 
needed for motor control is attractive. Many primitive species are able to produce 
incredibly complex movements, without possessing a cortex or cerebellum. From 
the ecological perspective, it can be argued that it is futile to try and model a 
single function in the behavior of an insect in terms of a cybernetical system, if 
there is only a limited number of receptors, ganglia and effectors available, each 
contributing to a number of functions at the same time. Equally, to model the 
behavior of such an insect in terms of a Hst of production rules (IF-THEN list) is 
only descriptive and too remote from the actual physiological system. It is one of 
the problems in cognitive science that elegance of modularity is preferred to such 
an extent that one tries to find modules everywhere. In fact, however, the per-
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vasive idea of modularity in technology is something new, only becoming feasible 
when the cost per processing element (transistor) decreased to an acceptable level 
in the 1960's. Earlier, during the times of the radio tube (thermionic valve) it was 
considered excellent engineering practice to make optimal use of the dynamical 
behavior of the expensive tubes by combining as many functions as possible in a 
single tube, at the cost of losing the option of a clean and "maintenance-friendly" 
modularity. Since biological systems are self-maintaining, there is no external con
straint necessitating the development of a degree of modularity which would be 
considered elegant by the scientist who tries to find order in a complex system. 

1.4 Robotics 

Robotics is currently a most stimulating technological field of interest to the 
researchers in psychomotor control. The compelling goal of building moving and 
manipulating flexible machines has led to the discovery of many new facts and to a 
clarification of previously underexposed concepts and implicit ideas. The following 
paragraph is an excerpt from a paper published earlier (Schomaker, 1988) 3 . 

Consider the mechanical structure of a biological or technical arm. An arm is 
composed of a series of inflexible oblong links, connected by joints. The joints can 
be classified according to the number of degrees of freedom (df) or movement axes, 
e.g., prismatic and revolute joints. As a simple two-dimensional example, let us 
take a piece of "meccano", consisting of four straight links. The first link is fastened 
to the table loosely with a screw, each other link is loosely connected to the end of 
its predecessor. We now have obtained an arm with four degrees of freedom. The 
next step is to draw a random scribble on the table. The purpose of this experiment 
is to consider how the free end of this mechanical arm, the hand, or end effector, 
can follow the scribble. Let us call the scribble the path that must be followed. 
Leading the "hand" along the path leads to irregular shapes of the arm. In fact, 
with this given arm, the path can be followed in an infinite number of ways: The 
time functions of the joint angles are indefinite. To impose some more constraints, 
we can identify points on the path and define the times at which the hand must 
be at the identified position. At this time we know the trajectory of the hand. 
Although the problem becomes tractable more and more, the time functions of 
the joint angles are still indefinite. Many different joint angle time functions are 
possible to obtain the same resulting trajectory. This is the essence of the inverse 
kinematics problem: How to calculate the individual joint angles in a complicated 
mechanical manipulator system if only the trajectory of the end effector is known? 
It is an example of a coordinate transformation problem from a 2- or 3-dimensional, 
Cartesian space, to an ЛГ-dimensional space of much higher dimensionality, and 
a typical "ill-posed" problem. To alleviate the problem, other constraints can be 
introduced, like a simple heuristic that states that changes in joint angle must 

sSchomaker, L.R.B. (1988). Robotica en menselijke motoriek (Robotics and human motorics). 
In P.J.G. Keuss, G. Ten Hoopen fe A.A.J. Mannaerts (Eds.), Psychonomische Pubhkatits: Motonek 
(117 - 140). Amsterdam: Swets en Zeitlinger. 
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be distributed evenly ovei all joints. Other constraints may consist of specifying 
the orientation of the end effector along the trajectory, apart from its end point. 
Nevertheless, there is no general computational solution to this transformation 
problem for all possible geometrical manipulator structures and numbers of df. 
On the other hand, humans solve the inverse kinematics problem continuously 
during movement, without being conscious of the computational effort involved. 
Only in the case of neurological disorders one becomes painfully aware of the 
complexity of the motor system (Schomaker, 1988). 

In industrial robotics, the problem of inverse kinematics is approached by using 
numerical algorithms that are optimized with respect to computational speed (Luh 
& Lin, 1984; Paul, 1979; Hollerbach & Sahar, 1983). Still, these algorithms require 
a large amount of computation time, which increases steeply as the complexity of 
a robot arm, in terms of its number of df, increases. In practice, to simplify he 
computation, the geometrical structure of industrial robot arms is reduced to six 
df, of which three d f are occupied by a spherical wrist. 

A useful mathematical description of the inverse kinematics problem is via the 
inversion of the Jacobian matrix J describing the current geometrical state of 
a manipulator: 

[6q]T = J-x[6X\6<fì 

where 6q is the vector of changes in the joint angles, J is the Jacobian, a 
function of the geometry of the manipulator and the current joint angles, and 
8Х\6ф is a combined vector representing changes in the end effector position 
and angle with respect to the base. Problems arise in the case of a singular 
Jacobian and in the case of manipulators with a large number of degrees of 
freedom requiring a very large amount of computation (Desa к. Roth, 1985). 

Even these measures (computational optimization and geometrical simplifica

tion) are not sufficient to allow for a real-time computation of inverse kinematics 

in current industrial robots. The on-line programming of movements, such as the 

planning of collision avoidance in an uncertain environment, is not possible in 

current industrial robot systems. 

This restriction also reduces the use of high-level formal robot control languages, 

which cannot obtain their full potential in terms of flexibility in on-line control. 

Instead, in industrial practice, most of the trajectory formation is inflexible and 

taught to the robot by manual guiding: A human operator does the actual inverse 

kinematics computation for the robot system. And this introduces an intriguing 

question. How is the inverse kinematics problem solved in the human motor con

trol system with its hundreds of degrees of freedom, its inherent non-orthogonal 

geometry and its complex relation between actuators (muscles) and joint angles? 

In handwriting, for example, one of the most complicated known manipulator sys

tems is involved: The human hand. In chapter 8, we will consider solutions to the 

inverse kinematics problem. 
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Forces and compliance 

However, there is more to motor control than end-effector trajectory formation 
and joint angle time functions. In an imaginary world without mass and forces the 
obtained joint angles are sufficient to produce a graphical computer simulation of 
the robot movements according to the planned trajectory. In the real world, on the 
contrary, objects, including the manipulator itself, are characterized by mass, stiff
ness and static and dynamic friction in case of contact with another object. This 
introduces forces which disturb the planned trajectory. There are also "parasitic" 
forces, like the Coriolis force resulting from the rotating links. The disturbances 
can only partly be counteracted by (post hoc) feedback (Section 1.1). This holds 
a forteriori for the biological motor control system with its limited force range 
(compared to gravitation) and its neural transmission delays. Consequently, it is 
necessary that the motor control system anticipates forces and torques. This intro
duces a problem, comparable to the inverse kinematics problem, viz., the inverse 
kinetics problem. What are the torques on the joints, given the size and orienta
tion of a force applied at the end effector? This is not just a technical problem. As 
an example we take the experienced batsman in baseball. The available time for 
a hit is much too short to determine the necessary torque per joint during move
ment. Instead, he has to make use of an internal representation of the movement 
to plan the necessary torques and forces before the movement starts (Schmidt, 
1982). This is especially important to maintain the body balance. 

If a manipulator is in contact with an external object, the concept of compliance 
or mechanical impedance is needed. Objects may be damaged if the grip, push or 
pull force is to high. Therefore, controlled "elasticity" is needed in a manipulator. 
In a motor system consisting of two antagonistic muscles around a 1-df joint (e.g., 
an elbow), compliance control can be achieved by lowering the activation levels 
for both muscles while leaving the ratio of their contraction levels constant. There 
exists a wide range of motor tasks, varying from opening a door to polishing a 
curved surface, where the requirement for a sophisticated control of compliance is 
evident. In handwriting, the movements of the pen-tip are confined to the two-
dimensional plane, whereas the arm is a complicated 3-D object. One may expect 
that this has consequences for the pen force, e.g., the less compliance, the higher the 
pen force, if the pen-tip movement is not planned to take place exactly within the 
two-dimensional plane. Chapter 4 deals with the problem of the relation between 
pen-tip movement and pen force. 

The robotics perspective broadly influenced the work in Chapters 3, 4 and 8, 
where the problems of inverse kinematics and inverse kinetics reappear. 
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1.5 The connectionist approach 

There are some problems with the cognitivi s t approach to modeling motor con
trol. The first problem concerns the symbolic character of the handwriting model 
that was developed (Chapter 3). Symbols are discrete and monolithic entities, 
whereas movement appears as a continuous process. Computing with symbols and 
computing with quantities are still separated fields in computer science, and it is 
not easy to find a symbolic formalism that does justice to the continuous nature 
of motor control. The proposed model (Chapter 3) provides an interface between 
the symbolic and quantitative domains. The second problem is of a more episte
mologica! nature. Although a descriptive "Turing" approach to modeling can be 
very fruitful to gain insight in the computational aspects of motor control, there 
is a risk of deviating from the physical and physiological system to such an extent 
that the proposed computational stages are completely theoretical. Therefore, it 
seems necessary to take a step in the direction of model types that axe closer to the 
intrinsic nature of the biological system performing motor control: The brain. The 
most intriguing feature of the brain is the fact that its single processing elements, 
the neurons, operate relatively slow (with firing rates mostly in the order of 100 
Hz, maximally 1000 Hz), whereas the reaction time for a response in a large range 
of tasks of varying complexity is of an order of magnitude (150-1000ms). Given 
a fixed cortico-muscular delay, imposed by the axonal transmission and the mus
cle biomechanics, of 40-110 ms, it becomes apparent that the number of neurons 
involved in a perceptuo-motor task, counted as a single thread serially down the 
neuraxis, must be limited. Changes in activity are only updated at a pace of the 
inverse of the firing rate (intra-cortical transmission delays play a minor role since 
they are very short as compared to the delay in the efferent nerve trunk). As Bal
lard (1986) states: "...at the very least, this would seem to indicate that the cortex 
does massive amounts of parallel computation". The corollary of this observation 
is that the serial "loops", "iterations" and "recursion" in symbolic computational 
models of cognition are not likely to play a predominant role in neural activity, 
be it of a perceptual or motor control nature. It is far more likely that cognition 
is brought about by parallel computation of highly interconnected, but relatively 
slow processing elements. The field of research that is based on this insight is called 
"Connectionism". Its perspective raises new questions with respect to computation 
and representation in cognition and motor control, some of these are dealt with in 
Chapter 5. It is the purpose of the latter chapter to initiate the development of a 
complete neurally-oriented model of handwriting, the first steps being undertaken 
in the chapters 6 through 8. 
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1.6 Conclusion 

In this chapter, a review of relevant theoretical viewpoints was presented. The 
eventual selection of ideas that are fruitful in the current modeling approach may 
be summarized as follows (the relevant sections within this chapter are shown in 
bold type). 

Feedback systems provide a relative autonomy of the peripheral effector system 
involved in handwriting, such that the central motor control system does not have 
to specify all movement and force details (Cybernetics). Feedback can be of 
a discontinuous, delayed nature, and still have an effect on motor control (e.g., 
learning). This finding necessitates representational concepts (Cybernetics and 
Cognitive Motor Theory). 

Preparation and anticipation play a predominant role in handwriting, and hand
writing movement appears to consist of a stream of separable movement units 
(Cognitive Motor Theory). The discrete character of handwriting movements 
represents a good starting point for a symbolical model, which will be presented 
in Chapter 3. 

The transformation from perceptual and internal data to the effector domain 
is a distinct and computationally non-trivial problem in all motor control tasks, 
including handwriting. Also, the problems of force control and compliance play an 
important role, which becomes evident if one imagines what would be necessary 
to let a mechanical arm produce handwriting movements (Robotics). 

Although symbolical models of motor control may provide insight on an ab
stract level, and display the idealized behavior of the system under study, they 
may deviate substantially from what is realized in the actual neural motor control 
system. In the symbolic paradigm, symbols are objects that can be manipulated 
using the appropriate formal operations. Such an object is representationally sta
ble (does not decay gradually) and can be operated upon an infinite number of 
times. In the connectionist paradigm (Connect ionism), a symbol is represented 
by a distributed system state, which can be transformed by operations that are 
limited by neural constraints. Here, the symbol (read: system state), is represen
tationally unstable, and of a transient nature, requiring an active process such as 
selective attention or concentration. This essential feature limits the number of 
"symbols" that can be operated upon simultaneously, e.g., the well-known 7 ± 2 
limit (Broadbent, 1975), as well as the number of operations that can be performed 
on them (how many people are able to plan more than a handful of moves ahead in 
playing the game of chess?). Consequently, a symbolic model is useful in describ
ing some classes of behavior, i.e., behavior that is based on transitions between 
discrete system states, and that is performed under high mental concentration. 
Examples are the neat production of connected cursive words without interjection 
of blockprint allographs, the production of syntactically correct sentences, and the 
evidently algorithmic processes like mental arithmetic. However, natural behavior 
is characterized by errors that are indicative of the limitations of the underlying 
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cognitive processes (Harley, 1984). Also, in motor behavior, such as handwriting, 
there are phenomena that are incommensurable with a pure symbolic approach, 
such as quantitative pattern transform, the production of smooth time functions 
and the representation of the effector system. These functionalities in motor skills 
are non-symbolic and difficult to express explicitly in linguistic terms. To describe 
this observation, the concepts of "tacit knowledge" (Polanyi, 1967), and "behavior-
based tasks" (Steels, 1989) have been coined. In Chapter 3, this problem is partly 
solved assuming an interface between the symbolic and the quantitative domain. 
In Chapters 5-8, however, the perspective is switched to a more neurally-oriented 
viewpoint, in the hope that new insights will emerge, especially with respect to the 
low-level aspects of handwriting control that fall in the class of "tacit knowledge". 

Finally, concurrent with the experiments on handwriting production, work has 
been done in the field of pattern recognition. As a test case for the theoretical in
sights on psychomotor control in handwriting, Chapter 9 describes the problem of 
recognizing pen-tip movements in cursive script, one of the goals of Esprit project 
419 (Thomassen et al., 1988). The practical problem of pattern recognition re
quires theories and techniques that have been developed in the fields of electrical 
engineering, statistics, artificial intelligence and computer science, rather than in 
psychology. It is only with the introduction of connectionist models in cognitive 
science (McClelland & Rumelhart, 1986), that psychologists produced widely ac
cepted tools that really work for practical applications in pattern recognition. Con
sequently, only part of the work presented in Chapter 9 and in Teulings, Schomaker, 
Gerritsen, Drexler, & Albers (1990) will be of a "psychological" nature. However, 
the psychomotorically inspired segmentation of handwriting movements in order 
to describe movements in an abstract fashion (Teulings, Thomassen, Schomaker & 
Morasso, 1986), will prove to be very promising starting point for "on-line" hand
writing recognition. For the time being, we will revert to the actual production of 
handwriting. 



24 References 

1.7 References 

Abraham, R.H., Sc Shaw, C D . (1984). Dynamics, the geometry of behavior, part 

1: Periodic behavior. (220 pages). Santa Cruz: Aerial. 

Adams, J.A. (1971). A closed-loop theory of motor learning. Journal of Motor 

Behavior, 3, 111-149. 

Allum, J.H.J, Dietz, V., & Freund, H.-J. (1978). Neuronal mechanisms underlying 

physiological tremor. Journal of Neurophysiology, 41, 557-571. 

Ballard, D.H. (1986). Cortical connections and parallel processing: Structure and 

function. Behavioral and Brain Sciences, 9, 67-120. 

Beek, P.J. (1989). Juggling dynamics. Doctoral dissertation. Amsterdam: Free Uni

versity Press. 

Beek, P.J., & Beek, W.J. (1988). Tools for constructing dynamical models of rhyth

mic movement . Human Movement Science, 7, 301-342. 

Bendat, J.S., & Piersol, A.G. (1971). Random data: Analysis and measurement 

procedures, London: Wiley. 

Bizzi, E., Polit, Α., & Morasso, P. (1976). Mechanisms underlying achievement of 

final head position. Journal of Neurophysiology, 39, 435-444. 

Bizzi, E. (1980). Central and peripheral mechanisms in motor control. In G.E. 

Stelmach & J . Requin (Eds .) , Advances m psychology 1: Tutorials m motor 

behavior (pp. 131-143). Amsterdam: North Holland. 

Bootsma, R.J. (1988). The timing of rapid intercepttvc actions. Doctoral disserta

tion, Amsterdam: Free University Press. 

Broadbent, D.E. (1975). The magic number seven after fifteen years. In A. Kennedy 

& A. Wilkes (Eds.), Studies m long term memory (pp. 3-18). London: Wiley. 

Grossman, E.R.F.W. (1960). The information capacity of the human motor system 

in pursuit tracking. Quarterly Journal of Experimental Psychology, 12, 1-16. 

De Luca, C.J. (1979). Physiology and mathematics of myoelectric signals. IEEE 

Transactions on Biomedical Engineering, 26, 313-325. 

Desa, S., Sc Roth, В. (1985). Mechanics: Kinematics and dynamics. In G. Beni 

Sc S. Hackwood (Eds.) Recent advances m robotics (pp. 71-130). New York: 

Wiley. 

Dijkstra, S., Sc Denier van der Gon (1973). An analog computer study of fast, 

isolated movements. Kybernetik, 12, 102-110. 

Dimond, S.J. (1980). Neuropsychology: A textbook of systems and psychological 

functions of the human brain. London: But terworth. 

Dooijes, E.H. (1984). Analysts of handwriting movements. Doctoral dissertation. 

Amsterdam: University of Amsterdam. 

Ellis, A.W., Young, A.W., Flude, B.M. (1987). Afferent dysgraphia in a patient 

and in normal subjects. Cognitive Neuropsychology, 4, 465-486. 

Fairbanks, G. (1955). Selective vocal effects of delayed auditory feedback. Journal 

of Speech and Hearing Disorders, 20, 333-346. 

Gibson, J.J. (1979). The ecological approach to visual perception. London: 

Houghton-Mifflin. 



25 

Gisbergen, J.A.M., Van Opstal, A.J., & Roebroek, J.G.H. (1987). Stimulus-
induced midnight modification of saccade trajectories. In J.K. 0'Regan & 
A.Lévy-Schien (Eds.), Eye movements: From •physiology to cognition (pp. 27-
36). Amsterdam: Elsevier. 

Grimby, L., Hannerz, J., & Hedman, В., (1979). Contraction time and voluntary 
discharge properties of individual short toe extensors in man. Journal of Phys
iology, 289, 191-201. 

Harley, T.A. (1984). A critique of top-down independent levels models of speech 
production: Evidence from non-plan-intemal speech errors. Cognitive Science, 
8, 191-219. 

Hogan, N. (1985). The mechanics of multi-joint posture and movement control. 
Biological Cybernetics, 52, 315-331. 

Hollerbach, J.M. (1981). An oscillation theory of handwriting. Biological Cyber
netics, S9, 139-156. 

Hollerbach, J.M., & Sahar, G.S. (1983). Wrist-Partitioned Inverse Kinematic Ac
celerations and Manipulator Dynamics. MIT-AI Memo 717. 

Hull, C.L. (1943). Principles of behavior: An introduction to behavior theory. New 
York: Appleton. 

Hulstijn, W., & Van Galen, G.P. (1983). Programming in handwriting: Reaction 
time and movement time as a function of sequence length. Acta Psychologica, 
54, 23-49. 

Hulstijn, W., & Van Galen, G.P. (1988). Levels of motor programming in writing 
familiar and unfamiliar symbols. In A.M. Colley and J.R. Beech (Eds.), Cogni
tion and action in skilled behaviour (pp. 65-85). Amsterdam: Elsevier Science 
Publishers. 

Jones, R.W. (1972). Principles of biological regulation. London: Academic Press. 
Kelso, J.A.S., Southard, D., & Goodman, D. (1979). On the nature of human 

interlimb coordination, Science, 20S, 1029-1031. 
Klir, G.J. (1969). An approach to general systems theory. New York: Van Nostrand 

Reinhold. 
Laming, D.R.J. (1968). Information theory of choice-reaction times. London: Aca

demic Press. 
Lashley, K.S. (1951). The problem of serial order in behaviour. In L.A. JefFress 

(Ed.), Cerebral mechanisms in behavior: The Hixon Symposium (pp. 122-130). 
New York: Wiley. 

Lee, D.N., & Reddish, P.E. (1981). Plummeting gannets: A paradigm of ecological 
optics. Nature, 293, 293-294. 

Lippold, O.C.J. (1970). Oscillation in the stretch reflex arc and the origin of the 
rhythmical, 8-12 c/s component of physiological tremor. Journal of Physiology, 
206, 359-382. 

Luh, J.Y.S., & Lin, C.S. (1984). Approximate joint trajectories for control of in
dustrial robots along cartesian paths. IEEE Transactions on Systems, Man, 
and Cybernetics, Ц, 444-450. 



26 References 

Marsden, C D . , Merton, P.A., & Morton, H.B. (1973). Latency measurements com
patible with a cortical pathway for the stretch reflex in man. Journal of Phys
iology, 230,, 58-59. 

McClelland, J.L., Rumelhart, D.E. (1986). Parallel Disiribuied Processing: Explo
rations in the Microstructure of Cognition: Volume 1 Foundations. Cambridge, 
MA: MIT Press. 

Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Re
search, 42, 223-227. 

Olson, P.L., & Sivak, M. (1986). Perception-response time to unexpected roadway 
hazard. Human Factors, 26, 91-96 

Parker, T.S., & Chua, L.O. (1987). Chaos: A tutorial for engineers. Proceedings of 
the IEEE, 75, 982-1008. 

Paul, R. (1979). Manipulator Carthesian Path Control. IEEE Transactions on 
Systems, Man, and Cybernetics., 9, 702-711. 

Plamondon, R., & Maarse, F.J. (1989). An evaluation of motor models of hand
writing. IEEE Transactions on Systems, Man and Cybernetics, 19, 1060-1072. 

Polanyi, M. (1967). The tacit dimension. London: Routledge & Kegan. 
Rack, P.M.H. (1981). Limitations of somatosensory feedback in control of pos

ture and movement. In V.B. Brooks, (Ed.). Handbook of physiology, section 
1: The nervous system, Vol. 2: Motor control, part 1 (pp. 229-256). Bethesda: 
American Physiological Society. 

Redfeam, J.W.T. (1957). Frequency analysis of physiological and neurotic tremors. 
Journal of Neurology, Neurosurgery and Psychiatry, 20, 302-313. 

Roberts, W.J., Rosenthal, N.P., & Terzuelo, C A . (1971). A control model of 
stretch reflex. Journal of Neurophysiology, 34, 620-634. 

Saltzman, E., & Kelso J.A.S. (1987). Skilled actions: A task-dynamic approach. 
Psychological Review, 94, 84-106. 

Sanders, A.F. (1983). Towards a model of stress and human performance. Acta 
Psychologica, 53, 61-97. 

Schmidt, E.M., & Mcintosh, J.S. (1979). Excitation and inhibition of forearm mus
cles explored with microstimulation of primate motor cortex during a trained 
task. Abstracts of the 9th Annual Meeting of the Society for Neuroscience, Vol 
5, pp. 386. 

Schmidt, R.A. (1982). Motor control and learning: A behavioral emphasis. Cham
paign: Human Kinetics. 

Schomaker, L.R.B., & Thomassen, A.J.W.M. (1986). On the use and limitations of 
averaging handwriting signals. In H.S.R. Kao, G.P. Van Galen, & R. Hoosain 
(Eds.), Graphonomics: Contemporary research in handwriting (pp. 225-238). 
Amsterdam: North-Holland. 

Schomaker, L.R.B. (1988). Robotica en menselijke motoriek. In P.J.G. Keuse, G. 
Ten Hoopen & A.A.J. Mannaerts (Eds.), Psychonomische Publikaties: Menseli
jke Motoriek (117-140). Amsterdam: Swets en Zeitlinger. 

Schomaker, L.R.B. & Van der Plaats (in prep.). Spatial and temporal effects on 
the writing of lines of cursive script by removing visual feedback. 



27 

Steels, L. (1989). Connectionist problem solving: An AI perspective. In R. Pfeifer, 
Ζ. Schieter, F. Fogelman-Soulié, L. Steels (Eds.), Connectionism in Perspective 
(pp. 215-228). 

Stelmach, G.E. (1982). Motor control and motor learning: The closed-loop perspec
tive. In J.A.S. Kelso (Ed.), Human Motor Behavior: An introduction (pp. 93-
139). London: Erlbaum. 

Stelmach, G.E., & Teulings, H.-L. (1983). Response characteristics of prepared 
and restructured handwriting. Acta Psychologica, 54, 51-67. 

Sternberg, S., Knoll, R.L., Monsell, S., & Wright, C.E. (1983). Control of rapid 
action sequences in speech and typing. Approximate text of a speech held at the 
Annual Meeting of the American Psychological Association. 

Teulings, H.L. (1988). Handwriting-Movement Control. Research into different 
levels of the motor system. Doctoral dissertation. Nijmegen University, The 
Netherlands. 

Teulings, H.L., Mullins, P.A. & Stelmach, G.E. (1986). The elementary units of 
programming in handwriting. In H.S.R. Kao, G.P. Van Galen, & R. Hoosain 
(Eds.), Grapkonomics: Contemporary research in handwriting (pp. 21-32). Am
sterdam: North-Holland. 

Teulings, H.L., Schomaker, L.R.B., Gerritsen, J., Drexler, H., & Albers, M. (1990). 
An on-line handwriting-recognition system based on unreliable modules. In 
R. Plamondon, & G. Leedham (Eds.), Computer Processing of Handwriting 
(pp. 167-185). Singapore: World Scientific. 

Teulings, H.-L., Thomassen, A.J.W.M., Schomaker, L.R.B., & Morasso, P. (1986). 
Experimental protocol for cursive script acquisition: The use of motor infor
mation for the automatic recognition of cursive script. Report 3.1.2., ESPRIT 
project P419. 

Thomassen, A.J.W.M., Teulings, H.-L., Schomaker, L.R.B., Morasso, P., & 
Kennedy, J. (1988). Towards the implementation of cursive-script understand
ing in an online handwriting-recognition system. In Commission of the Euro
pean Communities: D.G. XIII (Ed.), ESPRIT '88: Putting the technology to 
use. Part 1 (pp. 628-639). Amsterdam: North-Holland. 

Tuller, B.,Turvey, M.T., к Fitch, H.L. (1982). The Bernstein perspective: II The 
concept of muscle linkage or coordinative structure. In J.A.S. Kelso (Ed.), 
Human motor behavior: An introduction (pp. 253-270). London: Erlbaum. 

Van Boxtel, Α., & Schomaker, L.R.B. (1983). Motor unit firing rate during static 
contraction indicated by the surface EMG power spectrum. IEEE Transactions 
on Biomedical Engineering, 30, 601-609. 

Van Galen, G.P. (1980). Storage and retrieval of handwriting patterns: A two stage 
model of complex behavior. In: G.E. Stelmach & J. Requin (Eds.), Tutorials 
in motor behavior (pp. 567-578). Amsterdam: North-Holland. 



28 References 

Van Galen, G.P., Meulenbroek, R.G.J., & Hylkema, H. (1986). On the simulta
neous processing of words, letters and strokes in handwriting: Evidence for a 
mixed linear and parallel model. In H.S.R. Kao, G.P. Van Galen, & R. Hoo-
sain (Eds.), Graphonomics: Contemporary research in handwriting (pp. 5-20). 
Amsterdam: North-Holland. 

Von Hamos, L. (1964). Das Prinzip der Rückkopplung, der Regelung und der 
nichtdigitalen Rechenkomponenten. In H. Frank (Ed.) Kybernetische Machinen 
(pp. 133-150). Frankfurt: Fischer. 

Wadman, W.J. (1979). Control mechanisms of fast goal-directed arm movements 
Doctoral dissertation. Utrecht University, The Netherlands. 

Wadman, W.J., Boerhout, W., & Denier van der Gon, J.J. (1980). Responses of the 
arm movement control system to force impulses Journal of Human Movement 
Studies, 6, 280-302. 

Wiener, N. (1948). Cybernetics: or control and communication in the animal and 
the machine. New York: Wiley. 

Wurtz, R.H., & Mohler, C.W. (1976). Organization of monkey superior colliculus 
enhanced visual response of superficial layer cells. Journal of Neurophysiology, 
39, 745-765. 



Chapter 2 

Planar pen-tip kinematics: 
invariance 

The current chapter deals with a fundamental aspect in the modeling of handwrit
ing behavior. Are handwriting movements replicatable at all, if a writer produces 
a given word several times? Only if there exists an invariance in the movement 
patterns over several replications, it becomes plausible to assume that handwrit
ing movements are based on a stable internal representation that provides for the 
sequential launching of automatized movement units. Theoretically, the spatial 
shape of a given piece of handwriting trace on paper (the path) can be brought 
about by an infinite number of kinematic time functions ( t ra jec tor ies) . Figure 0 
shows several replications of a Dutch word, written with a vertical size of 2mm to 
20mm, thus using a varying number of muscles in each replication. It is evident 
that there exists an invariance, both with respect to the shape and with respect 
to the pen-tip velocity pattern. The following experiment is a more detailed study 
concerning invariance in handwriting. 
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Figure 0. Sixteen replications of the Dutch word /argumentatie/, gradually varying 
in size from 2mm (bottom) to 20mm (top). Left column shows the written 
word (normalized size), right column shows the pen-tip velocity time function 
(arbitrary units). The time axis runs from 0 to 2s. 



On the Use and Limitations of Averaging 
Handwriting Signals * 

Lambert R.B. Schomaker 
Arnold J.W.M. Thomassen 

A b s t r a c t 

The averaging of handwriting signals is subject to a number of special 
restrictions that in general do not apply to other signals such as electro
physiological recordings. Specific problems are presented by the choice of the 
entities to be averaged, by the choice of time-reference points and by duration 
variability. Knowledge of the signal production mechanism and of temporal 
and spatial characteristics of the handwriting signal is needed to solve these 
questions. It is noted that the signal is deterministic at the local level, which 
justifies the use of averaging techniques. The problem of stroke duration vari
ability is dealt with by applying time-axis normalization prior to averaging. 
Examples of averaging at the stroke, letter and word level are presented. Re
sults indicate that at up to four letters can be averaged without noticeable 
distortion in the spatial domain. Eventually, however, variability in stroke 
duration will dictate the choice of time-reference points for the time-axis nor
malization in multi-letter handwriting segments. This will 'warp' the original 
time path. If care is taken in the selection of time references, time-axis normal
ization and averaging can be useful in movement analysis, pattern matching 
and simulation of handwriting. 

2.1 Introduction 

Ensemble averaging is a technique, used in m a n y conditions where the reliability 
of measurement of a single sample record is reduced by some degree of noise. The 
measurement Xk may be assumed to be composed of a signal 5* and a noise 
component e*: 

Xk = Sk + ek (2.1) 

where c* is a s ta t ionary random signal and St is a fixed- dura t ion t rans ient wi th 
determinist ic proper t ies . The averaged signal Xk is obta ined by : 

'Published 1986 in: Kao, van Galen & Hoosain (Eds.) Graphonomics. pp. 225-238. Amsteidam: 
Elsevier. Supported by grants from NWO, project 560-259-020, and Esprit, project P419 
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** = 4 Е № + е«) (2-2) 
J V i=l 

= Sk + ek (2.3) 

If the noise in the given samples is uncorrelated and the mean value of the noise 
is zero, then for large N: 

Xk = Sk (2.4) 

Averaging of N sample records thus results in noise reduction: the variance of 
the error component of a single value к in X^ will be reduced with a factor 1/N 
(Bendat 8c Piersol, 1971; Regan, 1972). Apart from the random error, there may 
be a bias in each measurement, for instance caused by non-stationarities of the 
signal transient such as increasing or decreasing mean square value in the series of 
individual sample records. The main advantage of ensemble averaging over other 
methods of noise reduction such as low-pass filtering is that ensemble averaging 
selectively cancels noise contributions without affecting the 'true' signal portion 
of the spectral characteristics of the signal. 

One major assumption in using averaging is the notion of time-lock. In many 
applications, the time reference used is an external event that triggers the oc
currence of the transient to be measured. Furthermore, transients are assumed 
to have fixed duration. In practice, some jitter in the transient onset time and 
some variation in duration are taken for granted if they fall within predetermined 
limits. In handwriting signals, however, as well as in other types of free-floating 
human motor output, there are no external time-reference points and duration 
of segments having identical spatial representation may vary substantially. Nev
ertheless, it would be very useful in analysis, pattern matching and simulation 
of handwriting if an average representation of a specific stroke, letter or word 
produced by a certain writer were available to represent the idealized shape and 
dynamics of such handwriting segments for that person. 

Therefore, we shall take a look into the main problems in selecting adequate 
time-reference points and in dealing with duration variability. 

Selecting the time-reference points. 

Before averaging of handwriting can take place, time-reference points have to be 
selected. From studies of handwriting it is known that the handwriting signal can 
be segmented reliably by taking the part of the displacement signal between two 
zero crossings in the Y-velocity signal as a stroke (Teulings & Thomassen, 1979). 
Another solution, taking the moment of maximum Y velocity as time reference 
is rejected because of its greater dependence on the velocity profile. Y strokes 
defined in the former way have the property of reflecting a combined agonist-
antagonist muscle group action. Theoretically, the use of the acceleration signal 
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would thus introduce the possibility of separating agonist and antagonist action. 
In practice, however, the double differentiation of the displacement signal leads to 
an unacceptable increase in noise level. The basic unit in averaging, therefore, will 
be a stroke in the velocity domain, the time-reference points being two adjacent 
zero crossings in the Y velocity. This also determines the time segment of the X 
velocity belonging to the same stroke. The velocity profile of Y strokes of a specific 
class (e.g. "last down stroke in /a/ ") is very reproducible within a subject and 
varies from triangular to sine shaped. Velocity profiles of strokes that occur in 
a transition from clockwise to counter-clockwise movement are often bimodal or 
broadened, but their shape is reproducible for a given class (e.g., the connecting 
stroke from /g/ to / e / ). According to the criteria by Bendat & Piersol (1971) we 
should classify single strokes as being deterministic transients (Note 1). Combined 
with the knowledge that zero crossings in the Y velocity are reliable time-reference 
points this justifies the use of averaging handwriting signals of a single subject at 
the local (i.e., stroke) level. It should be noted that, although single strokes can 
be considered to be deterministic, large segments of handwriting contain such a 
large amount of time and amplitude variations that they have to be classified as 
random time series. As a consequence, methods used for random data analysis 
like spectral analysis are still applicable on larger segments (minimally lasting five 
seconds) (cf. Maarse, Schomaker & Thomassen, 1986). 

Duration variability. 

When a subject is asked to write a page of text, the movement duration of a 
specific letter will vary among the different realizations of that letter due to non-
intended size and context effects. Thus, after selecting time-reference points, we 
shall have to normalize the time axis of the different replications before averaging. 
A comparable problem is encountered in speech recognition where the duration of 
the phonemes within a word may vary across several replications of the same word. 
If a minimum of assumptions with respect to signal shape is preferred and a fast 
computer is available, normalization of time axis can be done by means of Fourier 
transform (Note 2). A forward Fourier transform is done to obtain the amplitude 
and phase frequency spectrum, followed by an inverse Fourier transform with a 
time spacing of samples as determined by the ratio of old duration and normalized 
duration. 

At the stroke level, an averaging technique may provide a reliable estimate of 
the strategy used to produce the displacement in that stroke. The velocity profile 
of a stroke determines the efficiency of its movement (Teulings, Thomassen & Van 
Galen, 1986). Figure 1 shows the typical (averaged) Y-velocity profile of a large 
up stroke in which a change of sense of rotation is produced. The stroke is the 
basic averaging unit. After time-axis normalization, the only sources of variability 
in a set of strokes are the stroke-size differences and differences in the shape of the 
velocity profile. Strokes may have equal size (area of the velocity profile) and have 
different shape of velocity profile. 
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(a) ІЫ 

Figure 1. (a) Average Y-velocity profile of a single stroke {/g-k/ ), 8 
replications (drawn line is average, dotted lines are average 
plus and minus standard deviation), (b) Spatial representa
tion of the stroke in Figure la. (drawn line) and its context 
(dashed). 
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Knowing that single strokes can be averaged, it would be interesting to know 
to what extent a given record of handwriting can be averaged. It is hypothesized 
that if the right time-reference points are chosen, sequences of strokes can be 
averaged also reliably if the movements are overleamed, e.g., in the case of a single 
letter , written by an experienced writer. The problem in averaging multiple-stroke 
handwriting segments is that each further stroke introduces a time variability, 
apart from the already mentioned size and shape variability. If the movements are 
overleamed, a handwriting segment can be assumed to be homothetic, i.e., ratios of 
stroke durations are constant in different realizations (Viviani & Terzuolo, 1980). 
Figure 2 shows the effect of the location of time reference for one letter. In 2a, 
it may be seen that the choice of Y-velocity maxima in connecting strokes leads 
to an unacceptable distortion of the average letter representation in the spatial 
domain. Cause of the distortion is the fact that connecting strokes are embedded 
in the motor context of the end of the previous letter and the start of the next 
letter. A better choice may be seen in 2b, where the first and last zero crossings of 
the Y-velocity signal within the letter proper were used as time-reference points, 
disregarding the connecting strokes. 

la) / / / 1°) / / / ^ lc) 

Figure 2. (a) Average /g/, zero crossings in Y velocity used as time references, 
6 replications, (b) Distorted average /g/ by using peak Y velocity in 
connecting strokes as time references, 6 replications, (c) Typical single 
/g/ for this subject. 

In the case of naturally produced handwriting, the straightforward averaging of 
even larger units, such as words , is made increasingly more difficult by hesitations, 
pen-up movements and allograph variations that may be expected to disturb the 
homothetic features of the movement sequence. Also, in these larger units, there 
is an increased probability of non-overleamed sequences to introduce a greater 
time variability. For instance, connecting strokes may or may not be part of a 
motor program, depending on the degree of automation of the specific sequence 
of letters. In sequences encompassing instances of evidently large time variability 
due to occasional hesitations or pen-up movements, a time warping technique 
might be necessary, i.e., segmenting the handwriting into pieces each of which can 
be assumed to be homothetic, and normalizing time for each segment separately. 
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Once this has been done, ensemble averaging or pattern matching can be applied. 
In speech recognition, this problem is solved, using an optimal time-alignment 
procedure called dynamic time warping (Brown & Rabiner, 1982). 
From an exceptionally regularly writing subject the average word /computer/ could 
be obtained (Figure 3a), but hesitations and prolonged stroke duration may cause 
distortions (Figure 3b) if they are not accounted for in the averaging procedure. 
The average word /gen/ is distorted by a hesitation before executing the down 
stroke in /g/ in the last of the five replications (the hesitation cannot be inferred 
from the spatial representation). 

la) (Ы 

Figure 3. (a) Three different replications of the word /computer/'and the average word. 
(b) Five different replications of the word /gen/ and the average word, dis
torted by a hesitation. 

In order to assess the discussed problems encountered in averaging multi-letter 
segments of handwriting in greater detail, we shall analyze some experimental data 
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in the next sections of the present paper, using time-normalization and averaging 

techniques. The following aspects will be illustrated. 

Deviation from the average handwriting pattern. 

Deviations from the average Y-velocity pattern can be attributed to time, size 
and shape variations (note that in the current study stroke size is not normalized 
in any way). Possibly large deviations from the average pattern are indicative of 
transitions between discrete states in the motor production process. Such tran
sitions are likely to occur during movements connecting one letter to the next. 
Consequently, three types of connecting strokes will be examined. 

Variability of zero-crossing times. 

If we know the average stroke duration of each stroke, the uncertainty of find
ing the stroke ending of the n-th stroke in some time segment in the velocity 
signal increases with the number of strokes since each new stroke adds its vari
ability in duration. Normalizing the time axis will have the effect of reducing this 
uncertainty in a curvilinear fashion, maximum uncertainty remaining around the 
middle of the handwriting time segment. In the limiting case where the variance 
of stroke duration is the same for all strokes, the variance of stroke onset time 
will be proportional to stroke number (first stroke is number zero) before normal
ization. After normalizing the time axis, the variance of stroke onset time will be 
proportional to η * (Ν — η), where η is the stroke number and N is total number 
of strokes. 

2.2 Methods 

Subjects. Two adult right-handed male subjects, aged 49 and 28, participated in 
the experiment. 

Materials. The movements of the tip of the writing stylus were recorded by means 
of a large-size writing tablet (Calcomp 9000) connected to a computer (PDP 
11/45). The laboratory-made writing stylus was equipped with a pressure trans
ducer. The stylus contained a normal ball-point refill. Thirty-eight pseudowords 
were printed on specially prepared A4 response sheets in twelve rows of two to five 
words each. A row contained a certain 'family' of pseudowords allowing specific 
comparisons. The rows themselves were placed in a quasi-random order. Pseu
dowords contained minimally three letters, the maximum was five letters. From 
this material, the pseudowords /ague/, /agne/ and /agee/ are selected for the 
present purpose since they contain an identical part (/ag/) and a contrasting 
part, that starts with three possible types of large connecting strokes, i.e., /g-u/ 
which ends in a sharp cusp, /g-η/ which ends in clockwise turn, and /g-e/ which 
consists of a clockwise and a counter-clockwise turn in one stroke. 
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Procedure. The subjects' task was to write on the response sheet immediately 
below the place where the pseudowords were printed. The response sheet was 
placed on the writing tablet and was held by the subject in a convenient position 
and at a preferred angle, just as in a normal writing situation. A pseudoword had 
to be written fluently without raising the pen. A session consisted of writing the 
38 pseudowords on the sheet once. An experimenter-controlled tone sounded to 
signal the onset of a 2.5 s period during which the writing could be produced. Two 
tones signalled the end of the interval. All pseudowords could easily be written 
within this 2.5 s period, so that no time pressure was imposed on the subject. The 
experimenter took care that he did not start the interval until the subject's hand 
rested at approximately the appropriate position for the next word. If the subject 
was not satisfied, due to hesitations, errors (e.g. selection of incorrect allographs), 
jerks, late starts or slow movements, he was inunediately given another trial in 
which the word was written below the rejected product. A session, which lasted 
only four minutes, could be followed by a further session after a rest of a few 
minutes, or sessions could be separated by a whole day. Each subject completed 
ten sessions. 

Signal processing. The X and Y-coordinate values and the pressure at the tip of 
the pen (Z coordinate) were sampled during 2.5 s intervals at a 105 Hz rate, samples 
having an accuracy of 0.02 mm in both X and Y directions. Prior to our analyses, 
these handwriting data were digitally filtered with a finite-impulse response filter 
(pass band 0 to 10 Hz, transition band 10 to 30 Hz; Rabiner & Gold, 1975). Since 
the orientation of the handwriting was left to the writer's preference data were 
automatically rotated to obtain a horizontal baseline, using the low extremes of 
small letters as a reference. Velocity signals were calculated by differentiating the 
handwriting coordinates versus time using a five-point finite-differences impulse 
response (Dooijes, 1984). Handwriting was segmentedon the basis of zero crossings 
in the Y-velocity signal, the first point in a segment being the start of the first 
down stroke in the first letter ( / a / ), the last point being the end of the last 
stroke of the last letter ( / e / ) in the analyzed pseudowords. Of each word {/ague/, 
/agnt/ and /aget/) eight replications per subject were entered in the analysis. The 
average duration of each word was used as the reference duration in the time-axis 
normalization. After time normalization, the average Y-velocity pattern and its 
standard deviation (SD) pattern were calculated (N=8) for each word and each 
subject separately. For comparison purposes and data reduction, the following 
measures were calculated per Y stroke. From the time-normalized replications, 
SD of stroke size and SD of stroke duration were determined. From the average 
Y-velocity and the individual time-normalized Y-velocity replications, the SD of 
the average Y-velocity pattern was calculated. The latter measure was obtained 
by pooling sums of squared deviations per stroke. 
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2.3 Results 

The mean word durations are shown in Table 1. Of the ten sessions, two sessions 
were lost due to technical problems. 

Table 1. Average durations per word, Subject 1 and 2. 
Word 

/ague/ 
/agne/ 
/agec/ 

μτ 
та 

1467 
1419 
1305 

στ 
ms 

68 
52 
41 

Subject 1 

Un 

samples 

154 

149 

137 

words] 

8 
8 
8 

μτ 
[ms 

1457 
1423 
1257 

Subject 2 

στ μη 

[ms] [samples] 

100 153 
80 150 

102 132 

Nw 

[words 

8 
8 
8 

Figure 4 shows the average handwriting pattern and the Y-velocity profiles for 
the three pseudowords written by Subject 1. Notice the broadened SD at the large 
down stroke in /g/ which occurs in all words, but which is maximal in /ague/. In 
this word, the shape of the average Y-velocity minus SD is irregular at the large 
down stroke in /g/ . The Y-velocity profile in /agee/ shows the typical shape of 
the /g-e/ stroke (stroke number 8). Of all three patterns, the /agee/ pattern is the 
most stable, especially at the two / e / s. 

Figure 5 shows the variability in time of zero crossing, before and after time-axis 
normalization. Note the overall decrease in variability and the curvilinear relation
ship between stroke number and stroke-onset time variability after normalization. 

Figures 6, 7 and 8 allow a comparison of three types of variability per stroke. The 
a.panels show the deviation from the average Y-velocity pattern. At the seventh 
stroke, which is the large down stroke in /g/ , there is a peak in the variability of 
the Y-velocity. This peak is not related to the curvilinear stroke-onset variability 
caused by time normalization, because it occurs in the same place for the 13-
stroke words /ague/ and /agne/ as for the 11-stroke word /agee/. Shifting the first 
time-reference point up to three strokes to the right, moreover, had no influence 
on this effect: variability always remained maximal at the large down stroke in 
/g/ (not shown). The largest variability (peak as well as overall) is reached in 
/ague/, followed by /agne/, and finally /agee/ if both subjects are combined. The 
b-panels show stroke size variability. There is no clear peak at the seventh stroke. 
In fact, a peak occurs at the eighth stroke which is the connecting stroke /g-*/ . 
Only in Figure 8 (/agee/) stroke size variability is also high at the seventh stroke 
as written by Subject 1. The c.panels show stroke-duration variability which is 
increased at or around connecting strokes (numbers 4, 8, 12). There is no clear 
relationship between duration variability and the variability in Y-velocity at the 
seventh stroke itself. 

2.4 Discussion 

An interesting finding of the present study is that handwriting segments up to 

four-letters can be averaged very well because the consistency across the individual 
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Figure 4. Average handwriting and Y-velocity profile for the three pseudowords /ague/, 
/ o g n e / a n d /agee/, (Subject 1). Dashed lines are average plus SD and average 
minus SD. There were 8 replications per word. 
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Figure 5. Standard deviation of Y-stroke onset times in the pseudoword 
/ague/, before (closed circles) and after (open circles) normalization 
of time axis (Subject 1) N = 8 . 
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Figure 7. Standard deviation of Y velocity from average pattern per stroke (a), standard 
deviation of stroke size (b), and standard deviation of stroke duration (c) in 
the pseudoword /ague/ (Subject 1, circles; Subject 2, squares), N = 8 . 
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Figure 8. Standard deviation of Y velocity from average pattern per stroke (a), standard 

deviation of stroke size (b), and standard deviation of stroke duration (c) in 

the pseudoword /agee/ (Subject 1, circles; Subject 2, squares), N=8. 
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replications is high, even though the task involved pseudowords. Normalization 
of the time axis was a sufficient condition to obtain a reliable average. Within 
a subject, normalizing stroke size seems to be unnecessary. The detected peak 
deviation in the Y-velocity remains a problem to be explained. The possibility of 
an artefact caused by the normalization operation may be excluded since the effect 
was independent of number of strokes or time reference chosen. Size and duration 
variability of the stroke itself are unlikely to cause the effect (Figures 6, 7 and 8). 
Another source of error could be variable shape of the velocity profile of the large 
down stroke in /g/ . Inspection of Y-velocity profiles of the individual replications 
indicated that this was not the case. In fact, the source of the effect can be traced 
back to the occurrence of duration variability earlier in the pattern, at the fourth 
and fifth stroke. Possibly this variability can be explained by anticipation of the 
large down stroke in /g/ and the subsequent large connecting stroke. In this case, 
the duration variability did not cause visible distortion in the spatial representation 
of the average. It is advisable, however, to analyze the variability of stroke onset 
times (Figure 5, closed circles) before time-axis normaJization. At the location 
of sudden increases in variability the handwriting signal should be split up in 
subsegments. To obtain a more reliable estimate in the case of the pseudoword 
/ague/), subsegments would be: (a) strokes 1 to 4; (b) stroke 5; and (c) strokes 6 
to 13. 

The time normalization technique can be a valuable tool in movement analysis, 
pattern matching and simulation. Before it can be applied, however, careful inspec
tion of the of the stroke-onset time variability appears to be needed. When the 
homothetic assumption is violated in a handwriting segment, subsegments have 
to be defined, thereby 'warping' the time axis. In movement analysis, time nor
malization and averaging can be used to detect special strategies in the velocity 
profiles that are used by the subject to obtain specific curvature shape in the spa
tial domain. In pattern matching of handwriting signals the technique can be of 
use by providing reliable averages that are used as templates. In the matching pro
cess itself, time normalization is used to enable matching of a specific handwriting 
pattern with the template. In simulation of handwriting, time-axis normalization 
is used to obtain reliable averages of letters and connecting strokes from a writer. 
Only reliable averages allow the determination of important parameters in the 
simulation model. 

Use of the Fourier transform has the disadvantage of being time consuming. Fast 
Fourier has the disadvantage of requiring sample record sizes that are powers of 
two (the technique of adding zeros appeared to cause unacceptable distortion). The 
use of splines is rejected because it also can introduce serious estimation errors. 
During the last few years, much work has been done on this subject. Methods 
of interpolation using finite impulse response differentiation are promising with 
respect to calculation time (Sudhakar, Agarwal & S uh ash, 1982). 
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2.5 Appendix 

1. If an experiment producing specific data can be repeated many times with 
identical results, within the limits of experimental error, then the data can 
be considered deterministic. If such an experiment cannot be designed, then 
the data are considered random (Bendat & Piersol, 1971). 

2. The steps necessary to achieve time-axis normalization using Fourier trans
form are as follows: 

(a) Determine normalized duration Tn and normalized number of samples 
Nn by averaging movement duration of the different replications. 

(b) Calculate χ and y velocities. 

For χ and y: 
repeat steps (c) to (g) for each sample record with Ni values. 

(c) Make sample record circular by linear detrending. 

(d) Apply forward Fourier transform with Ni frequency domain estimators, 
with Jfc = 0 to Ni - 1. 

Xk = ¿Vne-'-W*) (2.5) 
n=0 

where j = у/—І. 

(e) Apply inverse Fourier transform with Nn time domain estimators, with 
η = 0 to Nn - 1. 

^ E W ' ™ * ' " - ) (2-6) 

k=o 

(f ) Decircularize sample record by restoring linear trend. 

(g) Gain correction (multiply sample record with Ni/Nn). 
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Chapter 3 

A computational model 

After having collected data on the replicatability of movement patterns, an ex
periment was done to assess the influence of surrounding characters, i.e., the tem
poral con tex t on the size and duration of strokes in handwriting (Thomassen Sc 
Schomaker, 1986). From the experiment it appeared that temporal context influ
ences are present, displaying most of their effect in the temporal domain (stroke 
duration). As an example: in writing the cursive word /elle/, the duration of the 
down strokes of the ///"s is different, the first /I/ being written faster. At the same 
time, however, the effects seem to differ in magnitude and direction between sub
jects, such that a. general "law" could not be determined easily. It was decided to 
continue the development of the handwriting model without incorporating these 
subtle context effects until more is known about their origin. 

So, a computer model was developed that represents the computational stages 
in transforming discrete letter identities into continuous movement. The trans
form is from a symbolical representation at the "higher", cognitive, level into a 
quantitative representation at the "lower", spatio-temporal motor level. An es
sential aspect of the model at the lower non-symbolical level is a representation 
of spatial stroke shape that is based on differential relative timing. Indeed, it is 
the relative timing of muscular contractions: the subtle switching On and Off of 
muscle groups during a complex action, that determines the spatial characteris
tics of the resulting movement path. It is shown that shape, as expressed in the 
end-point curvature, can be defined in terms of the relative difference in timing of 
two orthogonal effector sub-systems, with the overall movement duration as the 
local reference. In earlier theories, the concept of phase shift was used (Hollerbach, 
1981), assuming that there is a single (narrow-banded) fundamental frequency of 
a two-dimensional phasor signal generated by a mass-spring oscillator, that de
termines the shape of the handwriting. The weakness of this assumption becomes 
clear if one examines the frequency spectrum of handwriting movements (Teul-
ings & Maarse, 1984; Maarse et al., 1986) or the distribution of stroke size and 
duration in handwriting. The changes in the movement parameters are occurring 
on a stroke-to-stroke basis. The existence of this subtle concatenation of events 
reduces the likelihood of an oscillator mechanism as the central explanation for the 
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production of words in handwriting, as evidenced by the large number of param
eters needed to describe word production in terms of a mass-spring oscillator. In 
this chapter, the alternative view is taken, i.e., that there exists an active pattern 
generator mechanism, leading to movement behavior that may appear oscillatory 
at times, within a limited time window, but that is basically a fluent concatena
tion of discrete and limited-duration movement segments with a temporal range 
of typically a single letter. 
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A computational model of cursive 
handwriting. * 

Lambert R.B. Schomaker 
Arnold J.W.M. Thomassen 

H.L. Teulings 

Abstract 

This paper presents a computational model for the production of hand
writing, starting with allograph codes as input and ending with a target 
pen-tip trajectory as output. In the model, a distinction is made between 
a symbolic level of processing and a quantitative level of processing. At the 
symbolic level, a grammar for the connection of cursive allographs determines 
abstract codes for connecting strokes. At the quantitative level, a translation 
of symbols into a sequence of parameterized strokes takes place. A parsimo
nious stroke parameterization in the velocity domain is used, that is based 
on planning in Cartesian space and allocation of time to movement compo
nents along the spatial axes. With the basic model settings used, simulation 
results already show a satisfactory correspondence with original handwriting 
samples. 

3.1 Introduction 

Attempts to generate new cursive script by means of a computer confronts us 
with the fundamental problems that the human motor system has to solve like
wise. In the past, many models of handwriting were proposed, basically aiming at 
digital or analog regeneration of existing samples of handwriting (Denier van der 
Gon et al., 1962; Vredenbregt & Koster, 1971; Hollerbach, 1981; Dooijes, 1984; 
Plamondon & Lamarche, 1986; Maarse, 1987). This paper discusses a computa
tional model that describes the generation of new samples of handwriting on the 
basis of motor principles and on the basis of knowledge of idiosyncratic features 
of the handwriting of a given individual. 

'Published 1989 in: R. Plamondon, C.Y. Suen, & M.L. Sinuier (Eds.), Computer Recognition 
and Human Production of Handwriting (pp. 153-177). Singapore: World Scientific. Suppoited by 
grants from NWO, project 560-259-020, and Esprit, project P419 
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Theoretical Framework. 

The production of handwriting requires a hierarchically organized flow of in
formation through various transformations (Ellis, 1986; Teulings et al., 1987). 
The writer starts with the intention to write a message (semantic level), which 
is transformed into words (lexical and syntactical level). When the individual let
ters (graphemes) are known, the writer selects specific letter shape variants (allo
graphs). This selection is done according to a formal allograph selection syntax, 
according to individual preferences or just according to random choice. A formal 
rule, for instance, is the use of a capital letter at the beginning of a new sentence. 
An example of preferential context rules is the use of differently shaped versions 
of / a / /< / or / r / , depending on the adjacent allographs or on the serial position 
of these letters in a word. 

Below this level we enter the scope of the current model, were the allographs 
are transformed into movement patterns. Both spatial and temporal characteristics 
of error-free, non-hesitant handwriting tend to show some invariance for a given 
writer. However, it has been shown that there exists a tendency for the spatial char
acteristics to be more invariant than the temporal characteristics (Teulings et al., 
1986). The reason for this can possibly be located in the nature of handwriting as 
a means of linguistic communication. It seems reasonable to assume that the hand
writing production system 'stores' the information pertaining to the task-related 
constraints: the produced spatial shapes are to be read by someone at a later time. 
Also, the spatial characteristics of handwriting are strongly consistent for a given 
writer (Maarse et al., 1986), regardless of the end effector or writing apparatus used 
(Raibert, 1977). Therefore, we assume that there exist spatial representations of al
lographs, residing in some long-term memory. These idiosyncratic spatial allograph 
representations (paths) have to be transformed into spatio-temporal representa
tions (target trajectories). For the adult writer, this transformation is assumed to 
be automatized or 'overleamed'for the strokes within an allograph, i.e., the strokes 
that are merged in a fixed context. However, the temporal representation of a sin
gle allograph is also to be embedded in the current movement context and linked 
to its neighbors by connecting strokes and/or pen-up movements. This task places 
a separate demand on the information processing capacities at this stage. There 
is some experimental evidence to support this view (Meulenbroek & van Galen, 
1989). Thus, during writing, a decision process will be active that determines the 
best connecting strategy, given two successive allographs. 

It should be noted that at this level, there is as yet no specification of the even
tual end effector. The output of our model is a target trajectory in 3-D space. 
This choice is based on evidence that the planning of movements indeed takes 
place in a 3-D representation of the outside world as opposed to planning in in-
tracorporal joint space. For instance, Hollerbach and Flash (1981) calculated the 
trajectory deviations caused by Coriolis forces that can be expected theoretically 
in fast targeting movements. On the basis of the near-rectilinear experimental hand 
trajectories they conclude that an a priori adjustment in movement programming 
takes place to overcome the Coriolis disturbances and keep the hand movements 
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rectilinear. The spatial trajectory of hand movements generally is more invariant 
and less complex than the course of individual joint rotations in time (Morasso, 
1986). This principle is assumed to be of ecological significance in the planning 
of movements in the same space as in that where objects and obstacles are lo
cated. Planning in joint space would lead to a large variability in the trajectory 
of the end effector which interferes severely with requirements as regards collision 
avoidance and minimization of inertial force in object handling. It should be noted 
that this does not hold for all motor tasks. Consider, for instance, other actions 
than the free planar pen-tip movement in handwriting or 3-dimensional pointing 
movements, where planning in joint space actually is required, e.g., in isometric 
force appliance to an object held with two hands, or the holding of the pen by 
several fingers in handwriting. 

The description of the pen tip trajectory in an internal spatio-temporal rep
resentation constitutes the bottom range of the scope of the current model. Of 
course, the authors do not claim to know in what form these representations ac
tually exist in the motor system, but they strongly believe there must be a flu
ent spatio-temporal representation of movements. So, it is doubted whether the 
nervous system enjoys any special advantages by using bang-bang or staircase-
typed movement representations (Dooijes, 1984; Plamondon & Lamarche, 1986). 
Although, at the lowest level, motor unit contractions (twitches) are indeed dis
crete events, the nervous system uses the mechanisms of firing rate control and 
recruitment of a large number of motor units (van Boxtel & Schomaker, 1983) to 
produce continuously varying muscle excitation. It is only then that mechanical 
damping (read: filtering) takes place. 

Still lower levels in the motor system would have to handle the problem of the 
conversion from 3-D internalized space to η-dimensional joint space, such that 
the chosen end effector will follow the prescribed trajectory and forcing pattern 
in external 3-D space: the problem of inverse kinematics and inverse dynamics 
transformations (Asada & Slotine, 1986). The final stage would be the specification 
of the excitability pattern for the alpha and gamma-motoneuron pools of the 
involved muscles. 

Since a neural information processing system is plagued by a continuous stream 
of interoceptive and exteroceptive noise, and since it is confronted with real-world 
mechanics in the final stage (friction, hysteresis and writing-surface irregularities) 
feedback loops will exist, returning information to higher levels, or operating within 
a given level. At the level of our model, visual or proprioceptive feedback delays 
are estimated to exceed the maximum delay for continuous control. Thus, position 
information that is fed back to the operating level of the model can only be used 
in reprogramming subsequent strokes. A stroke currently in production cannot be 
modified: it is assumed to be produced ballistically. 

Model Design. 

After having located the current model within the global system for handwriting 

production, we will now focus on the requirements and constraints for this model. 
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The type of handwriting that is to be simulated is the ballistic, fluent handwriting 
of an experienced adult writer. This restriction allows us to disregard the complex 
problems involved in motor-learning processes. The point of departure thus is a 
'status of the system' in which the writer has at his disposal a number of stable 
spatial representations of allographs, as well as a sufficient amount of motor ex
perience to translate these spatial representations into movements of a given end 
effector. 

Input to the model will be chains consisting of allograph symbols for lower and 
upper case letters, blanks and an occasional period or comma. These symbols are 
viewed as the parallel of internal abstract categories available within the neuronal 
system. Output of the model will be a specification of the planar target trajectory 
of the pen tip. Pen-lifting movements along the Ζ axis are reduced to a binary signal 
(pen up/down). A feedback mechanism will be used to maintain the orientation 
of the generated target trajectory. With respect to stroke parameterization and 
representation, the aim is to use a parsimonious topological description. We will 
now proceed to discuss the model from bottom up. 

The Quantitative Level: Stroke Parameterization. 

Already in early simulation studies it became apparent that the timing of move
ment units is an essential determinant of handwriting (Denier van der Gon & 
Thuring, 1965; Vredenbregt & Koster, 1971). When we look at the vertical and 
horizontal velocity components we see a pattern of low-frequency content near-
sinusoidals of varying amplitude and period, only disturbed by a moderate amount 
of noise (Figure 1). 

Sometimes the zero crossings in both signals coincide, sometimes the horizontal 
component ( г) lags the vertical component (vv) and vice versa. Thus, according 
to one hypothesis, handwriting is produced by modulating a horizontal and a ver
tical mass-spring oscillator (Hollerbach, 1981). Apart from the fact that such a 
model requires a considerable number of parameters (i.e., 13), to account for slant 
and size constancy, there are indications that modulated oscillation is not the 
type of motor control that the writer uses. In the first place, in our experiments, 
writers experience considerable difficulty in producing simple repetitive patterns 
like /elelele/ or /ellellell/ for a sustained period of time (longer than 2 seconds) 
without errors. One might expect that this simple kind of oscillation should be 
easy for a system that controls movement by amplitude and phase modulation. 
Second, size and timing variations occur very often in handwriting, i.e., on a dis
crete stroke-to-stroke basis, which seems to be contrary to the idea of a mechanical 
sinus oscillator. This argument is also supported by findings which show that the 
'isogony' principle which is dependent upon sinusoidal oscillation holds for scrib
bling movements, but not for normal cursive handwriting (Thomassen & Teulings, 
1985). A third objection comes from the fact that at movement onset we would 
need a special input forcing pattern for the oscillator (a mass-spring system) to 
achieve its spatial target pattern immediately from rest. The authors support the 
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Figure 1. An original handwriting sample, a) spatial pattern, b) vertical veloc

ity, c) horizontal velocity. 
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view of trajectory formation as a process of chaining discrete strokes (Morasso et 

al., 1983). However, unlike the stroke definition in (Morasso et al., 1983), which is 

essentially in polar coordinates, the stroke is defined here as a combined acceler

ation plus deceleration movement unit for a spatial axis in Cartesian space. The 

basic shape of such a stroke is (near) sinusoidal in the velocity domain (Figure 

1). In cursive handwriting, at least two such corresponding momentum impulses 

(Maarse, 1987; Plamondon & Maarse, 1987) are needed for the production of a spa

tial stroke, one per spatial axis. Maarse (1987) compared a number of handwriting 

models. With respect to the quality of fit, velocity-domain models appeared su

perior. Included in the comparison were triangularly shaped momentum impulses 

and sinusoidally shaped momentum impulses. The latter signal type is used in the 

current project: it appeared to produce only a slightly lower quality of fit than 

the triangular signal type, which gave the best fit. In fact, careful observation of 

velocity profiles in human handwriting will reveal that the actual shape is some

thing between triangular and sinusoidal (Teulings et al., 1986). It could be argued 

that the best approximation would be a filtered (damped) version of the synthetic 

and physically not realizable triangular momentum impulses. In order to avoid 

the choice of a filter transfer function, we will continue to use the sinusoidal mo

mentum impulse as the fundamental movement unit in this model, until we know 

more about the physical origin of the small deviations between the observed and 

the simulated strokes. 

Figure 2 shows examples of the three basic stroke types in handwriting. The 

spatial up stroke is produced by horizontal and vertical momentum impulses of 

specified onset time, amplitude and duration. The vast majority of strokes in hand

writing is of this type, with shapes varying gradually from very blunt and clockwise, 

via sharp, to very blunt and counter-clockwise, and looping. Since both X and Y 

impulses contribute to the same spatial stroke, they are considered to be 'locked', 

i.e., they are not independent in the sense that horizontal and vertical movements 

are considered to be independent 'signals' in other studies (Dooijes, 1984; Maarse, 

1987). One could, for instance, as is done in many studies, parameterize the vx and 

v v signals by creating independent parameter lists for both directions, containing 

duration and amplitude of each sinusoid. After parameter evaluation and integra

tion versus time one would obtain displacement functions containing regenerated 

sample of handwriting. Generation of new movements, however, implies that a 

system is producing movement components along each of the two or three orthog

onal axes for a given discrete spatial stroke. Thus the parameterization method 

should account for the time allocation of momentum impulses corresponding to a 

spatial stroke. A straightforward and simple method is the following. The basic 

parameters are the required relative horizontal and vertical displacement in space, 

AX and AY, of a movement section which we call a 'compound stroke'. Times of 

occurrence of zero crossings in the vx and υ ν signals determine the points in time 

at which the spatial distances, AX and AY, respectively, can be determined. This 

deals with the displacement per se. The remaining characteristics to be parameter

ized are the impulse durations and the shape at the stroke ending (Figure 2, points 
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Figure 2. Basic stroke shapes and their relative timing in the velocity do

main, a) blunt, clockwise stroke ending, vx lags νν, b) sharp 

stroke ending, no delay, c) blunt, counter-clockwise stroke, loop

ing with next stroke, vx leads vy in time. 
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a, b and c). As can be seen from this figure, shape could be described by the time 
delay between the two vx and vv zero crossings. We then would need three param
eters in addition to AX and AY, viz., the durations of both momentum impulses 
and a time delay parameter. However, if the momentum impulses indeed belong 
together and are produced by the same pacing mechanism we can also assume the 
following. The duration of the execution of a single spatial stroke, as derived from 
the standard segmentation of the tangential velocity signal (Teulings et al., 1987), 
will be the basis for the durations of the ж and vv momentum impulses, Tx and 
Ту respectively. So we take the compound stroke duration Г as the third parame
ter. In a given sample of handwriting, it can be estimated by measuring the time 
between two minima in the tangential velocity, or simply by taking the average 
(Tx + Tv)/2. Instead of taking the physical time delay as the fourth parameter, 
we now introduce a shape parameter С which is the proportion delay of the given 
compound duration T, to be achieved at stroke ending. Parameter С is compara
ble to the concept of 'phase', but it has the advantage of not being related to the 
concept of oscillation. С can attain positive or negative values, roughly varying 
from -1.5 (counter-clockwise) to +1.5 (clockwise). With this method, smoothness 
of the transition between two strokes depends on the overlap in time of the two 
movement components. 

Parameter 

1 
2 
3 
4 

Name 

AX 
AY 
Τ 
С 

relative horizontal displacement 
relative vertical displacement 
duration (T x + T y)/2 
shape factor (tvx=0 — ί„ν=ο)/Τ 

Unit 

mm 
mm 
ms 

Table 1. An overview of the used stroke parameters. 

The duration parameter Τ can be made relative itself if it is expressed as a pro
portion of the period of the required average stroke pacing, thereby deferring the 
introduction of physical time to a later stage of processing. In the current model, 
however, we will express Τ in absolute terms. Note that the proposed stroke pa
rameterization only determines the shape of the stroke ending. The curvature of 
a stroke's beginning is completely determined by its predecessor. Thus, a curvi
linear shape of an initial stroke in a word is characterized by a preceding stroke 
for which holds: AX = 0, Δ Γ = 0, С ^ 0,T > 0. The proposed method allows for 
a context-sensitive and parsimonious stroke modeling that is suited for use at the 
bottom level of the generator, where the target trajectory is compiled. Further
more, it allows for a selective global biasing of each of the parameters, for example 
to induce sharper or rounder letter shapes by multiplying parameter С with some 
factor. Now we will proceed with the higher levels of the current model. 

The Symbolic Stage: Connecting the Allographs. 

Figure 3 gives an overview of the data structures and the data processing mod
ules of the model. The incoming data are allograph symbols. They will be converted 
stepwise into a quantitative form. 



A Computational Model 59 

The first step is to insert symbols for connecting strokes and pen-lifting strokes 
between the allographs. This is done by the Cursive Connections Grammar (CCG). 
The CCG can be understood as a 'Production System' (Witteveen, 1984) with 
rules such as: 

<ALPHA><ALPHA> 
<ALPHA><PENUP> 
<ALPHA><PUNCT> 
<PENUP><ALPHA> 
<ENDSTRQKE><*> 
<*><PUNCT> 

== <ALPHA><CONNECTOR><ALPHA> 
»= <ALPHA><ENDSTROKE><PENUP> 
== <ALPHA><ENDSTROKE><PUNCT> 
== <PENUP><BEGINSTROKE><ALPHA> 
== <ENDSTROKE><PENUP><*> 
== <+><PENUP><PUNCT> 

where <ALPHA> s tands f o r ' a symbol b e l o n g i n g t o t h e s e t of 
a l p h a b e t i c s y m b o l s ' , <*> s t a n d s f o r any symbol, e t c . 

Connecting strokes (or <C0NNECT0R>s as termed above), are the pieces of hand
writing, normally starting at about the base line or descender line and completing 
the shape of the current letter, spanning the horizontal distance to the next letter 
and initializing the shape of this next letter. The rules shown above, tell us to 
insert connecting strokes between two alphabetics, to append small ending strokes 
if we are at the verge of a pen-up movement, and to lift the pen if there is a 
punctuation sign coming. The CCG is applied recursively to an incoming pair of 
symbols and it inserts pieces until no rule has an effect any more. To be able to 
substitute the generated insertion symbols, the CCG consults a qualitative (ordi
nal) description of allographs: the Symbolic Letter Description. This is a grid of 
available spatial vertical and horizontal levels and levels of curvature. For instance, 
going from an /m/ to an / e / requires a connecting stroke from <base-line> to 
<mid-line> , <counter-clockwise> and with <normal-progression> . The resulting 
symbol chains enter the Stroke Parameterization process (step two), where they 
are further refined and converted into a sequence of stroke parameters, that are 
biased by the global setting of the tempo, size and shape factors. The refinement 
is achieved by consulting the Quantitative Letter Description, a more accurate but 
less general parallel of the Symbolic Letter Description. The third and final step is 
the distribution of available time for a spatial stroke among momentum impulses 
along the X and Y axis according to the required size and shape by the Stroke 
Generator. The output of the Stroke Generator is monitored by a process that 
uses the Symbolic Letter Descriptions as a lineation reference. This is necessary 
because the position data have to be updated in the correct cells of a memory 
of the lineation that has actually been produced until now. This memory is of 
the exponentially decaying type. If an already generated stroke deviates too much 
from the current state of the lineation memory, the programming of the size of the 
subsequent stroke is adjusted. 
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Figure 3. A schematic outline of the model, depicting the flow of information from sym
bolic allograph codes to displacement functions. 
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Some Considerations on Model Architecture. 

The architecture of a computational model of any aspect of human behavior 
is fundamental to its plausibility. The architecture of the current model is built 
upon the concept of a continuous flow of the smallest chunks of information pos
sible through a hierarchically constructed set of operations. The opposite view 
would be that of a sequence of operations on larger information units such as com
plete words or sentences. There are some arguments against the latter approach. 
In the first place, it would be a severe limitation of the model if it would oper
ate word by word only: we know that the human writer can write cursive words 
that are dictated by spelling letter by letter. A speaker generally has to wait until 
more "letters" are known since phonemes encompass a much larger context than 
graphemes do. Indeed, there are some indications that the scope of motor context 
in handwriting may be much smaller than in speech. In handwriting there is noth
ing like the intonation in speech (pitch envelope) which is semantically important 
and can only be produced if several words are known beforehand. Therefore we 
would like to restrict the extent of the motor context in the handwriting gener
ator as much as possible until empirical evidence commands the contrary. In the 
current model, motor context is confined to a range of strokes that belong to two 
letters only (Hulstijn & van Galen, 1983). An architecture like this, working with 
such small chunks of information at a time can easily be made context sensitive at 
all levels by insertion of context-dependent steps of processing within the hierar
chy. A stepwise, block-oriented model, on the contrary, can not be set to operate 
on chunks of information smaller than the minimum size (e.g. word by word). 
Much like the human information processor, the current model starts operating 
on the smallest amount of information coming in and passes it to lower levels of 
processing. The active levels will process down-flowing data only if there is insuf
ficient context available to complete the ongoing operations, thus working on an 
'as needed' basis. We will proceed to describe how a working model is built and 
make some comparisons between simulated and original handwriting samples. 

3.2 Methods 

Subjects. The generation parameters are based on a page of handwriting (12 
lines, 75 words, 230 seconds duration) of a very experienced and 'regular' writer 
(male, righthanded, age 44). Furthermore, use is made of a continuously growing 
corpus of recorded handwriting samples of several subjects (righthanded, age 18 
years and older) to test the analysis procedures. 

Data acquisition and preprocessing. Pen tip displacement signals were recorded 
by means of a large-size writing tablet (Calcomp 9240), sampling frequency 105 Hz, 
spatial resolution 0.025 mm, or by means of a medium-size tablet (Vector General), 
sampling frequency 100 Hz, resolution 0.02 mm. The analog axial pen pressure was 
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digitized (lObits, lg/bit) synchronously with the displacement data. Unless stated 
otherwise, the displacement data are off-line digitally low-pass filtered with a FIR 
filter with 25 weights and a transition band from 10 to 30 Hz (Rabiner & Gold, 
1975). The displacement signals (Sx and 5,,) are differentiated by means of a five-
weight FIR window (Dooijes, 1984) to obtain horizontal (vx) and vertical (υν) 
velocity signals. The pen pressure signal is used to obtain reliable pen up/down 
information. 

Constructing the letter description data structures for a writer. 

a) Lineation analysis. The first step is to analyze histograms of the spatial po
sitions of vertical extrema. The recorded handwriting data should have horizon
tal orientation, either by a proper recording procedure or by post-hoc numeri
cal rotation. Separate lines of handwriting are extracted. To obtain reliable his
togram peaks, the lines should contain a sufficient amount of body size points as in 
/α,ο,ε,ί,τη,η,ο,τ,β,ν,,ν,νί,χ,ζ/, descender points as in /f,g,j,y/ and ascender points 
as in /b,f,h,k,l/ (Figure 4). The histogram of the Y minima will show a distinct 
peak indicating the position of the base line of handwriting (lo)· To 

the left of this large peak there will be some small peak indicating the position 
of the descender line (1¿). The histogram of the Y maxima will show a clear peak 
at the level of the body-size line {Уъ)· To the right of this large peak there will 
be some peaks indicating ascender line positions {Ya). The body-size size can be 
estimated reliably by 

Нь = η - Го (3.1) 

Because there will be much less descender and ascender samples in a piece of 
cursive script than base line and body-size line samples, estimates of descender 
and ascender size will be less reliable. The descender size is determined by 

Hd = Yd - Y0 (3.2) 

and the ascender size by 

3a = Ya- Yo (3.3) 

The ratios На/Пь and Н^/Нь will be characteristic for the writings of the sub
ject in question. The method described has indeed been used successfully in a 
study on writer identification (Maarse et al, 1986). Other, slightly more subtle, 
characteristic levels in lineation are the global maxima in /d,t/ the global minima 
in /p,g/, and the positions of dots on /i/ and /j/ which tend to be much more 
variable. Analysis of several handwriting samples revetded a lineation that reflects 
the handwriting method taught at primary school. Deviations often comprise over
shoots and undershoots in the first and last strokes of words, respectively. An even 
more detailed refinement is obtained by observing the handwriting more closely. 
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Figure 4. Probability density functions for spatial minima (solid curve) and maxima 
(dotted curve) in a line of handwriting. 
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Between the base line and the body-size line, three levels may be identified, indi
cating endings of terminal strokes, intermediate levels (as in /fc/, cursive / < / ) and 
starting points of initial strokes, respectively. Depending on the individual writer, 
these levels may coincide, or additional levels may be present. The identified levels 
are given an ordinal number and a corresponding symbolic name. The handwriting 
sample used in this study contained 10 levels of lineation (Table 2). 

Table 2 . An example of the ordinal c lasses of s troke\ index{stroke} 
charac ter i s t i c s in the symbolicXindex-Csymbolic} s tage , and 
t h e i r names. This 'gr id' i s used by the 
Cursive Connections Grammar to build coimecting\index{coimecting 

stroke codes} 
stroke codes . } 

DEFINE 
LINEATION\index{lineation}: 

Low (minimum in <g>, <j>) 
Low-PLUS (minimum in <p>, <q>) 
Base-line-MINUS 
Base-line (minima in <m>) 
Base-line-PLUS 
Intermediate 
Mid-line (maxima in <m>) 
Hid-line-PLUS 
Upper-line-MINUS (maximum in <t>, <d>) 
Upper (maximum in <k>) 

SHAPES : 
Negative (counter-clockwise) 
Sharp 
P o s i t i v e (clockwise\ index{clockwise}) 

PROGRESSION: 
Close 
Normal 
Far 

PENSTATUS\index{penstatus}: 
Down 
Up 

END 

Coding example for a connecting stroke: 

(b_m_p_c) • 'from Base to Mid, clockwise (p) and Close' 

b) Analysis of shape. Within letters, a wide range of stroke ending curvatures is 
found. Since the fine-grained within-letter shape is not needed in the symbolic 
stage, we leave the stroke shape definition within letters to the quantitative stage. 
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For the connecting strokes, as a rough approximation, only three levels of the shape 
of connecting strokes were sufficient for the writer under study: counter-clockwise 
as in a connecting stroke leading to /e/, sharp as in a connecting stroke leading 
to / t / and clockwise as in a connecting stroke leading to /m/. 

c) Analysis of horizontal progression. Here also, a coarse categorization in three 
levels of horizontal progression between letters is sufficient: Close, Normal and Far. 
Since the vertical and horizontal sizes of connecting strokes are strongly coupled 
(typically, r=0.9), this categorization is relative to the vertical size of a stroke. 

Building the quantitative letter and stroke definitions. 

Preprocessing involves low-pass filtering and segmentation. The aim is to find 
the corresponding vx and vv momentum impulses for each spatial stroke, which 
is not trivial. This is done by means of an algorithm that indicates possible cor
responding iv and vv momentum impulses and allows the operator to correct 
misalignments. The success of this operation depends upon the percentage of 
hesitations or slow correcting movements (graphical editing) in the handwrit
ing sample. Since the model describes ballistic movements, samples containing 
severe movement artefacts are excluded from the analyses. Residual shortlast-
ing (i.e., shorter than 30 ms) local disturbances that cause misalignment are 
solved by applying additional local filtering with a simple first-order recursive 
filter (y(k) = ax(k) + betay(k — l),a = β = 0.5). This procedure guarantees that 
no overall filtering bias is imposed on the signal at moments where no segmenta
tion difficulties arise. Another source of segmentation difficulty is the projection 
of the movements onto the orthogonal axes of the tablet. If the direction of a bal
listic stroke coincides with one of the axes of the tablet, the movement residual 
in the orthonormal direction will be irregular. Such problems can be avoided by 
determining the preferred axes of handwriting beforehand (Denier van der Gon, & 
Thuring, 1965; Teulings et al., 1989). When the correct segmentation points are 
known, the four stroke parameters AX, AY, С and Τ are calculated. Stroke sizes 
AX and AY are calculated by numerically integrating the corresponding vx and 
Vy strokes. Moments of zero crossings ( t v z = o and tvv=o) axe inversely interpolated 
and used to obtain stroke durations Tx and Tv. The 'compound' stroke duration 
is approximated by 

Г (T. + Ty)/2 {отТ^ОАТуфО 
T=i Tx for Ту = 0 (3.4) 

( Tv for Тж = 0 

The shape factor С is determined by the time difference between the zero cross
ings in vx and Vy, i.e.: 

С = *-=«-*•»=» (3.5) 



66 Kinematics 

In the generation process, this parameterization results in dividing the available 

time Τ for the compound stroke equally over the separate axes, such that the delay 

at the stroke ending is as prescribed: 

Δ<(, = t„x-o — tvy=0 ("·") 

AU = C*T (3.7) 

Т^ = -Аіь/2 + T + Atj2 (3.8) 

Tl = +Atb/2 + T- Atc/2 (3.9) 

where 

Atb is the delay between the velocity zero crossings of both axes at the beginning 
of the stroke, 

At,, is the requested delay of the velocity zero crossings of both axes at the ending 
of the stroke, 

7^ is the duration of the v z momentum impulse, 

T ' is the duration of the vy momentum impulse. 

When the total handwriting sample is analyzed, parameter lists of several repli
cations of each allograph or connecting stroke are averaged to obtain a more reliable 
estimate. In the current study, these estimates are based on two to six replications. 
The model is evaluated by comparing one of its generated products to equivalent 
subject-written and regenerated samples. All data are automatically segmented by 
means of a standard procedure. 

3.3 Results 

The construction of the letter description data structures (by lineation analy
sis, analysis of shape and analysis of horizontal progression) for the writer under 
study did not pose any special problems. In building the quantitative letter and 
stroke definitions, non-cursive letters or letters containing editing movements were 
excluded (two /Я/s, which were in block print, and two out of 26 /t/s, also of 
block print type, with pen-lifting). There were no other allograph variations. 
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Table 3. Letter frequencies\index{frequencies}. 

a (13), b (10), с (10), d (21), e (97). f (5), g (13), 

h (11), i (29), j (1), к (8). 1 (14), m (7), η (48), 

о (22), ρ (9), q (1), г (19), s (20), t (26), u (8), 

ν (12). ν (5). χ (1), y (4), ζ (1), D (3), Η (2), 

Ζ (1). 

Frequencies of pen-lifting and special movements are: blank spaces (61), com
mas (5), periods(4), dottings (30), editing (2), long-lasting blanks (2), new line 
movements (11), other pen liftings (12). Table 4 presents a sample of transforma
tions at the symbolic stage, produced by the Cursive Connections Grammar. Note 
the inserted codes for connecting strokes and pen-lifting movements. Also note the 
crude approximation of horizontal progression for spaces between words, (space) 
denoting the default horizontal progression, (spacef) indicating movements above 
the paper, 'landing' somewhat more to the right. Ás can be seen, the connectors 
are generic, no reference is made to the surrounding allograph codes within the 
connector codes themselves. 

Table 4. A 8ample\index{sample} of input and output to the Cursive 
Connections 

Grammar, a) input tex t , b) output codes. See table 2 
for an explanation of the used codes. 

a) . . . an adequate language\index{language} does not ex is t . 

b) ...(a)(b_m_p_c)(n)(b_bplus_s_c)(spacef)(a)(b_m_s)(d)(b_m_n) 
(e)(b_m_p)(q)(lplus_m_s_c)(u)(b_m_s)(a)(b_uminus_s)(t)(i_m_n) 

( ) (b_bplus_s_c)(space\index{space})(i_u_n)(1)(b_m_s)(a)(b_m_p_c)(n)(b_m_s) 
(g) (l_m_s_c) (u) (b.in.s) (a) (b_m_s) (g) (l_m_n) (e) (b_bplus_s_c) 

(spacef) (d) (b_m_s_c) (o) (m_m_n) (e) (b_m_p_c) (s) (space\index{space)-) (i_m_p_c) 
(n)(b_m_s_c)(o)(m.uminus.s)(t)(i_i_s_c)(space\index{space})(i_m_n)(e) 
(b_m_s_c)(x)(b_m_s_c)(i)(b_m_p_c)(s)(b_uminus_s)(t)(i_i_s_c) 
(penup\index{penup}_pendown)(period) 

Figure 5 shows a comparison between some replications of the word 'computer'. 
The first three replications are originally written by the subject. The fourth sample 
is newly generated by the model. The fifth sample is a regenerated version of 
the first word, by parameterizing the horizontal and vertical momentum impulses 
independently, as in (Maarse, 1987). The sixth sample is also a regenerated 
version of the first word, but in this case, stroke parameterization was done by 
locked corresponding X/Y momentum impulses, as in the generator model. 

Table 5 presents a numerical account of the différences between the horizontal 
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¿j^nfitíJiA 

АмутАсъ 

ІЛ^ГП^ГЪІУЖА 

LJ^rytftwfct 

20 mm/s х (t) 20 mm/s Vy (t) 

"—iSOOms 

Figure 5. A comparison of 6 replications of the word computer. From left to right: spatial 

pattern, horizontal velocity and vertical velocity, a) human writer, sample # 1 , 

b) human writer, sample # 2 , c) human writer, sample # 3 , d) computer, newly 

generated (locked vxhvy strokes in time), e) computer regenerated sample # 1 

(independent vmhvy strokes), f ) computer regenerated sample # 1 (locked х&с 

strokes). 
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stroke sizes of the 6 replications. It appears that on the average, the model produces 

horizontal connections (4) that are 0.2 τπτη shorter than the subject did (1-3). 

From the correlation table it appears that the model (4) does not produce strong 

deviations from the originals. As to be expected, regenerated versions (5) and (6) 

strongly resemble the original (1). Also, versions (5) and (6) are highly equivalent, 

which shows that the method of 'locked' momentum impulses does not produce 

deviations from regeneration by independent vx and v v momentum impulses. 

Table 5. Comparisons of horizontal stroke size. 

Mean and standard deviation (mm) 

μ σ Ν 

1 2.947 1.896 30 

2 2.951 1.809 31 

3 2.928 1.847 30 

4 2.429 1.606 32 

5 2.706 1.850 30 

6 2.683 1.840 30 

Correlation, N = 3 0 
1 1.000 
2 0.742 1.000 

3 0.989 0.744 1.000 
4 0.934 0.717 0.917 1.000 

5 1.000 0.741 0.988 0.933 1.000 
6 1.000 0.744 0.988 0.932 1.000 1.000 

Standard deviation of differences (Rows minus Columns) 

1 0.000 

2 2.432 0.000 

3 0.497 2.417 0.000 

4 1.231 2.408 1.355 0.000 

5 0.258 2.364 0.560 1.121 0.000 

6 0.278 2.347 0.555 1.121 0.056 0.000 

Legend: 
1-3 Original handwriting samples 
4 Newly generated sample 
5 Regenerated version of 1, by independent vmkvy 
β Regenerated version of 1, by locked v,kvv 

Table 6 shows the comparisons of the vertical stroke sizes for all replications. On 

the average, the generated vertical strokes (4) are again somewhat smaller than the 

original vertical strokes. It appears that correlations between the vertical stroke 

sizes are higher than those between horizontal stroke sizes. The newly generated 

replication does not deviate significantly from the originals (1-3). 



70 Kinematics 

Table 6. Comparisons of vertical stroke size. 

Mean and standard deviation (mm) 

1 
2 
3 
4 
5 
6 

:oi 
1 
2 
3 
4 
5 
6 

¡ta 
1 
2 
3 
4 
5 
6 

μ 
2.785 
3.044 
2.665 
2.460 
2.554 
2.529 

σ 
1.369 
1.338 
1.476 
1.347 
1.320 
1.298 

i-relation, N = 
1.000 
0.990 
0.966 
0.970 
1.000 
1.000 

n d a r d 
0.000 
0.490 
0.826 
0.789 
0.254 
0.282 

1.000 
0.967 
0.970 
0.988 
0.989 

deviat i 

0.000 
0.854 
0.861 
0.617 
0.619 

лг 
30 
28 
32 
32 
30 
30 

28 

1.000 
0.989 
0.965 
0.966 

1.000 
0.969 
0.970 

1.000 
1.000 

ion of differences (R 

0.000 
0.516 
0.834 
0.825 

0.000 
0.726 
0.717 

0.000 
0.054 

1.000 

0.000 

Table 7 shows the comparisons of the horizontal stroke durations. From the 
average durations we can see that the generated strokes (4) lasted somewhat longer 
than the original strokes (1-3). From the correlation matrix we can see that in the 
comparisons (1-4), correlations are much lower than in the case of horizontal stroke 
size . The originals (1) and (3) appear to intercorrelate highly, whereas the original 
(2) and the model (4) are moderately intercorrelated. 
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Table 7. Comparisons of horizontal stroke duration. 

Mean and standard deviation (ms) 
μ σ Ν 

1 105.857 26.728 29 

2 103.463 26.617 30 

3 107.959 30.891 29 

4 108.439 26.797 31 

5 105.397 31.094 29 

6 105.890 31.653 29 

Correlation, N = 2 9 
1 1.000 
2 0.352 1.000 
3 0.942 0.346 1.000 

4 0.435 0.613 0.378 1.000 
5 0.967 0.429 0.877 0.532 1.000 
6 0.966 0.440 0.887 0.545 0.996 1.000 

Standard deviation of differences (Rows minus Columns) 
1 0.000 
2 29.999 0.000 

3 10.641 32.752 0.000 
4 28.919 23.647 32.759 0.000 
5 8.589 30.792 15.354 28.595 0.000 
6 9.073 30.879 14.883 28.518 2.963 0.000 

Table 8 shows the comparisons of the vertical stroke durations. From the average 

durations we can see that the generated strokes (4) take an intermediate position 

with respect to the original strokes (1-3). Here correlations are of even lower value 

than in the case of the horizontal stroke durations. The model (4) produces vertical 

strokes with durations that covary most closely with the original (3), the lowest 

correlations exist between the model (4) and the original (1). 
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Table 8. Comparisons of vertical stroke duration. 

M e a n and standard deviation (ms) 
μ σ N 

1 106.538 24.517 29 
2 116.430 27.434 27 
3 102.033 24.758 31 
4 109.416 18.348 31 
5 106.430 24.952 29 
6 106.941 24.670 29 

Correlation, N = 2 7 
1 1.000 
2 0.512 1.000 
3 0.361 0.288 1.000 
4 0.171 0.236 0.715 1.000 
5 0.976 0.501 0.329 0.206 1.000 
6 0.974 0.520 0.406 0.261 0.990 1.000 

Standard deviation of differences (Rows minus Columns) 
1 0.000 
2 25.529 0.000 
3 26.276 30.071 0.000 
4 27.207 28.942 15.849 0.000 
5 5.300 25.872 27.013 26.780 0.000 
6 5.386 25.218 25.176 25.577 3.342 0.000 

Figure 6 shows a longer sample of spatial output of the model. At first sight 

the data give the impression of some 'naturalness': there are no evident artificial-

looking shape repetitions. A given letter may differ in shape according to the con

text (e.g., / e / o r /o/). However, closer observation reveals some peculiarities. Some 

connecting strokes do not seem to be fully appropriate. Moreover, horizontal pro

gression between words is a little coaxse. In some strokes, finally, inflection points 

might be expected, as discussed in an earlier paper (Schomaker & Thomassen, 

1986). 

3.4 Discussion 

Even with the parsimonious parameterization used, we have already obtained a 

reasonable approximation of the subject's handwriting in the spatial and tempo

ral domain. From the comparisons made, provisional conclusions may be drawn. 

Again, spatial (size) consistency appears to be higher than temporal (duration) 

consistency in the comparisons of the three original words and a generated word. 

A striking finding is that the locked parameterization of momentum impulses pro

posed in this study does not lower the correlation with the original data as com

pared to an independent parameterization of horizontal and vertical velocity. In 
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AK sfa ЛУК^^И^и. 'πΛ -bn/ftisi-ti/Êc 
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л^п 

Figure 6. Spatial results for several words of simulated handwriting. 
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the spatial domain, between-letter context effects are present that resemble the 
handwriting of the original writer. The used lineation grid enables the model to 
maintain a horizontal baseline and to generate an estimate of the vertical position 
of the next pen-down position for new words. However, some qualifying comments 
must be made here. In the current state of the model, connecting strokes are 
generic, i.e., the /m/-/e/ transition is considered to be the same as the / n / - / e / 
transition. This does not seem to be justified in all cases. It might be that in 
fact the human writer makes more use of stored connecting strategies for differ
ent allographic contexts, or performs more 'real-time' computation to program 
(connecting) strokes. In the former case, we would have to add transitions to the 
Cursive Connections Grammar and update the Symbolic and Quantitative stroke 
definitions. In the latter case, the Stroke Generator module should be made more 
sensitive to the current motor context. Such a solution would also make it possible 
to let the Stroke Generator reprogram strokes in case of changes of movement 
direction from clockwise to counter-clockwise and vice versa. The human writer 
shows a strategy where the stroke with the longest duration shows a short decel
eration in these cases (Schomaker & Thomassen, 1986). Also, some bigrams might 
in fact be overleamed to such an extent that we should consider them to be part of 
a single two-letter allograph: a digraph. The horizontal progression between words 
can be made more natural by refining the grid of horizontal progressions. This 
can be done by further analyses on the histograms of horizontal stroke sizes. Also, 
what is needed is knowledge on the subtle perceptual cues that the writer uses in 
planning horizontal progression. In computer graphics, for instance, the designer 
of letter fonts defines 'hot spots' as anchor points for spatial concatenation. Prob
ably such 'spots' also exist in handwriting curves. An interesting extension of the 
current model would be a top level that takes care of context-dependent allograph 
selection. Such an extension is only feasible if a large corpus of handwriting of a 
writer is available. In the recorded samples of handwriting (one page per subject) 
that the authors have available, however, most writers do not seem to exhibit a 
sufficiently consistent use of different allographs for formal rules to be derived. 
At the bottom level, a promising continuation of the current work would be the 
use of K-nets (Kinematic Nets) (Morasso & Mussa I val di, 1987), a formalism that 
enables the solution to the inverse kinematics problem, to specify the joint and, 
eventually, muscle-domain control patterns for a given end effector. The advan
tage of this approach is the natural inclusion of dynamics (forces) in the movement 
control on the basis of the task-related demands in handwriting, i.e., producing a 
planar trajectory while applying sufficient force to produce a legible trace on the 
writing surface. Another point of discussion is the use of a Cartesian coordinate 
system at this level of movement planning. Some would argue that coding in terms 
of polar coordinates is more attractive in terms of rotation invariance. Although 
we do not really know how movement patterns are represented in the brain, there 
are some theoretical and practical considerations that support the choice of an or
thogonal coordinate system as the frame of reference when planning external 3-D 
movements. Here, I would like to quote Denier van der Gon & Thuring (1965): 'the 
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occurrence of perpendicular directions in biology and physiology is well-known, for 
instance the analysis mechanism of the semi-circular canals' (in the vestibular sys
tem). In (Denier van der Gon к Thuring, 1965) also, reference is made to the work 
of Dal Bianco in the 1940s who showed that cerebellar lesions can have specific 
consequences for movements in one orthogonal plane. A practical objection to the 
use of a running angle representation would be its dependency on the initial value 
and the propagation of direction errors in time. With respect to the architecture 
of the model, the following remarks can be made. We are confronted with a very 
complex real-life system on the one hand and the current 'paradigms' in science, 
as well as the 'state of the art' in technology on the other hand. These two latter 
aspects determine what is 'thinkable' and what is not. The terminology used, the 
processing steps indicated and the solutions that are proposed in this paper serve 
to guide our conceptualization of the handwriting process (cf. figure 3). Thus, a 
'cognitive' module like the Cursive Connections Grammar can be implemented as 
a formal production system, as it is done in this study, or it could just as well be 
implemented as a neural network simulation in connectionist terms, as proposed 
in (Morasso ic Mussa I val di, 1987). In our view, the connectionist approach is 
appealing because of the somewhat more (bio)physical and physiological nature of 
the models involved. On the other hand, the danger exists that basic information 
processing steps are obscured in this approach, by relegating basic processes to a 
single artificial neural network that solves the demanded input/output relation
ships. Methodologically, a better procedure for matching model data with original 
handwriting might be one which uses dynamic programming to find a time warp 
function of the handwriting samples for an optimal alignment in time (Brault 
& Plamondon, 1987). Finally, we would like to mention the use of the proposed 
model as a synthesis stage within cursive-script recognition, which is under study 
in ESPRIT project P419 (Teulings et al., 1987). 
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Chapter 4 

Kinematics and kinetics 

After having built a working model that describes the kinematical aspects of the 
pen-tip control problem, the question may be asked if kinematics is all there is in 
handwriting. Clearly, the movement is necessary to let the pen-tip travel along a 
path on the paper surface. However, there are other aspects in the writing task. 
A legible trace of regular thickness must be left behind by the pen. The paper or 
the pen must not be damaged by an applied force that is too large. The complex 
biomechanical end effector system that is not controlled along 3 orthogonal di
mensions must follow the writing plane, without spending an overdue amount of 
muscular energy. Thus, force aspects, i.e., kinetics come into play, notably in the 
form of a compliance control problem. In this chapter, we try to find out if pen 
force is a passive dependent variable, determined by the kinematics of the move
ment and the parameters of the biomechanical system, or an actively controlled 
and independent control variable. 
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The Relation between Pen Force and Pen 
Point Kinematics in Handwriting. * 

Lambert R.B. Schomaker 
Réjean Plamondon * 

A b s t r a c t 

This study investigates the spectral coherence and time-domain corre
lation between pen pressure (axial pen force, APF) and several kinematic 
variables in drawing simple patterns and in writing cursive script. Two types 
of theories are prevalent: "biomechanical" and "central" explanations for the 
force variations during writing. Findings show that overall coherence is low 
(< 0.5) and decreases with pattern complexity, attaining its lowest value in 
cursive script. Looking at subjects separately, it is found that only in a small 
minority of writers "biomechanical coupling" between force and displacement 
takes place in cursive handwriting, as indicated by moderate to high nega
tive overall correlations. The majority of subjects displays low coherence and 
correlation between kinematics and APF. However, APF patterns in cursive 
script reveal a moderate to high replicatability, giving support to the notion 
of a "centrally" controlled pen pressure. The sign of the weak residual av
erage correlation between APF and finger displacement, and between APF 
and wrist displacement is negative. This indicates that small biomechanical 
effects may be present, a relatively higher APF corresponding to finger flexion 
and wrist radial abduction. On the whole, however, variance in APF cannot 
be explained by kinematic variables. A motor task demanding mechanical 
impedance control, such as handwriting, apparently introduces a complex
ity that is not easily explained in terms of a passive mass-spring model of 
skeleto-muscular movement. 

4.1 Introduction 

Generally, researchers of handwri t ing movements in the fields of s ignature verifi
cation, forensic s tudies, and in biophysical or psychomotor studies have recognized 

'Published in Biological Cybernetics, 63, 277-289, (1990). Supported by grants from NWO, 
project 560-259-020, Esprit, project P419 and the NIAS. 'Laboratoire Scribens, Département de 
Génie électrique, Ecole Polytechnique, Montréal, Canada 
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the importance of the pen pressure 1 on the writing surface as an important de
pendent variable. For instance, in signature verification, the force exerted by the 
pen on the paper during handwriting appears to be a discriminating parameter 
between individual writers (Hale ir Paganini, 1980; Crane & Ostrem, 1983; Deinet 
et al., 1987). Also, writer identification on the basis of normal handwriting sam
ples is greatly improved if the pen-force signal is known (Maarse, Schomaker, & 
Teulings, 1986; 1988). Thus, in the writer identification or signature verification 
problem, the pen-force signal is an important source of information (Plamondon 
& Lorette, 1989). On the other hand, the number of studies exploring pen force is 
rather limited and little is known about the underlying control process. 

Methods to measure pen force differ greatly. Sometimes, the pen force is mea
sured directly with some kind of transducer during writing so that its time function 
is known. In the case where the transducer is mounted in the pen, and measures 
force along the longitudinal axis of the pen, we will speak about Axial Pen Force 
(APF). In the case where the transducer is located under the writing surface, nor
mal pen force (NPF) is measured. In the latter case, the wrist is typically located 
on a separate supporting surface. At other times, as in forensic handwriting anal
ysis, pen force is inferred from the static properties of the handwriting, i.e., trace 
thickness and depth (Baier et al., 1987) and the paper characteristics (Deinet et 
al., 1987), but the pen-force time function is not known. Another measure that is 
sometimes used is the pen-grip force (Kobayashi, 1981). In what follows, however, 
we will only be concerned with time-varying APF or NPF. Axial Pen Force and 
Normal Pen Force are related by: 

Fsit) =-FA(t)àn(<p(t)) (4.1) 

where ψ is the angle between the longitudinal pen axis and the writing plane. 
A central question to be solved is the relationship between the pen-tip kinemat

ics and the pen force. Essentially two viewpoints are relevant: the biomechanical 
hypothesis and the central control hypothesis. 

Pen-force variation as a passive, biomechanical process.. 

In this view, the pen-force changes during writing are seen as a consequence of 
biomechanical factors related to the kinematics of the movements. Dooijes (1984) 
relates APF variations to the pen tip displacement in the vertical direction, sup
posedly brought about by the forefinger in many subjects which is "...pushing the 
pen into the paper surface during down strokes" (a stroke is generally defined as 
the trajectory segment between two consecutive minima in the tangential pen-tip 
velocity). 

In this paper we would like to propose an approach that describes the pen force 
problem in terms of a mechanical impedance (Hogan, 1985) or compliance control 

1 Since the actual area of the pen point is rarely included in the measurements, pen pressure 
will be referred to as pen force in this article. 
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problem (Asada & Slotine, 1986; Mason, 1982). A mechanical impedance is a sys
tem which accepts motion input and yields force output (Hogan, 1985). Suppose 
we wanted to let a robot system produce cursive script on some writing surface. 
We could define the motor task in terms of a pen-tip trajectory formation problem. 
In this situation the moving system has to control a lot of intra-corporal degrees 
of freedom (body df, bdf) in joint and actuator space. In the extra-corporal spatial 
domain, however, the movement in the air towards the writing surface demands 
the control of six (3 translational, 3 rotational) extra-corporal degrees of free
dom (task df, tdf), while controlling zero degrees of freedom in the extra-corporal 
force domain since there is as yet no contact. However, at the moment of contact, 
making point-to-plane contact with the pen held in the end effector, the control 
problem is transformed into a five spatial tdf and one force tdf problem. The 
force is applied to the paper surface and compensated by a component, normal 
to the writing plane (NPF) and a frictional component along the writing plane. 
No torques are required by a point-to-plane contact. Clearly, the requirements of 
force control should be part of the motor task description. A possible descrip
tion in handwriting is: "apply force in such a way that friction is overcome and a 
clear, legible trace is left behind". Thus, apart from the trajectory formation, me
chanical impedance control is required. Since the writing system has to overcome 
surface (say, Coulomb) friction, additional force components have to be present 
along the X- and Y-axes, that axe linearly related to NPF (Deinet et al., 1987). 
These additional force components complicate the control problem. There are task 
constraints, however, to make things easier for our robot. No rotation around the 
longitudinal pen axis is required for normal cursive script, so we can neglect this 
tdf. Furthermore, pen orientation does not have to be controlled explicitly (can be 
held approximately constant) since it is not part of the specific task requirements. 
In the human writer, the average orientation angle of the pen depends on hand 
anatomy and on personal preference, and variations seldom exceed a maximum 
amplitude of ten degrees in the normal cursive handwriting size, which is about 
2.5 mm for an / a / , on average. The movement system can concentrate on the 
pen tip's trajectory formation and on mechanical impedance, i.e., on regulating 
the normal pen force to produce a continuous trace of sufficient thickness and on 
overcoming friction in the XY plane by exerting an appropriate force along the X 
and Y axes. 

According to a "pure" biomechanica! hypothesis, variations in pen force are 
directly related to the peculiarities of the multi-degree-of-freedom, non-orthogonal 
effector configuration that a human hand in fact is. In this view, movements in
tended to take place in the XY plane are accompanied by inadvertent force varia
tions along the Z-axis because the system is not exhibiting ideal active or passive 
compliance or both. If the system is geared to high stiffness, force variations will 
be of high amplitude; if the system is highly compliant, force variations will be 
reduced. However, in any case, the result will be a strong coupling between pen-
tip kinematics and pen-force variations. As Figure 1 shows, the writing hand is 
a polyarticular system consisting of a closed kinematic chain. It is polyarticular 
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in the sense that each tendon spans a considerable number of joints, going from 
its muscular attachment in the forearm to the distal finger tip. A grossly sim
plified biomechanical model describes APF as the consequence of compressing a 
viscoelastic system by moving the surface contact point in the direction of the 
normal at a fixed hinge. It also shows that in such a system, pen angle is directly 
related to pen tip position. Empirical evidence (1 subject) for the latter point is 
found in Deinet et al. (1987). 

Figure 1. A simplified biomechanical model relating planar move
ment to axial pen pressure (h is fixed height of hinge, / is 
distance from hinge to pen tip, /' is compressed length, β 
is current pen angle, ßmin is minimum angle for surface 
contact, dX is current distance between pen tip and the 
normal). 

For example, in the pen-grip style with the palmar part of the wrist resting vir
tually flat on the writing surface, the finger flexion and extension will lead to larger 
variations in pen angle than wrist adduction and abduction, as an observation of 
the rear end of the pen during simple linear writing movements will reveal. The 
biomechanical hypothesis is attractive from the point of view of control efficiency. 
An appealing theory on skeleto-muscular motor control states that movements are 
brought about by the planning of muscle length ratios at target positions (Bizzi, 
Polit & Morasso, 1976; Morasso к Mussa Ivaldi, 1987; Hogan, 1985). In this view, 
movement is an equilibrium trajectory of minimum potential energy caused by 
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the elastic energy that is stored by muscular (co-)contraction. This type of con
trol obliterates a temporally fine-grained trajectory planning between intermediate 
target positions. Similarly, the application of force to external objects is the di
rect result of the difference between the stored elastic energy state and the state 
the motor system is forced to maintain after obstruction by an external object. 
In handwriting, the obstruction is presented by the pen, yielding pen-grip force, 
and by the writing surface, yielding NPF and friction. In equilibrium theory, the 
planned virtual trajectory would be located spatially beneath the writing surface. 
If we assume that the elastic energy potential function Ep of the end effector is 
smooth (a valley), that the movement direction coincides with the major or minor 
stiffness axis (Hogan, 1985), and that the movement does not cross the equilib
rium point, there is a linear relation between small displacements and force. Under 
the same assumptions, force will generally covary strongly with displacement in 
complex movements patterns, too, since Ep is monotonically increasing with dis
tance from the equilibrium point. The exception is the special case of the isotonic 
trajectories in which the shape of the movement pattern is fully determined by a 
constant force constraint. 

Pen-force variation as an actively controlled process.. 

However, it can also be hypothesized that variations in pen force are actively 
regulated by a central nervous system (CNS) process, independent of the trajectory 
control. For example, Kao et al. (1983) found an increase in normal pen force 
{NPF) as the patterns to be copied became increasingly complex. Another finding 
of this study was that pen force increased during the production of a single pattern. 
Furthermore, there is are many older (German) studies, relating pen force to high-
level constructs such as personality or mental state (Kraepelin, 1899; Kretschmer, 
1934; Steinwachs, 1969). A problem with these latter theories is that they do not 
attempt to describe important physical aspects of the pen-force control problem. 

Leaving aside hypotheses that attach weight to high-level constructs, such as, 
e.g., mental stress, as causing the pen-force variations (Steinwachs, 1969), it can be 
hypothesized that in the process of learning to write the letter shapes (allographs), 
the writer adopts his own strategy or style of controlling pen force during trajectory 
formation. According to this viewpoint, the main intention of the movements is to 
produce spatial shapes within a certain amount of time. The shape of the pen-force 
time function would be only indirectly of importance: its average level should be 
just high enough to produce a trace of sufficient thickness. If force variations are 
indeed purely a matter of personal writing style, the result would be a complex, 
subject-dependent relation between pen tip kinematics and pen force. 

The question of whether pen force is a natural, physical consequence of finger 
movement or an independently controlled variable is especially important in mod
els of handwriting. Plamondon and Maarse (1989) give an overview of 14 models 
of handwriting from the point of view of systems theory. These models are two-
dimensional and do not incorporate pen-force or mechanical impedance control. 
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Ideally, to be included in these models, the pen-force signal should be independent 
of the movement control signals. Also, before developing a coupled oscillator model 
(Beek & Beek, 1988) of pen-force control, one must know if there is any coupling 
at all. 

Although the separation of passive from active aspects in the handwriting pro
cess is a very complicated problem, and probably only partly solvable because the 
nervous system makes efficient use of the biomechanica! and physiological char
acteristics of the effector and sensor systems in an integrated fashion, it seems 
worthwhile to test to what extent pen force is related to movement. 

In a pilot study on the handwriting and drawing movements of two subjects, 
two methods of analysis were performed to test the relation between movement 
and pen force. First, it was argued that a simple first-order correlation would not 
suffice because of phase or time differences between the movement (displacement, 
velocity, acceleration and angular velocity) and the force signal. Therefore, a cross-
correlation analysis was performed. Results revealed that the cross-correlation 
never displayed a consistent and reproducible clear peak value above 0.8 at a 
fixed delay, and correlation values were lowest if the movements involved scribbles 
or cursive handwriting. Subsequently, a second type of analysis was performed, 
that was based on the assumption that the combined linear contribution of pla
nar displacement, velocity and acceleration yielded, by biomechanical coupling, 
an axial component of pen force. The latter analysis (linear multiple regression) 
did not yield consistent results in terms of signal significance or the proportion of 
explained variance. The conclusions of the pilot experiment were threefold. First, 
it appeared that it was of essential importance to control the pen-grip style of the 
subjects in order to allow for a comparison of finger and wrist contributions to 
the movement. For example, short straight lines of length 1 cm at an angle of 45 
degrees can be produced by the wrist, the fingers, or a combination of both, de
pending on the forearm attitude. Second, it was evident that, in order to ride out 
either the "biomechanical" or the "central" explanation for pen-force variations, 
a larger number of subjects and recordings was necessary. Third, it can be argued 
that the lack of consistent findings is caused by the fact that the relation between 
movement and force is only significant within a limited frequency band, e.g., the 
5 Hz periodicity in handwriting (Teuhngs & Maarse, 1984; Maaxse, Schomaker & 
Thomassen, 1986), and that a lumped correlation measure hides such a depen
dency. 

It is hypothesized that if pen force is the direct consequence of biomechanical 
loading and unloading of the wrist and finger muscles, it should covary with the 
movement produced by the stroke production process, regardless of the complexity 
of the drawing pattern as a whole, e.g., pen force invariably going up in downward 
strokes. In one study the fingers are mentioned as having a larger effect on pen-
force variation than wrist movement (Dooijes, 1984). 

According to several handwriting models, writing movements are generated by 
a system that produces bell-shaped tangential velocity profiles ("strokes") of the 
effector (Morasso & Mussa Ivaldi, 1982), along with the production of bell-shaped 
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angular velocity profiles (Plamondon, 1987; 1989). A possible coupling (synergism) 
between this (CNS) stroke production mechanism and the pen pressure should be 
revealed by high coherence between tangential velocity and/or angular velocity on 
the one hand, and APF on the other hand. In this case, a hypothesis that can 
be put forward is that pen force will be increased at stroke transitions, where the 
tangential velocity is low and the angular velocity and curvature are high. We use 
the term tangential velocity instead of the more general term curvilinear velocity 
because we are dealing with planar movement. 

In order to determine the existence and strength of linear relationships between 
movement and axial pen force, we will calculate the coherence spectrum for sev
eral types of handwriting patterns. The Cartesian displacement coordinates will 
be transformed into an estimate of the oblique system that represents the direc
tions of wrist and fìnger movement, respectively. This provides the opportunity 
to separate the wrist and finger contributions to the axial pen force. Also, the 
coherence between APF and tangential velocity as well as angular velocity will 
be determined. A set of drawing patterns will be used, varying in complexity from 
straight lines to scribbles and cursive script. 

4.2 Methods 

Data acquisition. 

Subjects. Sixteen right-handed students, five male and eleven female, with 
an average age of 23.3 years, participated in the experiment. Subjects were not 
informed of the purpose of the experiment (i.e. that "pen pressure" was being 
measured). 
Materials. The movements of the tip of the writing stylus were recorded by means 
of a large-size writing tablet (Calcomp 9000). The sampling frequency was 105.2 
Hz, samples having a resolution of 0.025 mm and an accuracy of 0.25 mm in both 
X and Y directions. The tablet was connected to a PDP 11/45 computer via a 9600 
baud serial line. The laboratory-made writing stylus was equipped with a strain-
gauge force transducer, measuring ajrial pen force in the 0-10 N range. The stylus 
contained a normal ball-point refill in tight contact with the force transducer. The 
analog signal from the pen-force transducer was low-pass filtered (second-order 
Butterworth, -3dB at 17.5 Hz) and A/D converted with a resolution of 10 bits. 
Data were stored on magnetic tape and copied to a VAXstation 2000 computer 
where the actual analyses were done. Software was written in Fortran-77. 
Procedure. The subjects' task was to write predefined patterns or cursive words 
on a DIN A4 paper sheet placed on the writing tablet. The tablet was placed in such 
a way that the subject was sitting in a convenient position, writing at a preferred 
angle, just as in a normal writing situation. Patterns had to be written at a pace 
corresponding to normal writing speed. The recording of a single drawing pattern 
lasted 12 seconds. The duration of the writing of a single word is writer-dependent, 
but the maximum duration was set at 12 seconds. Before the actual recording took 
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place, subjects had the opportunity to accustom themselves to the experimental 
set-up and to the writing patterns that were te be used. The writing patterns were 
practised three times each. To eliminate arm movements, the forearm was placed 
and fixed in an adjustable special-purpose cuff attached to the digitizer (Maarse, 
Schomaker, & Thomassen, 1986). The forearm was fixed in such a way that its 
inner side was parallel to the vertical axis (Y) of the digitizer. In order to allow 
free movement of the hand, the ulnar side of the processus styloideus ulnae was 
just above the top edge of the cuff (Figure 2). 

Figure 2. The recording set-up with digitizer tablet and forearm cuff. 

Writing patterns were indicated by simple icons on the response sheet (Figure 
3), on which six patterns were randomly distributed, and amounted to ten trials 
per pattern. The following writing patterns were used. In condition " F " (fingers), 
the subject had to make an oscillating writing movement at a preferred frequency, 
producing a short (maximally б mm) straight line by moving the fingers only, 
holding the wrist still, in a relaxed attitude. In condition "W" (wrist), the subject 
was asked to perform similar writing movements, in this case producing a straight 
line by using the wrist only, and holding the fingers still in a relaxed attitude. In 
a third condition, "C-", the subject had to draw counter-clockwise circles, about 
5 to 6 mm in diameter. In a similar fourth condition, "C-(-", the circles were 
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Figure 3. The stimuli (a) and the writing area (b) on a DIN A4 response sheet. 
Patterns: straight finger movements (F), straight wrist movements (W), 
clockwise circling (C+), counter-clockwise circling (C-), scribbling (S), 
and cursive handwriting (H). 

drawn in a clockwise fashion. In the fifth condition, "S" , the subject had to draw 
scribbles, aiming at a spatial range of б by 6 millimeters, maximally. In the sixth 
condition,"H" (handwriting), the subject had to write the Dutch word "gestaakt" 
("struck") in cursive style, without pen-lifts. This word was selected because it 
contains body-sized letters as well as ascenders and descenders, and is not too long. 
Care was taken to optimize the dynamic range of the wrist and finger movements, 
since the foreeirm was fixed. The subject was instructed to hold the writing hand 
relaxed in its preferred position. Finally, the response sheet was positioned with 
the left hand until the pen tip pointed to the center of the white response area 
below the stimulus pattern. No pen lifting was allowed during the trials. 

Data processing. 

Per subject, a data set of 10 trials χ 6 patterns χ 1280 samples χ 3 coordinates 
(Jf, У, APF) was collected (460.8 kilobytes). From each trial in the drawing pattern 
conditions, the middle 1024 samples (9.733s) were used in the analyses, thereby 
removing possible artefacts appearing during the initial and final periods of 128 
samples (0.122s) at the beginning and at the end of a trial. From each trial in 
the text condition, the middle 256 samples (2.433s) of the written word were used 
(average word duration was 4.9 seconds). The signals, horizontal displacement 
(Sx), and vertical displacement (Sv), were obliquely transformed (Dooijes, 1984), 
using: 
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where λ is the estimated angle for the axis of the wrist system, with respect to 
the Cartesian x-axis, and μ is the estimated angle of the axis of the fìnger system 
with respect to the Cartesian x-axis. The angle φ represents the angle between 
the wrist and finger axes. The wrist axis angle is obtained by estimating the angle 
of the written line from the (Sx,Sy) coordinates in the "W" trials of a subject 
by linear regression. The fìnger axis angle is obtained by estimating the angle of 
the written line from the (Sx,Sy) coordinates in the " F " trials of a subject by 
linear regression. The application of eq. (2) transforms the data to the estimated 
"internal" effector coordinate system, with wrist activity indicated by £„,, and 
finger activity indicated by S/. 

The displacement signals SXiSy, wrist activity (S„), finger activity (5/) , and 
axial pen force (APF), were differentiated, using a five-point convolution window 
with Lagrange weights (1/12, -8/12, 0, 8/12 and -1/12, Abramowitz ic Stegun, 
1970). The frequency domain transfer function of this differentiator is linear up 
to about 13 Hz in our case. Thus, the signals V^,Vj,, wrist velocity (Vw), finger 
velocity (Vf) and differentiated APF (i.e., dAPF) were obtained. From V̂  and 
Vy, the tangential velocity (Va) and angular velocity (Vg) were calculated. The 
reason for the time-domain differentiation is twofold: (a) it removes low-frequency 
variations that would lead to large bias errors in the low-frequency range of the 
Fourier transform to be performed later, and (b) it keeps spectral components in 
the frequency range of interest (3-13 Hz) intact. Differentiation has virtually no 
effect on the coherence function estimate (see Appendix). Of each signal, the Fast 
Fourier Transform (FFT) was calculated per trial per condition per subject, after 
tapering with a 10 percent cosine window (Bendat & Piersol, 1971; van Boxtel 
& Schomaker, 1983). Bandwidth resolution (Br) before smoothing was 0.103 Hz 
except in the case of the handwriting condition where Br was equal to 0.411 
Hz. The Fourier spectrum was transformed to a power spectral density function 
(PSDF). Also, cross power spectral density functions (CSDF) were calculated for 
the following comparisons: dAPF vs wrist velocity Vw, dAPF vs finger velocity 
Vf, dAPF vs tangential velocity Va, and, finally, dAPF vs angular velocity (Vj), 
a signal closely related to curvature. 

The PSDF and CSDF were then smoothed with a rectangular window (Z = 5) 
in order to increase the reliability of the individual spectral estimates and to make 
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it possible to calculate the spectral coherence function (Bendat & Piersol, 1971). 
Then, per subject, per condition, the PSDF and CSDF spectra were averaged over 
the ten trials in a condition to obtain ensemble averages. This yields 2x5x10=100 
statistical degrees of freedom for the average smoothed PSDF and CSDF per 
subject per condition. To obtain a general estimate of the PSDFs and coherence 
functions per condition, however, the ensemble average spectra were again aver
aged over the sixteen subjects. The PSDFs were normalized to unit area before 
averaging, and the obtained condition average was rescaled to physical units again. 
A condition average PSDF has 16x100=1600 statistical degrees of freedom. The 
coherence functions underwent Fisher's Ζ transform before averaging, the average 
being converted to the coherence domain again. The squared coherence (also called 
Magnitude Squared Coherence or MSC) is given by: 

7 Ш (£?„(ƒ).<?„(ƒ)) 

(3) 

where: 

7 Î ( / ) = squared spectral coherence function 

Guv^f) = cross spectral density function (CSDF) 

(»„(ƒ) = power spectral density function (PSDF), signal и 

Gv(f) = PSDF, signal υ 

Note the similarity to the formula for the Pearson correlation. In fact, a single 
spectral coherence estimator is a coefficient of determination for the relationship 
between two variables in a specific frequency band. Other measures that will be 
used are the average APF level and its standard deviation and Pearson correlation 
between APF and displacement. 

In order to test for non-stationarity, run tests were performed on all signals of each 
trial. The runs were determined by dividing each sample record into 10 segments 
of equal duration and calculating the 10 mean square values and their median 
value. This procedures captures non-stationarities in the mean and the variance 
of the signal. It is assumed that data are (weakly) stationary if maximally 5% 
of the trials exhibit a number of runs that has a probability of less than 0.05 of 
originating from a random process. 

4.3 Results 

The run tests revealed the following percentages (N=960) of sample records 
yielding a number of runs with ρ < .05: dAPF 3.23%, Vw 2.08%, V) 3.02%, Vg 
3.33%, all below 5%. There was no systematic relation between number of runs 
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and condition. Table 1 shows the results for the preferred angles of the lines drawn 
in the conditions W and F. From the mean difference value, it can be inferred that 
the wrist and finger systems have approximately orthogonal movement axes, given 
the forearm attitude used. 

Table 1. 
Average preferred angles in degrees for the linear wrist and finger movements 
with respect to the X-axis of the digitizer, and their difference. Note that the 
forearm is aligned with the Y-axis of the digitizer. 

Subject Wrist Fingers F-W 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 

Mean 

36 
26 
44 
35 
36 
36 
52 
35 
48 
31 
22 
39 
39 
42 
53 
48 
39 

136 
132 
127 
129 
127 
141 
136 
134 
128 
146 
132 
130 
127 
123 
159 
134 
134 

100 
106 
83 
95 
91 
105 
85 
98 
79 
115 
110 
91 
88 
81 
106 
86 
95 

Figure 4 shows a superposition of the patterns produced by wrist movement 
and by finger movement in a trial of the W and F conditions, respectively. The 
widths of the patterns indicate that the wrist movements are more accurate than 
the finger movements, a finding consistent with earlier studies (Maarse, Schomaker 
& Thomassen, 1986). Figure 5 shows the dAPF and Vf signals of a single trial in 
the clockwise circhng (C-f) condition, a time segment of Is within this trial and 
the shape of both the total circling pattern and the selected Is segment. 

Figures 6 and 7 show the results of the comparisons of dAPF with VwandVf 
(wrist and finger domain velocities). The figures are scaled in physical units to 
enable comparison. The smoothness of the handwriting spectra (panel H) as com
pared to the simple drawing spectra (panels C-)-,C-,F,W,S) is due to the shorter 
sample record duration in the former, resulting in a lower spectral resolution. 

The axial pen-force P S D F s . 

From the figures it is clear that all PSDFs (dAPF and kinematics) have a peak 
in the area of two to five Hz. The peak in the dAPF spectrum occurs at about the 
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Wrist axis: 32. deg. 

2 mm 
Finger axis:133. deg. 

Figure 4. Superimposed wrist and finger patterns of one subject, from tri

als in conditions W and F, respectively, and the estimated main 

axes of movement. 
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dAPF (t ) 

Vf ( t ) 

10.0 

1.0 

Figure 5. An example of dAPF and Vf time functions and pattern shape of a single 
trial and a segment of Is duration of this trial in the clockwise circling 
condition C+ (subject 15). 
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Figure 6. Power spectral density functions and squared coherence spectra for 
dAPF and wrist velocity Vw. Conditions are: straight finger movements 
(F), straight wrist movements (W), clockwise circling ( C + ) , counter
clockwise circling (C-), scribbling (S) and cursive handwriting (H). 
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Figure 7. Power spectral density functions and squared coherence spectra for 

dAPF and finger velocity Vf. Conditions are: straight finger movements 

(F), straight wrist movements (W), clockwise circling ( C + ) , counter

clockwise circling (C-), scribbling (S) and cursive handwriting (H). 
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same frequency as t h e peak in t h e kinematics spectra, small deviat ions being due 

t o t h e es t imat ion error. T h e main difference between t h e dAPF a n d k inemat ics 

spectra is t h e relatively larger a m o u n t of dAPF power in t h e range above eight 

Hz, for all conditions. The most probable explanat ion is t h e contr ibut ion of friction 

with i ts hysteresis effects, a n d t h e p a p e r surface irregularities in t h e APF signal. 

In fact, hysteresis could be inferred clearly in t h e single-subject dAPF P S D F s 

of six of t h e sixteen subjects, showing peaks u p t o t h e second h a r m o n i c . T h e 

reduced remainders of these higher harmonics can b e seen in t h e average dAPF 

P S D F of t h e clockwise circling (panel C + ) a n d t h e fìnger movement (panel F ) 

conditions. Overall dAPF power is greatest in handwri t ing (panel H ) , in te rmedia te 

in scribbles (panel S) and circling (panels C + , C - ) , and small in s t raight fìnger and 

wrist movements (panels F and W ) . T h e average, variance and t ime t r end of t h e 

primitive APF signal are shown in Table 2. The average APF is not re la ted to 

variance in this series of conditions. In cursive script, there is a posit ive t ime t rend, 

in the o ther condit ions, APF decreases slowly during a tr ial . 

Table 2. 
Average APF measures for all conditions, in [g] unless otherwise stated. Note 
the maximum variance and positive time trend in the cursive script condition 
(H). APF(O) and APF(n) denote linearly estimated initial and final force level, 
b is the gain of the time trend, г is correlation of APF vs time. 

S 

w 
c+ 
H 
F 
C-

μ 
83.6 
87.5 

108.9 

109.7 
113.5 

115.3 

σ' (93) 
284.5 
250.6 
295.9 
806.4 
259.2 

307.7 

APFo 

91.3 
95.0 

116.0 
91.6 

121.2 

124.0 

APFn 

75.9 
80.1 

101.8 
127.7 

105.8 
106.6 

b (g/s) 
-2 

-1 
-1 

+8 

-1 
-2 

r() 

-0.27 

-0.29 
-0.25 

+0.39 
-0.26 

-0.29 

T h e k i n e m a t i c s P S D F s . 

T h e kinematics P S D F s in circling a n d scribbling are roughly comparable in 

shape a n d area (Figures б and 7, panels C + , C- a n d S). T h e differences in peak 

power values between circling a n d scribbling spectra reflect differences in spatial 

movement a m p l i t u d e , ra ther t h a n differences in periodicity, as can b e inferred from 

peak width. W h e n subjects are asked t o produce scribbles, t h e t e m p o r a l behavior 

is t h u s not as irregular as the spatial result would lead one to suspect . Scribbling 

is performed faster (average peak frequency 4.5 Hz) t h a n circling (3.5 Hz) . 

F u r t h e r m o r e , as could be expected, t h e power of movements along t h e finger 

axis is greatly reduced when wrist movements were requested (Figure 7, panel 

W ) . This suppression takes place t o a lesser extent wi th respect t o t h e power of 

movements along t h e wrist axis in case of fìnger movements (Figure 6, panel F ) . 
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Coherence between dAPF and Уш. 

In the comparison between dAPF and the wrist velocity Vw, it appears that 
a maximum peak coherence (0.42 to 0.44) is reached in circling movements (Fig
ure 6, panels C+ and C—). The difference in peak coherence between clockwise 
and counter-clockwise circling is small. This means that maximally 40% of the 
power in dAPF at the fundamental movement frequency can be explained by 
wrist movements, if the movements are circular. In straight wrist movements (W), 
the peak coherence is somewhat lower (0.35) but the more striking feature is that 
coherence is smeared out over a broad band from 5 to 20 Hz, (Figure 6, panel 
W). In straight finger movements, the wrist contribution to dAPF is negligible. 
The shape of the coherence spectrum for the scribbling movements is comparable 
to that for circling, but the peak coherence is lower (0.3). In producing cursive 
handwriting (panel H), peak coherence is still lower (0.25) and the shape of the 
coherence spectrum is broad banded. 

Coherence between dAPF and Vf. 

In the comparison between dAPF and the finger velocity, peak coherence values 
and coherence spectrum shape are similar to those in the dAPF — V^ comparison, 
with the exception of the straight finger movement condition. The finger velocity 
in straight finger movements (Figure 7, panel F) explains 0.49 of the dAPF power 
at the fundamental oscillation frequency, which is the maximum peak coherence 
value obtained in this study. The coherence spectrum shape is of the broad-band 
type with peaks at the fundamental frequency 4.5 Hz, at 13.0 Hz and at 21.7 Hz. 
The coherence between the wrist velocity and dAPF is very low in straight finger 
movements (0.14). 

Coherence between dAPF and Va or Vf. 

The coherence between dAPF and tangential velocity or between dAPF and 
angular velocity Vt never reached a value above 0.3 in any condition. 

First-order correlation between APF and Sf or Sw. 

An analysis of variance on the Z-transformed first-order (Pearson) correlation 
between APF and Sw and between APF and S/ revealed the significant main ef
fects Condition (p < .0001,5df), Effector (i.e., Wrist vs Fingers) (p < .0001, Id/), 
Subject (p < .0001,15df). The interactions were: a trivial Effector*Condition 
(p < .0001,5df) due to the F and W conditions, Subject*EfFector (p < .0001,15cZ/), 
Subject*Condition (p < .0001,75df). The finger movements were slightly more 
strongly correlated to APF (mean r=-0.23) than the wrist movements (mean r=-
0.14). Note that in this analysis the sign of the correlation biases the average, unlike 
the case of mean coherence values. There is only one positive correlation (+0.09), 
between APF and finger displacement in the W condition. The correlation figures 
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should be squared for comparison with coherence values. The largest mean cor

relation found was -0.39 for the fingers in the clockwise circling condition ( C + ) . 

Clockwise circling (C-|-) yielded higher correlation values than counter-clockwise 

circling (C-) (Table 3). 

Table 3. 
Average first-order (Pearson) correlations over subjects (N=16) between Α Ρ F 
and finger displacement S f and between APF and wrist displacement Su, for 
all conditions. 

Condition: F W C+ C- S H Mean 

Effector: 

R(APF,Sf) (Fingers) -0.36 0.09 -0.39 -0.24 -0.20 -0.22 -0.23 
R(APF,Sw) (Wrist) -0.02 -0.15 -0.33 -0.11 -0.14 -0.10 -0.14 

Mean -0.20 -0.03 -0.36 -0.17 -0.17 -0.16 

To exclude the possible influence of pen angle variation, and consequent varia

tion in the pen force, a test was performed with a modified tablet controller from 

which pen angle could be derived with an accuracy of 3 degrees (Maarse, Janssen 

Sc Dexel, 1988). The controller device was only available after collection of the 

main data set. Recordings ( T = 9 s) never revealed correlations below 0.96 between 

ajdal and normal pen force in any of the conditions ( N = 4 subjects). The reason 

for this strong relationship is the small amplitude of the pen angle variations (2.5 

degrees) with respect to the average value (50 degrees). 

Results thus far seem to indicate that, in cursive script, the relation between pen 

force and kinematics is rather weak, and that only in simple movement patterns a 

coherence of intermediate value can be observed. However, from a visual analysis 

of the single-subject time records, the impression was that the correlation between 

APF and kinematics is actually waxing and waning in time. We will now proceed 

to analyze this behavior for the cursive script condition (H). In order to determine 

the development of the relation between APF and vertical displacement over time, 

an instantaneous (running) Pearson r (rapprit)) ( s e e Appendix) was calculated, 

using a window width of 51 samples, corresponding to about half a second, or at 

least a number of five strokes. This window-width value is not critical, as long as 

it is large enough to contain several strokes, and small enough to fluctuate within 

the sample record (the written word "gestaakt"). For simplicity, the raw vertical 

displacement Y(t) was chosen. This signal contains a large proportion of finger 

movement (Table 1). It appears that roughly three types of subjects were present. 
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Figure 8a. Figure 8b. 
Type a subject, showing APF patterning Type 6 subject, showing biomechanical cou

pling. 

rj 

Figure 8. Instantaneous Pearson r 5 1 between 
APF and vertical displacement Sf during the 
production of a cursive word in three types of 
subjects. The relative APF level is coded in 
grey scale (high force in black). 

Figure 8c. 
Type с subject, showing noisy APF pat
terns. 
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Type α subjects (10 in 16) show a high number of sign reversals (> 4) of the 
correlation T%PFty(t) (Figure 8a). Locally, however, absolute correlation values of 
0.8 in r"p F i y(i) were not uncommon. Overall correlation (and coherence) was low. 
Especially interesting in type α subjects is the fact that the shape of APF(t), Y(t) 
and the correlation time function »'"p j ry(i) were well replicated over trials in the 
cursive script condition. 

Type b subjects (2 in 16) show a much more smooth pattern of τ^ρργ (ί), with a 
limited number of brief sign reversals, and a relatively high but negative correlation 
value (Figure 8b). There is a medium inter-trial consistency. 

Type с subjects (4 in 16) show noisy displacement and APF patterns and a 
consequently low correlation with kinematics (Figure 8c). 

In order to track down the origin of the fluctuations in ГД ^ У М І a measure of 
replicatability of both APF(t) and Y(t) was needed. We chose to calculate the 
average correlations, via Fisher's Ζ transform, between replications of a word for 
APF, yielding RAPF.APF, and for the vertical displacement, yielding Ηγχ. These 
measures will indicate the degree to which the writer was able to replicate the 
APF or Sv patterns over different realizations of the written word, given the 
beginning of the first down stroke in /g/ as the time synchronization reference. 
For comparison, the within-trial average correlation between APF and vertical 
displacement, RAPF.Y, was also calculated. The next measure calculated was the 
number of runs or phases, JVpju,,,.,, in '""pjryí*), in order to provide a measure of 
the complexity of the relation between APF{t) and ^ ( i ) . 

Figure 9 shows the distribution of subjects in a two-dimensional space of correla
tion complexity (JVpfu,««) versus the average correlation between vertical displace
ment and APF (RAPF.Y)· The replicatability of the APF and vertical displace
ment pattern Sy, as reflected in average inter-pattern correlations also are shown 
{RAPF.APF B-nd Лу.у). Typical type о subjects are numbers seven and fifteen, typ
ical type b subjects are numbers four and eight. Subjects two, ten, twelve and 
sixteen are typical of the type с category: note the small radius and light shading 
that are indicative of low inter-trial replicatability for both vertical displacement 
and APF for these subjects. Interestingly, from recordings of a calligrapher it was 
found that this person can be classified as a type b subject, as indicated by an 
asterisk (Figure 9). Table 4 contains the within and between-pattern correlations 
for all subjects, for the whole word "gestaakt" (4a) and for the time segment that 
corresponds to the first letter / a / (4b). This letter was selected because it did not 
display allographic variation over the subjects. All subjects wrote it much in the 
same way, such that a clean ensemble average over 160 replications could be ob
tained (Schomaker Sc Thomassen, 1986). As could be expected from the r^ 1pFy(i) 
fluctuations, locally, within the /a/, a somewhat stronger relation between APF 
and 5 V can be found: another two subjects display a value of RAPF,Y that is 
less than -0.6. Subjects six, ten and sixteen display elevated writing times. Trend 
removal from APF and S v yielded very similar figures. Figure 10 shows the time-
normaUzed ensemble averages (n=10) of / a / per subject and the overall average 
(n=160). Apart from the time normalization, no DC or amplitude normalization 
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Figure 9. Average number of phases in the instantaneous Pearson r, versus average 

Pearson г between vertical displacement and APF (R(ytAPF))i for sixteen 

subjects and a calligrapher (*). The average inter-pattern correlation ("repli-

catability") for vertical displacement (Щ іу)) is represented by circle radius, 

and for APF {R(APF,APF)) by grey scale. Subjects are numbered 1 to 16. 
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was performed in the calculation of the averages, but because of between-subject 

differences in the average APF level, Figure 10 is scaled to fit optimally, assuming 

an APF origin of 0. The panels are sorted in an order of increased relative APF 

variance, with the result that subjects with a low absolute correlation between 

APF and Sy are predominant in the top row, with an approximately flat APF 

profile, and subjects with a higher (negative) correlation between APF and 5 V are 

predominant in the bottom row. Note the different APF patterns for each subject. 

#07 
Сл 

#06 

#10 а 

#01 

#15 

¿7 

#14 

#03 
¿λ 

#04 

#11 

С/ 

#05 

#02 а 

#12 

#13 а 

#09 

#16 а 

#08 

Τ normalized 

Figure 10. Average time-normalized functions of APF and Sy and the shapes of the 

first letter / a / i n the word "gestaakt" for each subject (n=10 replications), 

and the overall average pattern. Scaling of APF and Sy is in arbitrary units 

for each panel, APF is plotted with zero origin, Sy is plotted with floating 

origin. 
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Table 4. Average correlations (N=10 replications) between APF and Sy, be

tween the Sv functions of different replications and between APF functions 

of different replications of the word "gestaakt" (4a) and its first letter /a/ 

(4b), for all subjects. Also shown are the average APF level and its standard 

deviation and the average writing time. 

4a. The word "gestaakt". 

Subject 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 
12 

13 

14 

15 

16 

R(APF,Y) 

-0.17 

-0.43 

-0.20 

-0.70 

-0.18 

0.02 

0.02 

-0.59 

0.09 

-0.17 

0.11 

-0.54 

-0.22 

-0.25 

0.21 

-0.04 

R(Y,Y) 

0.60 
0.24 

0.38 

0.39 

0.50 

0.57 

0.61 

0.65 

0.57 

0.25 

0.35 

0.31 
0.34 

0.29 

0.56 

0.11 

R(APF,APF) 

0.43 

0.11 

0.32 

0.47 

0.73 

0.55 

0.43 

0.45 

0.65 

0.40 

0.55 

0.14 

0.47 

0.36 

0.77 

0.41 

μλΡΡ 

(ff) 
57 

60 

128 

85 

212 

65 

95 

100 

114 

175 

66 

83 

58 

97 

140 

114 

CAPF 

(ff) 
18 

12 

16 

18 

25 

14 

11 

25 

25 

24 

23 

19 

11 

15 

19 

17 

Τ 

(s) 
3.419 

2.974 

4.917 

4.312 

3.592 

10.133 
3.319 

2.596 

3.361 

8.663 

3.761 

5.990 
3.564 

5.471 

3.736 

8.107 

4b. First / o / i n "gestaakt". 

Subject 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 
12 

13 

14 

15 

16 

R(APF,Y) 

-0.19 

-0.04 

-0.21 

-0.72 

-0.60 

0.28 

-0.12 

-0.61 

-0.41 

-0.10 

-0.25 

-0.46 

-0.60 

0.01 

0.19 

0.00 

R(Y,Y) 

0.52 

0.64 

0.76 

0.79 

0.53 

0.79 

0.76 

0.84 

0.67 

0.78 

0.71 

0.33 

0.64 

0.83 

0.77 

0.49 

ΚίΑΡΓ,ΑΡΓ) 

0.43 

0.54 

0.60 

0.57 

0.36 

-0.01 

0.46 

0.81 

0.48 

0.75 

0.31 

0.46 

0.62 

0.66 

0.67 

0.01 

μλρρ 

(ff) 
154 

146 

88 

83 

67 

105 

226 

125 

72 

100 

74 

210 

89 

130 

57 

93 

"APF 

(ff) 
7 

7 

8 

6 

20 

9 

28 

11 

17 

5 

5 

13 

11 

16 

6 

19 

Τ 

(s) 
0.278 

0.236 

0.373 

0.309 

0.287 

0.796 

0.247 

0.215 

0.328 

0.462 

0.279 

0.542 

0.326 

0.419 

0.309 

0.694 
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4.4 Discussion 

The moderate coherence values obtained indicate that, at least for the majority 
of writers, a simple biomechanical coupling between APF and kinematics is un
likely. The residual non-ideal or non-linear relation that exists, attains its greatest 
strength in simple linear movements, with low average pressure levels, deteriorat
ing as movement complexity increases. Since the periodicity of the axial pen-force 
variations is the same as the periodicity of the movements, it must be the phase 
relation between the two that is time-variant or noisy. This latter explanation is 
supported by the finding that the first-order correlation between pen force and 
displacement fluctuates over time. The pen angle can be discarded as a cause of 
this phase jitter because it is coupled to the pen tip kinematics. With regard to 
pure spatial factors, like points of high curvature, the data reveal that there is no 
coherence between APF and tangential velocity or angular velocity. Since points 
of low velocity and high angular velocity correspond to the high-curvature points, 
high-order inter-relationships of this kind can be excluded. On the whole, pen force 
appears to be a separate control variable. 

The mean first-order correlation over the subjects, between APF and wrist dis
placement, and between APF and finger displacement, shows comparable results 
to the coherence analysis but the values are lower, supporting the hypothesis that 
residual biomechanical coupling takes place predominantly at the modal move
ment frequency. There are indications that the residual correlations are due to 
biomechanical effects. The sign of these correlations is mostly negative, relatively 
higher APF corresponding to finger flexion and wrist radial abduction. On the 
whole however, variance in APF cannot be explained by kinematic variables. The 
fact that APF is somewhat stronger coupled (Table 3.) with movement in the 
clockwise circling condition than it is in counter-clockwise circling could be ex
plained by the existence of a curl term in the stiffness matrix (Hogan, 1985) that 
has to be overruled in clockwise movement. More specifically, this finding points 
to a larger stiffness of the thumb subsystem as compared to the opposing finger 
system. For the cursive script condition, a more detailed analysis revealed three 
categories of subjects. Type α subjects {"APF patterners") displayed a complex 
but replicatable relationship between APF and displacement. The replicatabil-
ity of the pen-force pattern and the instantaneous force-displacement correlation 
pattern both support the notion of independent, feedforward control of the force 
by the CNS in many subjects. It is well known that in handwriting at least one, 
but most probably several, strokes are planned in advance (Hulstijn & van Galen, 
1983; Stelmach & Teulings, 1983). Transmission delays exclude the possibihty of 
a continuously monitored pen tip displacement in a neural feedback loop. The 
average observed writing speed is eight to twelve strokes per second in the adult 
cursive writer. In type α subjects, it is quite likely that CNS advance planning or 
feedforward control is also the case with the pen force aspects (average force level 
and impedance) of the writing movement as it is with the trajectory formation 
(Rack, 1981). 
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In a small minority of subjects (type 6, "biomechanics"), there can be a strong 
coupling between axial pen force and movement kinematics. The sign of the cor
relation between vertical displacement and APF is negative, which means that 
APF does indeed increase in down strokes (Dooijes, 1984), at least in this group 
of writers. 

A third group of subjects is characterized by low replicatability of both kine
matics as well as APF (type c, "shakers"). It is as if these writers do not have a 
stable internal representation for cursive script movements. 

In the current experiment, most subjects fall into category a. Here, the corre
lation between the force and displacement is time-variant, biphasic, and subject-
dependent. The writer's strategy might be, at some time or in some specific writing 
context, to actively pre-program mechanical impedance during movement, thereby 
minimizing pen-force variations. This can be achieved by an anticipatory lowering 
of the amount of agonist /antagonist co-contraction. If the writer overcompensates, 
the sign of the resulting force-displacement correlation will be the inverse of the 
sign of the correlation in the case of uncompensated biomechanica! force variations. 
If the writer fails to compensate or even increases stiffness, e.g., if the trajectory 
formation control temporarily requires more resources, the force-displacement cor
relation will be determined by the amount of noise in the neuro-muscular force 
control and by the biomechanics. In human handwriting, it is unlikely that the 
stiffness regulation mechanism is Cartesian, plane-oriented such as is used in the 
robotica! seam welding of curved surfaces. If a planar target trajectory requires a 
high degree of hand stiffness along the X and Y axes for positional accuracy, this 
generally will have a strong effect on the stiffness along the Ζ axis, too. Consid
ering the effects of pen-to-paper friction, current findings show that in using the 
relatively low-friction ball point stylus, the friction influence on APF is nearly 
constant, as witnessed by the high correlation between APF and NPF. Dooijes 
(1984) estimates the friction to be about 4% of the NPF value in the 0-2 N range. 
However, more study is needed on this topic. 

Conclusions. 

The levels of the coherence and first-order correlation between pen force and pen-
tip kinematics in drawing simple patterns and in cursive script are rather low for 
a majority of writers. However, the replicatability of the pen-force pattern for a 
given word and the replicatability of the instantaneous correlation pattern be
tween vertical displacement and pen force shows that the lack of overall coherence 
cannot be explained by an external source of random noise. A possible explana
tion is the presence of a separate control component that regulates pen force in 
an idiosyncratic fashion for each writer. One may speculate that this is possible 
since pen force is an extraneous, invisible variable, the time function of which is 
not explicitly addressed in the course of learning cursive script. The current find
ings are consistent with the known high discriminatory value of pen pressure in 
writer identification. A major implication for handwriting modeling (Hollerbach, 
1981; Edelman & Flash, 1987; Schomaker, Thomassen & Teulings, 1989) is that 
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trajectory control can be separated from pen-force control. The availability of a 
pen angle signal will allow for more detailed analyses, e.g., a decomposition of 
the axial pen force into 3-dimensional components. As a preliminary result how
ever, it appears that pen angle variations are too small to explain a large propor
tion of the pen-force variance. The control of pen force during handwriting could 
be a paradigmatic example of how a biological manipulator handles mechanical 
impedance. Further studies will be needed on questions regarding the flexibility 
of the centrally controlled portion of pen force control in adapting to the various 
requirements of the motor task. This can be done by trying to teach the writer 
a given strategy of mechanical impedance control by means of artificial feedback 
about pen force. Such an experiment would reveal the learning ability of the hu
man movement control system as compared to the teaching of the inverse dynamics 
solution to an artificial neural network (Kawato et al., 1987). 

4.5 Appendix 

1. The differentiation of two signals does not influence their coherence spectrum. 
Assume the signals u(t) and v(t), that axe transformed by a linear operator h(t), 
then 

U'(f) = H(f).U(f) 
У) = H(f).V(f) 

The cross-spectral density will then be given by 

Gu'v\f) = u^in.vy) = {HWiW^uyvu) 
and the squared coherence function will be 

iV) = iGMfW/mfwrnm 
= \силі)\7/(тл\з.\ и)\') 

because of a \H(f)\* component in both numerator and denominator. In the nu
merical estimation, however, the coherence at f=0 (DC) will be reduced because of 
discretization, if h(t) is a differentiator. This is not of importance for the present 
purpose. 

2. The instantaneous or running Pearson correlation is given by: 

σχ(;ω)σν0'«;) 

where j is the discrete time index, w is a time window width, σ ^ is the covariance 
and σχ and <г„ are standard deviations. Time window calculation of a's is done by: 

1/2 

( j+v/i \ 

1/w Σ (ui - μα)(νί - μν)\ 
і=3- ,/2 } 
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where u ^ ν for the square root of the covariance and и = ν for the standard 
deviation. The actual value used for w is 51. 
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Chapter 5 

Alternative approaches: 
Connectionism 

As we have seen, the modeling approach used so far, has led to a modular symbolic 
processing architecture, specifying symbolic and quantitative data-structures and 
the operations performed on them. This approach is typical for the classical cog-
nitivist viewpoint and is strongly related to methods used in artificial intelligence. 
The advantages of such an approach are the following: 

• The resulting model is a working computer model, i.e., ideally it displays a 
functionality comparable to the human cognitive function that it is supposed 
to simulate. 

• Basic processing steps are made explicit. 

• In the process of model development, new and essential functionality that 
was previously implicit is uncovered. 

There is a large difference between a working cognitive simulation model and 
the more descriptive information processing models as used in reaction time stud
ies (Sternberg, 1969; Sanders, 1983). This is not to say that the latter models 
are of less importance, but the development of these models is characterized by a 
somewhat sterile and detached view on possible neurophysiological or even neuro-
informatical processes underlying a given reaction time obtained in a specific exper
imental condition. In our view, one cannot simply label an information processing 
module with the name "Feature Extraction" without describing how this feature 
extraction takes place. However, a method like the Additive Factor Method (Stem-
berg, 1969) has considerable power in systematically guiding the experimentation 
process along a probable track, and one cannot dismiss the valuable empirical data 
obtained in this paradigm. Ideally, research in the field would be characterized by 
a dual-track approach, where a given team consists of a group dedicated to unravel 
the modular structure of a part of the human information processing system, and 
a group simultaneously working on the internal architecture of these modules, to 
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create a working model that is satisfying with respect to both the reaction time 
data and its performance as compared to the empirical data. 

Examples of functionality in handwriting production that was previously im
plicit and that was revealed during the development of our handwriting model 
are the presence of a module that maintains the base line position of the script 
trace by feedback and the (currently unresolved) module that solves the horizontal 
spacing between letters. 

Apart from the mentioned advantages, there are also disadvantages to the sym
bolic information approach that was adhered to until now. To summarize: 

1. The symbolic processing architecture can be completely different from the 
biological neural architecture, thereby leading to the definition of processing 
steps in the model that are absent or unnecessary in the real biological 
system. 

2. The stress on symbolic processing interferes with the control of continuous 
variables. 

3. The undesirable deterministic, "machine-like", properties cannot be solved 
by merely injecting stochastic variation in the output of identified processing 
modules. 

ad (1). Marr (1982) describes three levels at which any machine carrying out 
an information processing task must be understood: (a) the computational the
ory that describes the goal, the appropriateness and the logic of the used steps, 
(b) the representation of the information (input/output) and the transformation 
algorithms, and (c) the hardware implementation. The three levels describe an 
order that goes from general to specific, from abstract to concrete. It is Marr's 
belief that the computational description (a) is of importance for any represen
tational mechanism and physical implementation of a system, e.g., a system that 
can reconstruct three-dimensional estimates of objects that are viewed binocularly. 
And indeed, the computational description of an information processing capability 
may be very general and it may potentially lead to the construction of a man-made 
system that is more powerful than any existing biological system performing this 
information processing capability. The point is that a computational theory, al
though certainly necessary for the general insight, can in fact be too general, and 
that there are no actual representational constructions or physiological machines 
that in the biological reality are able to perform the computations indicated. Many 
computational problems are "ill-posed", i.e., there exists no unique solution. Thus, 
an elegant matrix inversion in computational terms may turn out to be a fallacy 
in the real world because nature found less elegant, hybrid, solutions for the pitfall 
of ill-posedness and singularity. As for the second level (b), it is clear that the 
nature of representations and algorithms that are thinkable at a specific point in 
time is to a very large extent dependent on the technological and mathematical 
stage of development. Ultimately, at level (c), the physical characteristics of the 
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systems onder study determine the correctness of the descriptions at the more 
general levels. Consider, for instance the situation where the goal is to create a 
simulation model describing the now of river water in an arborizing estuary. One 
way of modeling would be the creation of a tree data structure with a decision 
process controlling the amount of water flowing through the river arms at a node. 
Clearly, this approach can have success in terms of the accuracy of the estimated 
water flow quantities. However, such a model does not do justice to the essence 
of the underlying physical processes. A water flow model in terms of a dynamical 
system described by differential equations obliterates the necessity of a "homuncu
lus" decision process, the river arms simply being attractors in the system state 
space. 

ad (2). The designation of symbols as basic processing objects gives rise to an in
terfacing problem: In what way can we step from symbols to a continuous temporal 
movement pattern? This problem is the complement of the so-called Analog-to-
Digital (A/D) problem in categorical perception (Hamad, 1987). Here, unlabeled 
perceptual input of an analog and continuous nature must be categorized into dis
crete object representations. In the production of movements conveying the shapes 
of distinct letters, exactly the opposite problem has to be solved: The Digital-to-
Analog (D/A) transform. One solution to the D/A problem is the expansion of 
symbols at a higher processing level into many more symbols designating infinites
imal steps as an approximation of the continuous flow at the lowest physical level. 
One could indeed argue that as long as the granularity of the symbol set is fine 
enough, there is no real problem. The neural process is limited, too, by a baseline 
noise level that leads to an error that is the parallel of the quantization error of 
a finite symbolic representation. Another, more parsimonious solution to the D/A 
problem is the invocation of an interface, as in chapter 7, that transforms a given 
symbol into a set of quantitative parameters that lead to the production of a frac
tion of a time function. The latter solution is also used in Morasso et al. (1983) 
and the minimum jerk models (Edelman & Flash, 1987) to modeling cursive script. 
The implication of these solutions to the D/A problem is that either there exists 
an active computational transform, or there exists a "passive" memory association 
between the symbolic representation of a letter and its corresponding continuous 
time function. For both the computational transform and the memory association 
mechanism it holds that a symbolic representation has to be linked uniquely to 
its (quasi-)continuous counterpart and not to other continuous representations. A 
severe problem of the symbolic processing approach is the so-called "brittleness" 
of symbolic information processing systems. Since symbols and rules operating on 
symbols are monolithic construction entities, there "is nothing in between them". 
This makes it hard for such a system to handle novel input information that is 
not accounted for formally and explicitly. What is needed, in fact, is a new way 
of thinking about the representation of symbols and quantities in an information 
processing system (Hamad, 1987; Smolensky, 1988). Especially Reeke & Edelman 
(1988) vehemently attack the traditional information processing paradigm in arti
ficial intelligence (and cognitive science) as: 
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"reducing intelligence to symbol manipulation." 

Reeke & Edelman, (1988) p. 147 

ad (3). Since human motor behavior is characterized by both deterministic and 
stochastic components, a good model should explain the origin of both compo
nents. For example, in drawing movements, the amount of movement noise is 
influenced by context factors (Van Galen, Van Doom, & Schomaker, 1988). This 
finding reveals properties that are typical of the neural movement control system. 
In modeling, it appears to be difficult to simulate the variability of a movement 
parameter if the modules and processes described by the model do not match the 
architecture and processes of the real biological system. 

Connec t ionism. 

A field of modeling cognitive functions that enjoys renewed interest is con-
nectionism, or the simulation of neural networks. The basic feature of all neural 
network simulations to date is, that they are based on a massive amount of rel
atively simple processing units (cells) that are highly interconnected. Each unit 
collects weighed input from a large number of other units and distributes its output 
to other units. The connections between units are characterized by their weights, 
which may be positive (excitatory) or negative (inhibitory). The units are charac
terized by their static transfer function, e.g. a sigmoid function of the net input, 
and often by a threshold parameter. To some extent such a system has similari
ties with the biological (often called "wet") neural networks existing in the brain 
(Smolensky, 1988; Ballard, 1986). For instance, firing rate is often an asymptotic 
function of the net synaptic input, sometimes sigmoid static transfer functions are 
found, and there exists a threshold excitation level below which a biological neuron 
does not fire (Bigland & Lippold, 1954; Kanosue et al., 1979). 

But there axe also large differences. Apart from some notable exceptions (Tor
ras i Genis, 1986; Peretto & Niez, 1986; Kurogi, 1987), the cells are not stochastic 
renewal pulse oscillators (Lago Sc Jones, 1977) in most neural network simulations: 
They do not fire action potentials in time. The unit activation level is represented 
by a single value, sometimes even a binary number. Although the firing of an ac
tion potential by a biological neuron also is an all-or-nothing process, it is not the 
single discharge but the current average firing frequency that determines the infor
mational state of a neuron. Also, in biological systems, separate inter-neurons are 
needed for inhibitory connections which are absent in most simulations. Another 
serious discrepancy is the fact that biological neurons have a large fan-in/fan-out 
ratio, i.e., the number of cells that receive information from a given neuron is 
small compared to the number of cells that send information to this very neuron 
(Crick, & Asanuma, 1987). The "fully inter-connected nets" that are often used in 
artificial neural networks are most probably rare in biological reality. Nevertheless, 
connectionism might be an interesting approach to modeling motor behavior since 
several neural network simulations have displayed behavior that is comparable to 
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the behavior of biological networks: Learning by examples, generalization, associ
ation, robustness with respect to limited damage or internal noise, and graceful 
degradation in case of limited or noisy input. By graceful degradation is meant 
the fact that a network exhibits "reasonable" behavior if it is presented with noisy 
input. By contrast, deterministic syntactic systems, such as rule based expert sys
tems, often get stuck in an inappropriate system state if presented with noisy data 
or data for which no explicit rules are defined (Reeke & Edelman, 1988). 

Before trying to answer the question if this approach can solve the problems 
in cognitive and motor modeling raised above, let us give a short review of some 
of the basic architectures and models used, referring to their usefulness in the 
simulation and recognition of handwriting whenever applicable. For each of the 
models, some attention will be given to Architecture, Operation, Learning, 
and to Practical Issues. 

5.1 Two-layer network architectures: Linear Classifier and Percep-
tron 

One of the earliest "artificial neural networks" is the linear classifier. 

Architecture. 

Figure 1 gives a schematic description of the architecture of a linear classifier 
(and the perceptron). There are three system components: (1) A layer of input 
units (cells, neurons), (2) a b u n d l e of connections to (3) a layer of output units. 
In the sequel we will include the input cell layer in the counting of the number of 
layers. In this terminology, a linear classifier is a two-layer network. An JV-layer 
network will have N — 1 connecting bundles, where a bundle can be described 
as a two-dimensional weight matrix W. The rationale for this nomenclature is 
the realization that the input units may have their own properties (e.g., static and 
dynamic transfer function) and thus contribute to the network characteristics. The 
connections in the bundle also have their specific properties (connection sign and 
strength, delay). 

Operation. 

Assume an n-dimensional space F " , where each dimension denotes a perceptual 
feature of observed objects 0. The vector іц containing η feature values, describes 
object к in F™. Now assume a set of object classes К = {jujm}· The goal is to 
classify a given feature vector ip as describing an object peK. In linear classification, 
this is done by specifying an objective function opj for each object class j , given 
pattern p, such that: 

0PJ = W0j + Wlj-.tpi + ... + Wnj.tpn (5.1) 



re 1. Schematic and general description of the linear classifier and 
perceptron. The connection strengths WÍJ are represented by link 
width, grey links have negative weight. Grey scale of output units 
represents the current activation. 
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that is, the activation of an output cell j is the linear combination of the feature 
vector elements. A winner-take-all decision leads to the choice of the object class, 
read "unit", j for which Op,- is maximal. This relation is possible if the vectors 
describing the object classes are linearly separable. 

In fact, for the linear classifier, the output unit activation function is a linear 
function of the net synaptic input x: 

* = Σ1"^ 
i 

o(x) = X 

The distinction between the net synaptic input χ and the unit output activation 
о will prove useful in the non-linear networks handled later. After presentation of 
pattern p, the output of unit j will be 

0i>J = J2w¡)iri (5 ·2) 
t 

and, in vector notation, the total output layer activation will be 

op = Wip (5.3) 

This indicates that recursion (recurrent connection) leading to i(i + 1) = o(t) is 
useless in linear classifiers since in this case o[t) — Weo(0) which means that there 
exist a weight matrix for which the transform could have been obtained in a single 
step without recursion. The same argument holds for cascaded linear classifiers. 
One might be interested what happens if the unit activation function is non-linear. 

For the perceptron, both input and output units can only assume the value of 
0 or 1. The output unit activation function is: 

o(x) = ƒ(*,«) (5.4) 

where θ is a threshold and 

i l if χ > θ 

ƒ ( * , * ) = { (5-5) 
[ 0 otherwise 

χ being the net synaptic input. 

Learning. 

An often-used learning rule in artificial two-layer network is the Hebbian rule: 

Δρ№0· = Tji'piíp,· (5.6) 

In words: A connection between input unit t and output unit j is strengthened 
if both units are active in input pattern ip and target output pattern tp. Using a 



Input 

l'i »2 

0 0 
0 1 
1 0 
1 1 

Output 

Ol 

0 
1 
1 
0 

Table 5.1: The XOR state table 

Hebbian learning rule, inputvectors г must be orthogonal ( i j t , = 1 if ρ = q and 0 
otherwise). This rule does not depend on the current state of the weight matrix. 

Another well-known rule is the delta rule, also called Least Mean Squares 
(LMS) or Widrow-Hoff rule: 

ApWij = Щуііірі - opj) (5.7) 

In words: A weight is changed according to the error ("delta") that its current value 
caused in the actual output unit activation opj compared to the target activation 
level tpj of that output unit. If there is no error, there is no weight change. Clearly, 
this learning rule is dependent on the current state of the weight matrix. The 
advantage of the delta rule is that input vectors ip only have to be linearly 
independent. 

Practical issues. 

The problem with linear classifiers and perceptrons is that they cannot solve a 
problem like the exclusive-or (XOR) mapping. Table 5.1 gives the state table for 
this mapping. It is clear that there are no possible weights in a (2x1) architecture 
such that the linear combination і ціі + w^ii = 0\ for all states of г and o. For 
many problems, the functionality of a two-layer network is sufficient. An experi
ment with a two-layer network will be reported in Chapter , where its ability 
to learn a typical non-linear function is illustrated. 

5.2 Multi-layer networks and learning by error back propagation 

Architecture. 

Two-layer networks are only able to solve a limited set of classification, associ
ation or transformation problems. If more, so-called hidden, layers are introduced, 
difficult transformations on non-orthogonal and not linearly separable data can be 
performed. This is only true if the static unit transfer function of the units in the 
hidden layers is a continuous, differentiable non-linear function. 

Typically, multi-layer networks are characterized by the number of units per 
layer in the following notation: ( n i n χ пшаст χ - · · χ "wdden,, χ 7w)> e-S-i (4*8x2) 
for a three-layer network. 
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Operation. 

The operation of a multi-layer network is as follows. Each cell j collects the 
{liferent activity of cells г in the preceding layer: 

i 

and maps this input level non-linearly according to its static transfer function ƒ 
onto an output activation level, representing, as it were, the unit firing rate: 

where θ is the threshold or bias parameter for unit j that translates the non-linear 
activation function along the x-ajds. Thus, the given input activation pattern at 
layer 0 is propagated in the direction of the output by a succession of (a) matrix 
χ vector multiplications χ = Wo to obtain the vector x, and (b), transfer func
tion ƒ() applications to obtain the unit activation vector о for each subsequent 
layer. Ultimately, the units of final layer will exhibit activation values according 
to the transform that the network has learnt in the learning phase. The calcula
tions can be performed in parallel, so operation of such a network can be fast, 
both in artificial and in biological systems. The assumption, however, is that al
though the updating of unit activations in forward propagation does not have to 
be synchronous, the input activation pattern must be stable until the final output 
activation pattern has been reached. In an artificial system that is time-discrete 
and synchronous, parallel computation must proceed stepwise from input layer 
to output layer. In an artificial system that is analog and time-continuous, the 
output activation values are available immediately, in principle. It is important to 
note that in a parallel system, the time that is necessary for the mapping of input 
to output is independent of the content or complexity of the activation patterns 
but depends on the number of layers and the delays that exist in the inter-unit 
connections. 

Learning. 

The standard delta rule in case of a two-layer network without hidden units 
pertains to the modification of a weight w between an output unit j and an input 
unit t: 

ApWij = ηί,ή^ρί - opj) (5.8) 

where t is the input vector containing the target unit activations of the input layer 

for pattern p, where t is the target vector containing the target unit activations 

of the output layer for pattern ρ, о is the output vector containing the current 
actual unit activations of the output layer after presentation of pattern ρ, η is the 
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learning rate parameter. In words: The weight change of the weight between input 
unit t and output unit j after the presentation of an input/output pair ρ is the 
product of the learning rate η with the error Spj between the actual output and 
the target value for output cell j , multiplied by the activation level ipi of input cell 
i as determined by p. The basic problem, now is, how to calculate weight changes 
for units not directly linked to the output layer in case were the number of layers 
(including input cells) is greater than two. Note that only for the output layer, the 
target vector is known. 

The generalized delta rule has the same form as the standard rule (Rumel-
hart, Hinton & Williams, 1986): 

ApWij = TJlpiípj ( 5 · 9 ) 

If i/0 denotes the set of units in the output layer, then: 

i ffopjiitpi - "pi) i f u n i t JMo 
(5.10) 

fj(xPj) Σ * ¿pkWkj otherwise 

p. 327 

where: f'Axpj) is the derivative of the unit activation function that transforms the 
sum of the activations «w- received at j from cells in the previous layer (xw = 
^iWjiOpi + Bj). The unit activation function is (Rumelhart, Hinton & Williams, 
1986): 

1 + e—» 

= ι + β -(Σ.-ι . ·*+·,) ( 5 Л 1 ) 

p. 329 

Its derivative simply being opj{\ — Op¿), so the generalized delta rule rewrites as: 

i 0pÂl - 0 P Í ) ( * Р І - Ori) i f U I l i t Ì e t ; o 

(5.12) 
0PÌ ( ! - 0pi ) Σ * bphWkj otherwise 

In words, roughly, the generalized delta rule reads as follows. Weight change 
during learning is proportional to the product of learning rate, the activity of the 
sending unit and the error of the activity of the receiving unit, or a weighed error 
of the activity of all the receiving units in case the latter belong to a hidden layer. 
The error itself is weighed by a function (the first derivative of the unit activation 
function) that leads to a maximum weight change if the activation of the receiving 
unit equals its threshold (bias) level Θ. 

Whereas thresholds in biological networks are an inherent property of the neu
ron, in artificial or theoretical networks, a threshold can be defined as a connection 
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strength to an auxiliary unit not part of the input, hidden, or output layers, that 
is continually exhibiting a constant activation level. This redefinition allows for 
the incorporation of threshold level adaptation during a learning process. In case 
of back propagation this implies that the generalized delta rule applies to both 
connection weights and threshold levels. 

Practical issues. 

As Hecht-Nielsen (1987) notes, most applications of back propagation deal with 
mappings from binary input patterns to binary output patterns, although there is 
no fundamental objection against using vectors of non-binary activation patterns. 
This issue will be studied in an experiment to be described later (Chapter Θ). 
There is no inherent provision for the representation of time, an essential aspect 
in the modeling of handwriting which will be addressed in Chapter 7. In Chap
ter 8, the capabilities of the multi-layer perceptron in finding a solution to an 
important mapping problem in motor control (and handwriting) are assessed: The 
autonomous learning of an internal representation of the effector system. 

5.3 Hopfield networks 

Architecture. 

Hopfield (1982) networks are characterized by a single layer of fully intercon
nected units. The activation level may assume two values, true or false, mostly 
represented by + 1 and -1, respectively. In statistical physics, such a system is 
a model for a material which consists of atoms with an amorphous distribution 
of Ising spins, spin glass, (Stein, 1989). The units are connected by links with a 
specific real-valued positive or negative weight. 

Operation. 

The basic functions of a Hopfield network is pattern completion (association). 
In pattern completion, the activation of a number of units is set (clamped) ac
cording to an incomplete binary pattern, a perceptual input, so to speak. The 
activation of a unit can be interpreted as a hypothesis concerning the existence of 
some perceptual feature. Subsequently, the system is left to evolve states according 
to the constraints that are formed by the clamped units and the weights of the 
connections. The weights of the connections are based on a learning process in 
which the system was confronted with several complete binary patterns. If there is 
a solution, the system will converge to a final state in which the activation of the 
units represents the complete pattern. This is possible because in the relaxation 
phase, the activation of single units changes such that the total system energy 
decreases. 
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The total system energy in a Hopfield network is: 

E = -1/2 Σ Σ »««.-'i + Σ*'* (5·13) 
• 3 i 

(Hopfield & Tank, 1985, p. 144.) 1 

я = - Σ Wi>aiS' + Σ вл ( 5 · 1 4) 
i<3 i 

(Hinton & Sejnowski, 1986, p. 286) 

where E is the system energy, ÍÍ»;¿ is the synaptic weight from the j ' th to the ¿th 
unit, Si is the state of the zth unit and may be -1 or +1 (sometimes 0 or 1), 0¿ is 
the threshold of unit i. Updating states e¿ is achieved by switching each unit г into 
whichever of its two states yields the lower total system energy given the current 
state of the other units j φ i- The activation of a unit к can be seen as a hypothesis. 
The contribution to the change in energy by a change of this hypothesis can be 
locally determined at к and its connected units by 

Δ£* = - Δ Λ Α ( Σ ««-.· - β*) (5.15) 
Í 

(Hinton & Sejnowski, 1986, p. 286; Hopfield, 1982, p . 2556) 

Minimizing the energy contributed by a unit is achieved by adopting true (+1) if 
the sum of its inputs exceeds its threshold, i.e., 

* = l - i i f E i T - - - - - ( 5 Л 6 ) 

or: 
+1 ifE¿™*¿*>0fc 

sk = \ - 1 \iY,iwìaai<ek (5.17) 
θ* if S i WKii = 0fc 

In pattern completion, a number of units is clamped to a known part of a binary 
pattern, and the problem to be solved is the completion of the total pattern. In this 
case the inter-units connection strengths w -̂ are based on a learning procedure. If a 
Hopfield-type network is used for constraint solving, the constraints are translated 
into a set of tu,·,· values and the question is what binary pattern represents a (near)-
optimal energy state of the net. The problem with the deterministic updating 
procedure described above is that it can lead to infinite oscillations. Kirkpatrick et 
al. (1983) developed a solution that is borrowed from statistical mechanics. This 
solution is used by Hinton & Sejnowski (1986) in a constraint solving algorithm 
dubbed "Boltzmann machine", to be discussed later. 

In the Hopfield-netwoik l iterature the weights a i e often called JÍJ instead OÍWÍJ. 
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Learning. 

In Hopfìeid networks, an often used learning rule is the Hebbian rule (eq. 5.6). 
In case of Hopfìeid nets weight change after the presentation of pattern ρ is: 

ApWij = *?ЛРІЛРІ (5.18) 

The weight matrix can be determined non-iteratively by: 

«Чі = 1/АГЕ***и ( 5 · 1 9 ) 
ρ 

where N is the number of units. Normalizing by N is not strictly necessary. Thresh
old change of unit i during iterative learning can be calculated by: 

А Д = - T J V (5.20) 

so the threshold of a unit is lower, the more patterns contain an active unit s — + 1 
at i. 

Practical issues. 

Practical issues in Hopfìeid networks involve the distinction between syn
chronous and asynchronous update of unit activities, the presence of transmission 
delays in the links and the learning rule that is used to determine the initial weights 
in association problems. Other issues are the updating of thresholds #¿, and the 
pre-structuring and limiting of the connectivity (Gielen & Coolen, 1989). A prob
lem with Hopfìeid networks is that the choice of patterns is not free. In the original 
paper only a number of 15 patterns could be recalled without error, using 100 units 
(Hopfìeid, 1982). The Hamming distance (the sum of differing bits) between the 
patterns must be "sufficient", Hopfìeid mentions a distance of 50 for N=100 units. 
Probabilistically, the number of patterns is of the order N/log(N) (McEliece et 
al., 1987). Structuring or shaping of the weight matrix on the basis of the available 
patterns can improve the storage capacity (Coolen & Ruijgrok, 1988). The poten
tial use of the Hopfìeid network in motor modeling has been shown in an inverse 
dynamics experiment (Gielen & Coolen, 1989). Further research with respect to 
the modeling of handwriting processes with this type of network is planned. 

5.4 Boltzmann machines 

Architecture. 

The principle of describing a system state with zeros and ones, zero-one pro
gramming, can be used in constraint solving (Kirkpatrick et al., 1983). Practical 
examples are the traveling salesman problem, finding a good lay-out of compo
nents on a silicon chip, loading a ship with varying-size packets, etc.. Here, the 
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binary state vector represents hypotheses that are being generated stochastically 
(Metropolis et al., 1953). Hypotheses can be mutually consistent or conflicting 
in a gradual fashion. This can be represented by assuming a positive or negative 
weight value between hypotheses, yielding a weight matrix similar to the case of 
the Hopfield network. This weight matrix is generally not learned, but determined 
by the constraints that are given. The constraints are called "weak", because single 
constraints may be violated, in favour of a better overall solution. 

Operation. 

After determining the (symmetrical) weight matrix w,,, the system is left to 
evolve states according to the constraints that are formed by the clamped units and 
the weights of the connections. The state of unit (hypothesis) k, Sk is stochastically 
set to true with a probability: 

Ä ( " - l ) = (i + e - Œ ^ - W / r , (5·21) 

(Hinton Sc Sejnowski, 1986, p. 288) 

where Τ stands for a temperature parameter that determines the amount of ("ther
mal") noise in the unit firing process. In thermal equilibrium, the relative proba
bility of a global system state α with respect to state β is: 

^ = g-íB.-B^/r (5 22) 

(Hinton & Sejnowski, 1986, p. 289) 

where Ea and Eß represent the energy in global states α and β, respectively. Thus, 
given T, this ratio depends only on the energy difference between the two system 
states. This equation describes the well-known Boltzmann distribution. In a typical 
simulated annealing scheme the system starts off with a high temperature, yielding 
large state changes and allowing for large jumps in E. Gradually, Τ is decreased, 
such that the process will escape from local minima in E and, hopefully, will reach 
the absolute minimum. The state of the units then finally represents the solution 
to the imposed constraints. 

Learning. 

A Boltzmann machine can operate as an input/output mapping or pattern 
completion device. In this case, the constraints are formed by (a) a set of units 
that are clamped to the values of a pattern, and (b) the weight matrix. The 
weight matrix WÍJ should be learned. By calculating the probabilities p j (some 
units clamped) for a unit being ON, and ρϊ} (all units undamped) for a unit 
being OFF, at the end of the annealing phase, weight changes can be imposed: 
ДИ^· = η(ρ^ — p~j (Hinton & Sejnowski, 1986). This method is cumbersome and 
slow, and depends heavily upon the annealing schedule. 
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Practical issues. 

The slowness of the method, especially if implemented in a sequential computer, 
makes it necessary to find an annealing schedule (the function of temperature Τ 
over cycles in the relaxation phase) that is as short as possible. However, theoret
ically, no finite-length relaxation phase guarantees that the obtained optimum is 
global (Richards, 1990). Other solutions are the implementation of the Boltzmann 
machine in VLSI silicon chips containing the necessary multiply-add functions and 
random number generators (Pesulima, Pandya & Shankar, 1990). In the current 
project, the Boltzmann machine is used in cursive handwriting recognition, as re
ported in a master's thesis under supervision by the author (Stal & Ter Hofstede, 
1990). In cursive handwriting recognition, as will be explained in chapter 9, a 
solution search space is created in which an optimum solution for the word to-
be-recognized has to be found. Traditionally, this is done using deterministic tree 
search techniques (Tanaka et al., 1982). In the case of varying-length discrete se
quences, tree search is computationally expensive, hard to parallelize, and does 
not elegantly handle noisy fragments in an otherwise neatly written input word. 
The Boltzmann machine can be used to integrate information from a number of 
sources (pattern shape quality, digram probabilities, amount of input covered by a 
character hypothesis etc.) in a parallel fashion. These information sources impose 
constraints that determine the "energy landscape" of the solution space for a word. 
Initial results are promising, but more study is needed with respect to the choice 
of constraints, and with respect to the method of translating of these constraints 
into a weight matrix W^. 

5.5 Self-organizing networks 

As an example of self-organizing networks we will only handle Kohonen nets for 
unsupervised feature vector quantization, the Topology Preserving Maps, although 
there exist other models, like Adaptive Resonance Theory (Grossberg, 1987). 

Architecture. 

Kohonen (1987) has looked at the neural architecture in the cerebral cortex to 
develop a self-organizing feature vector quantization network. The cerebral cortex 
can be considered as consisting of a large number of cellular columns with high 
inter-connection in the vertical direction and a limited connectivity in the hori
zontal direction. In this section we will use the term "column" instead of "unit". 
All columns receive a common input consisting of a fixed number of channels, 
each column j having its own connection strength w^ to the input channels t. 
Furthermore, each column receives input from other columns with strength Vkj· 
Auto-recurrent inputs j = k, i.e., v¿* can also be present. 
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Operation. 

After presentation of an input pattern, the cell column that exhibits the largest 
activation value represents the output state corresponding to that input pattern. 
In this sense, the Kohonen network is a local, topological model instead of a 
distributed model. The activation level represents a certainty measure. It is one 
of the virtues of the Kohonen model that the development of activation in time 
is an essential characteristic, just as in the biological reality. Therefore, some of 
the following equations will be differential with respect to time t. Changes in the 
activation value of a column are given by: 

i 

У = S«fcjO* 
к 

doj/dt = x+y-yfa) (5.23) 

where χ denotes the weighed contributions of the external input i, у denotes the 
weighed recurrent contributions from neighboring columns, and the inverse 7 - 1 is 
a sigmoid function. If the inputs are constant in time and the activity from other 
columns is zero, then: 

O i = 7 - 1 W (5-24) 

as in most other models mentioned. The feedback connectivity Vkj has a specific 
shape that is based on knowledge about real cortical connectivity. The shape o í r l 
as a function of inter-unit distance in the case of a 2-dimensional layer of cells is a 
so-called "Mexican hat": Nearby columns are excited, distal columns are inhibited. 
In working, artificial models, this shape is often simplified to block shape, with 
or without the distal inhibitory weighing. The described system stabilizes some 
time after the presentation of an input pattern, exhibiting maximum activation 
in a region of columns. This maximum activation is called a bubble. The location 
of the bubble is the internal representation that the network forms of the input 
pattern. 

Learning. 

Kohonen (1987) has developed a number of useful learning rules. A general 
formula for weight change in Kohonen nets is: 

ApWij = ηομ} - ßojWij (5.25) 

where 77 is a learning rate, as earlier, and β is a forgetting rate. In words: Weight 
change is maximal if the product of output o,- and input ij ("correlation") is 
high but it is suppressed if the output activation Oj and w^ satiate. The process 
described thus far is completely self-organizing, no target activation patterns have 
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to be provided by an external teacher or supervisor as in back propagation learning. 
However, a learning strategy can be used in which the recurrent connectivity re
starts off with a wide excitatory range that is contracting during the learning 
process at a fixed but unsupervised rate. This has the effect of facilitating the 
formation of the shape of column regions representing a class of input patterns. 

Practical issues. 

One difference between the Kohonen network and the other types mentioned 
so far is the fact that it is not a distributed model. Furthermore, there is a dif
ference in the use of the concept of "weight". In the feature vector quantization 
network, the weight values are in the same domain as the sensory inputs, whereas 
their scaling in multi-layer networks is only indirectly related to input magnitudes. 
The Kohonen network is currently used in a "speech-to-phoneme code" transla
tor (Kohonen, 1988). However, to recognize speech it is not sufficient to classify 
isolated phonemes. The resulting varying-length sequence of phonemes must be 
converted to a varying-length sequence sequence of letters. Other architectures 
are more plausible here (cf. Chapter Θ). Kohonen networks are successfully used 
in the classification of strokes in cursive script (Morasso et al., 1990). Figure 2 
shows a topological map of stroke shapes such as used by the cursive handwrit
ing recognizer that is under development in Esprit project P419 in cooperation 
between the NICI, Nijmegen and the University of Genova. 

Figure 2. An example of Kohonen's topology preserving map applied to the self-
organized classification of stroke shapes in handwriting recognition. 
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5.6 Three experiments on connectionism in motor control. 

As we have seen thus far, most of the applications of neural network simulations 
involve perception or memory models. With respect to modeling motor behavior, 
we shall now focus on some fundamental issues in motor behavior neural network 
models must be able to address: (1) Movement patterns must be described by 
continuously varying control variables, (2) movement occurs in time and different 
movement patterns are chained into sequences, (3) controlling and coordinating 
movement requires complex transformations of sensory to motor representations. 

In the next three chapters, we will describe three simulation experiments to 
explore the typical characteristics of common artificial network models if applied 
to modeling motor control and handwriting movements in particular: 

• Chapter 6: Representation of quantity 

• Chapter 7: Representation of time and sequence 

• Chapter 8: Representation of the effector system 

Where possible, these experiments are performed on the basis of kinematic 
motor aspects in handwriting. 
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Chapter 6 

Representing quantity and 
learning a non-linear function 

6.1 Introduction 

In the development of a neural network model of handwriting it is essential to 
study the ways a quantity, e.g., a vertical displacement AY, can be coded in a 
neural architecture. Since most of the work on neural networks is concentrated 
around learning rules, the coding of quantity is often a neglected issue. Basically, 
three viewpoints can be found: 

• The representation of quantity by the firing rate of a neuron (rate coding). 

• Representing quantity by the topology of a set of supra-liminally firing neu
rons (value unit coding). 

• Representing quantity by the sum of the activations of a set of neurons 
(recruitment coding). 

Rate coding. 

The representation of a quantity by firing rate is an issue of hot debate (Ballard, 
1986). Proponents of this view (Pellionisz, 1986) state that firing rate control has 
been proven to exist in the biological neural system and has important advan
tages in terms of the number of neurons needed to represent a certain quantity. 
Opponents have indicated the limited amount of information (bits) that can be 
sent through a single axon due to the inherent noise of the system and the fact 
that it requires at least an inter-pulse interval for a neuron to get an update of 
the "average" firing rate. In most artificial neural network models, the firing rate 
is represented by a single real value. 

135 
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Value unit coding. 

In this view, the firing rate conveys only the certainty or probability of the value 
or quantity portion that is encoded by a single unit. In a coding scheme proposed 
by Ballard (1986), a quantity is represented by the activity of a single unit (i.e., a 
single neuron, or a cluster of neurons). The firing rate transfer function of this unit 
has an inverted U-shape, peaking at the afferent quantity that it represents. The 
advantage of this coding principle is that functions requiring multi-dimensional 
scaling of several different inputs can easily be implemented by units that receive 
activity of several value units representing values at different dimensions. For in
stance, the combined output for a feature extractor that detects lines at an angle of 
45 degrees and a feature extractor that detects a specific hue of green leads to the 
configuration of a new feature extractor detecting slanted green lines. Opponents 
have pointed out the large number of units needed in this type of coding. This is 
known as the Nk problem where N represents the number of units representing 
a dynamic range (granularity), and к determines the number of (e.g., sensory) 
dimensions to be coded. 

Recruitment coding. 

A type of coding that is well-known to researchers in the field of motor control 
is recruitment. In recruitment, quantity is coded by the number of neurons in a 
fixed pool that are supra-liminally active at a given moment in time. Recruitment 
coding has been used in a two-layer network model for the coding of joint angle 
values in an inverse dynamics problem (Gielen & Coolen, 1989). As in value unit 
coding, the number of neurons determines the accuracy of the coding scheme. If 
all units have a maximum output level of equal value, and if the firing thresholds 
are distributed uniformly over the dynamic range to be covered by the coding 
scheme, the relationship between net input and net output approaches linearity. 
Conversely, non-linear mapping can be achieved by a non-uniform distribution of 
thresholds and by differences in maximum output level over neurons in the pool. 

Other coding schemes. 

Another encoding scheme, artificial, but optimal from the point of view of infor
mation theory, is the binary encoding of quantity by units, leading to the maxi
mal resolution of 2 n quantity levels for η binary units. Binary coding is a typical 
topological coding scheme. Multi-dimensional coding schemes are conjunctive and 
coarse coding (Hinton, McClelland & Rumelhart, 1986). Coarse coding is an ex
tension of value unit encoding in which a number of neighboring units are part 
of a zone that represents a given quantity. 

Irrespective of the type of coding, it is doubtful whether the activity of a single 

neuron in the cerebral cortex is sufficient to represent a quantity reliably. If a 

quantity is represented by the modal firing frequency of a cluster of neurons, rate 
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coding will be robust with respect to the dependence on single-neuron activity. 
Furthermore, the argument of the reduced information capacity of single axons 
does not hold strictly any longer for the case of a nerve bundle emanating from 
such a cluster of neurons, if the firing of the neurons takes place asynchronously. 
Likewise, in value unit coding, the representation of a quantity by the location of 
a cluster of firing neurons will increase the fault tolerance as compared to the case 
of a single neuron. Here also, asynchronous firing within the cluster will result in a 
temporally more stable representation as compared to the case of a single neuron. 

The recruitment coding scheme is interesting as a general model for the cod
ing of quantity because of its known presence in spinal alpha-motoneurons and the 
mathematical models that have been developed (De Luca, 1979; Blinowska, Ver-
roust & Cannet, 1979; Lago & Jones, 1977; Agarwal & Gottlieb, 1975; van Boxtel 
& Schomaker, 1983). In a ventral horn of a spinal segment, the alpha motoneurons 
are grouped into pools, each pool for a different muscle. The axon of a single alpha 
motoneuron terminates on a number of muscle fiber end plates. The combination 
of an alpha motoneuron and its connected muscle fibers is called a motor unit. 
The total activation of a muscle is determined by the sum of the activations of the 
alpha motoneurons in a pool. As the activation of the pool by supra-segmental or 
segmental input increases, (1) single motoneuron firing frequencies are increasing, 
and, (2) more motoneurons are being recruited, i.e., exhibiting a supra-liminal fir
ing rate. The recruitment occurs in a fixed order, starting with small motoneurons 
innervating a limited number of muscle fibers, and gradually including larger and 
larger motoneurons that innervate large numbers of muscle fibers. Thus, in this 
scheme, quantity is encoded by a combination of firing rate and recruitment of a 
number of neurons. The physiologically existing scheme of recruitment coding 
solves the problem of limited information content of the output of a single neu
ron, it allows for the easy coding of non-linear relationships, it exhibits reduced 
sensitivity to the effects of inter-pulse durations because of the gap-filling accumu
lation of multi-unit activity, and it is robust with respect to noise and single-unit 
failure. Apart from the alpha motoneurons, it has been shown that on the afferent 
side, mixed recruitment and firing rate control is the mechanism by which lumped 
muscle spindle activity reliably reflects muscle stretch (Milgram & Inbar, 1974). 

Since the goal of this study is the development of an artificial neural network 
model of handwriting, it is important to find out if there are differences between 
the quantity coding schemes mentioned above, if they are implemented in an ar
tificial neural network. A question, for instance, concerns the learning speed in a 
recruitment coding scheme as compared to a value unit coding scheme. 

In order to study the behavior of several coding schemes in an artificial neural 
network, a series of simple experiments was performed with the standard three-
layer network taught by back propagation (Rumelhart, Hinton & Williams, 1986). 
This model is not a pulse oscillator model: unit activations are represented by a 
single real value reflecting the average firing frequency of the biological unit. The 
network had to learn the static mapping from φ to згп(ф) with φ = [0,2π], i.e., a 
single period of the sinusoid. Note that the mapping is non-dynamical, the network 
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does not learn to oscillate. A period of the sinus was chosen because it exhibits 
typical aspects of non-linearity: the existence of extrema and a bending point. The 
"difficulty" of the mapping lies in the fact that a single given output activation 
pattern can be produced by several input activation patterns (i.e., values for φ). 
There were four coding conditions. 

Coding of quantity by:. 

1. Single-unit Activation level (SA), 

2. Multi-unit Recruitment and Activation level(МД.A), 

3. Multi-unit Topology and Activation level (MTA), 

4. Multi-unit Topology, Binary coding (MTB). 

Table 6.1 gives the theoretical coding accuracy of the multi-unit coding schemes 
if unit activation were a binary threshold function, and fine tuning by activation 
level (denoted by "A" above) were not the case. It is expressed as a proportion of 
the total dynamic range to be coded, given N units. 

Coding Scheme 

Recruitment (MR) 
Value-units (MT) 
Binary (MTB) 

Accuracy 

Í/N 
11N 
1/2" 

Table 6.1: Theoretical accuracy values as a proportion of the covered 
dynamic range, for three coding schemes, JV is the number of units used 
in the coding scheme. 

According to these limits, if accuracy were the most important characteristic, 
the more or less technical binary coding scheme (MTB) would be optimal. Clearly, 
in biological systems, pure binary coding did not emerge in the course of evolution. 
With respect to accuracy, there is no difference between a topological or value-
unit scheme (MT) and a recruitment scheme (MR) without fine tuning by the unit 
activation levels. There is, however, another characteristic that is of importance 
in a physical system: fault tolerance or robustness of the coding scheme. Table 6.2 
gives an overview of the theoretical error sensitivity in the decoding of activation 
patterns of the multi-unit coding schemes. The expected error values are based 
on the assumption that the activity of units is unreliable, i.e. has a non-zero 
probability of exhibiting the inverted activation value, one single unit at a time. 
From this table, we see that recruitment coding (MR) is much more tolerant to 
erroneous unit activity than value unit coding (MT). Value unit coding (MT) 
appears to be the most vulnerable coding type, yielding an average error of 1/2. 
In binary coding, there is the situation that the maximum error (1/2) is large as 
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compared to the average error (Avg. e —• 1/N) for large numbers of units. This 

indicates that a binary coding scheme is particularly sensitive to the shape of the 

error probability distribution over units. This latter point may be an explanation 

for the fact that pure binary coding did not evolve in natural systems. The aim 

was to see how accurate and fast a network could be taught a sin() function for 

the different encoding schemes. 

Coding Scheme 

Recruitment (MR) 
Value-units (MT) 
Binary (MTB) 

Min. f 

1/Ν 
Ì/N 
2-Ν 

Avg. f 

1/JV 
1/2 

( 2 * - 1)/(Ν2Ν) 

Max. e 

l/N 
1 -l/N 

1/2 

Table 6.2: Theoretical error as a proportion of the covered dynamic range 
in the case of unreliable units, for three coding schemes. The probability 
that a unit displays a faulty activation is assumed to be distributed 
uniformly. JV is the number of units used in the coding scheme. 

6.2 Method 

For all schemes, the static transfer function of a hidden or output unit is the 

sigmoid (eq 5.11). The dynamic range of the unit activation is taken as Oj = 

[ominjOmoi] to ensure that weight values —• oo did not occur. The domain of φ — 

[0,2π] and range of am() = [—Ι.,+Ι.] were each linearly mapped to [omin,omax]. 

The actual values for om¿n and omax were 0.1 and 0.9, respectively. The learning 
rate η was set to 0.4, and a first-order recursive filter with a gain of 1 ( a = 

0.4,β = 0.6) was used to flatten changes in Awij during gradient descent. This 

approach has the advantage over the normal "momentum term" that the effects for 

the learning factor η and the smoothing filter can be separated. On the contrary, 

the standard momentum term (Rumelhart, Hinton, & Williams, 1986) leads to a 

reduced effective learning rate. The target function is given in table 6.3. 

There were 1250000 presentations of an input/output pair (ф,зіп(ф)) picked 

at random from the list, using a uniform distribution. Since there were 19 in

put/output pairs, there is an average of 65790 presentations of the pattern as a 

whole ("epochs"), in each training session. Given these general parameters, the 

independent variables were: coding scheme, number of input units, number of hid

den units, number of output units. The dependent variables are accuracy of the 

mapping, or Signal to Noise ratio DS/NÌ expressed in dB, i.e., 

DS/N = 1 0 * l o g ( ^ - ) (6.1) 

= - 1 0 * 1 ο β ( 2 σ £

2 ) (6.2) 

for a sine, where σ is the standard deviation of the output sine pattern and σ ε is the 
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Φ 
-3.1416 

-2.7925 

-2.4435 

-2.0944 

-1.7453 

-1.3963 

-1.0472 

-0.6981 

-0.3491 

0.0000 

0.3491 

0.6981 

1.0472 

1.3963 

1.7453 

2.0944 

2.4435 

2.7925 

3.1416 

зіп(ф) 

0.0000 

-0.3420 

-0.6428 

-0.8660 

-0.9848 

-0.9848 

-0.8660 

-0.6428 

-0.3420 

0.0000 

0.3420 

0.6428 

0.8660 

0.9848 

0.9848 

0.8660 

0.6428 

0.3420 

0.0000 

• • 
•' '• 

• • 

/ 
• • 

• • • 

• • 

• • 

• ш' 

'• •' 

Table 6.3: The target function to be learned, N = 19 samples. 

rms error between target and actual output pattern. We will use the average rms 

error during the final 20 (ф, 8Іп(ф)) presentations as the basis for the calculation 

of Ds/N-

The Single-unit Activation SA coding scheme is characterized by a I x N x l archi

tecture. The activation level of the input unit varies linearly with φ, the activation 

of the output unit varies linearly with the required sinQ. 

In the Multi-unit Recruitment and Activation MRA scheme, a number of in

put units is used, as an analogy to an alpha motoneuron pool exhibiting a fixed 

recruitment order. The main difference with the biological version is the fact that 

the maximum unit activation is equal for all units. The input layer is organized as 

a linear array of units, a low index indicating low activity, a high index indicating 

high activity. As the total input excitation increases, more units become active. 

Sometimes, this scheme is called "thermometer coding". Encoding a value for an 

input layer is as follows. If χ is a real-valued quantity with a dynamic range of 

[xmm)Zm<iz]> &nd η is the number of units in an input or output layer, then the 

real number of active units u is 

U = η (б.З) 
З'тах ^тіп 

The number of units m that are recruited, i.e., fully active at their ceiling activation 

level omax is m = mi(u ) , where the int() function denotes truncation. If units are 
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indexed from 0 to η — 1, unit m + 1 has a non-maximal activation level of: 

Om+l = Omtn + ( o m e » - O r a i „)(« " t n í ( u ) ) (6 .4 ) 

to account for the residual activation. Decoding the activation of an output layer 
is done by: 

X = Xmin + (Zmam — Xmin) ¿2{0} — OmiTi)/(Omoi — Omin) (6 .5 ) 
І 

Note that in decoding, the topology of the activation pattern is not relevant (con
trary to the encoding of a quantity into an input layer activation pattern). Also, 
the Multi-unit Recruitment and Activation scheme yields a Single-unit Activation 
scheme in the case of only one unit. Figure 1 gives an example of patterns obtained 
in this mixed recruitment/rate coding scheme MRA. 

In a pure value-unit coding scheme (Multi-unit Topology, MT), only the position 
of a single active unit is of importance. To visualize this coding type, one can think 
of a single LED in a linear array being active to represent a value ("flying spot 
coding"). In the current experiment, a new scheme M TA is proposed in which the 
activity level of two adjacent units in a layer is used to encode "intermediate" 
values for fine tuning of the quantity. The position of the first active unit is / = 
tnt(u) using и from 6.3. The activations of units I and i + 1 are: 

οι = o m i n + (omax - o m i n ) ( l - (u - int(u))) 

0|+i = omin + (omax - omin)(u - int(u)) (6.6) 

Decoding is achieved by: 

X = Xmin + l / r c ( x m o e _ «min) ¿2 j{oj — Omin)/(omax — Omin) ( 6 .7 ) 
i 

which shows that in this scheme, the output is dependent on the activation topol
ogy because of weighing by position j . Figure 2 gives an example of patterns 
obtained in a mixed value unit/rate coding scheme MTA. 

For reasons of comparison, a simple binary coding (Multi-unit Topological Bi
nary MTB) scheme was used. The binary coding is interesting because it is the 
optimum accuracy scheme for a set of binary threshold units. In binary decoding, 
the topology of an activation pattern is obviously crucial. The threshold used in 
decoding was simply (omox — om;n)/2 — 0.5. Figure 3 gives an example of patterns 
obtained in this artificial coding scheme MTB. 
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Figure 1. Figure 2. 
Activation patterns for several quantities in Activation patterns for several quantities in 
multi-unit recruitment and activation coding Multi-unit Topology and Activation coding 
MRA. MTA. 
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6.3 Results 

As a check, the accuracy of the coding schemes 5.4, MRA, and MTA were cal
culated and appeared to be 144 dB, which is consistent with the accuracy of seven 
decimal places for the VAX single-precision floating point representat ion. T h e ac
curacy of the MTB scheme appeared to be consistent with the rule "6 dB/bitn, 
i.e. 30.5 dB for a five-unit encoding, 60.6 dB for a ten-unit encoding. These fig
ures represent the max imum obtainable accuracy in single-precision floating point 
calculation. Steepest learning rates are observed below 16000 epochs. After this 
number of presenta t ions , the Ds/tr value either approaches asymptot ic levels or is 
slowly increasing. 

N x M a r c h i t e c t u r e . 

In its simplest form, the N x l archi tecture, the mapping problem is reduced to a 
simple pseudo-linear model , or table search (e.g., a trivial 19x1 ne twork) . Table 6.4 
shows t h e values of DS/N at the tail of the learning curve (1250000 I / O pairs , 65789 
epochs) , for a number of input units of N — 5 and N = 10. As is clear from the 
table , t he accuracy of the i n p u t / o u t p u t mapping deteriorates as M is increasing. 
This effect is much stronger in the case of V a l u e U n i t coding t han it is in the case 
of R e c r u i t m e n t coding. Input and output layers are subject to the same coding 
scheme. Concerning other experiments the following observations were made . T h e 
binary coding scheme in the NxM architecture never displayed an accuracy above 
12 dB. T h e IxN architecture never reached a sinusoid shape. The N x l archi tec ture 
requires at least N = 3 t o approach the sinusoid shape. In a network wi th N = 1 
and N — 2, only a monotonically increasing ou tpu t was obtained with a sigmoidal 
shape . 

O u t p u t un i t s 
(M) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Value Uni t 
N = 5 
22.86 
17.96 
14.07 
7.81 
4.19 
2.40 
2.56 
1.93 
2.86 
1.30 

( M T A ) 
N = 10 

40.81 
27.40 
16.49 
22.54 
17.51 
12.96 
13.24 
10.75 
10.91 

7.72 

R e c r u i t m e n t 
TV = 5 

22.88 
23.47 
17.74 
18.90 
19.23 
16.08 
17.72 
17.62 
16.83 
16.91 

( M R A ) 

N = 10 
53.56 
27.39 
27.06 
33.22 
32.93 
29.32 
32.02 
31.95 
30.26 
33.79 

Table 6.4: Signal to Noise ratio DS/N (in dB) in a NxM network for 
value unit and recruitment coding schemes. JV is the number of input 
units, M is the number of output units. 
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I x N x l architecture. 

This archi tecture, which is a model for a single-unit receptor/single-unit effector 

connected via an intermediate layer of variable size, reveals t h e network capability 

of "finding its o w n " in termedia te representation of quant i ty in t h e hidden uni t s . 

T h e coding scheme is Single-unit Activation or r a t e coding. Figure 4 shows t h e 

learning curves for I x N x l architectures wi th N varied from 1 to 10. Please note 

t h a t t h e learning curve represents t h e effective error in t h e target domain ( the зіп() 

function) r a t h e r t h a n t h e average error of the individual unit act ivat ion which is t h e 

basis for t h e error back propagat ion during learning. A 1x2x1 archi tecture never 

reaches t h e sinusoid shape a n d produces a sigmoid o u t p u t function. In general, t h e 

accuracy increases as t h e n u m b e r of hidden units N increases, but this relat ionship 

is not completely monotonous within the used range of n u m b e r of hidden uni t s 

(Table 6.5). T h e obtained level of accuracy is low. 

H i d d e n uni t s 
(N) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Single-unit 
ac t iva t ion (SA) 

7.18 
7.20 

14.89 
16.91 
17.11 
18.27 
18.24 
21.48 
18.64 
18.73 

Table 6.5: Signal to Noise ratio DS/N (in dû) in a IxNxl network, using 
the Single-unit Activation (rate coding) coding scheme, the number of 
hidden units N is varied. 
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Figure 4. 
Learning curves for a IxNxl network, using Single-unit activity or rate coding. Curves 
to the right of the panel represent best and worst reproduction (architecture denoted by 
IxNxl) at the end of training. 

N x M x l architecture. 

Here the effect of the input coding scheme is tested, using N = 5 or N = 10, 
varying the number of hidden units, and assuming a single output unit (SA or rate 
coding). Table 6.6 shows the Signal to Noise ratio for the three coding schemes. In 
case N = 5, value unit coding (MTA) yields a higher accuracy than recruitment 
coding (MRA), but this difference disappears for N = 10. In general, the accuracy 
slightly improves with an increasing number of units in the hidden layer, except 
in the case of binary coding (MTB), where this relation is irregvilar. Maximum 
accuracy is obtained in the binary coding scheme, but the accuracy is highly 
dependent on the number of hidden units. A number of input units N = 10 yields 
a much better performance than the case of N = 5, for all coding schemes. 

Figure 5 shows the learning curves for the 5xMxl networks, displaying a steep 
rise in the signal to noise ratio during the initial Зх10Б input/output presentations 
(16000 epochs), for all coding schemes. The value unit (MTA) coding scheme dis
plays a steeper rising learning curve during the continued training. For all schemes, 
back propagation may occasionally fail to maintain an optimum representation, as 
evidenced by peak values in the learning curve exhibiting a higher signal to noise 
ratio than the value attained at the end of training if the number of units is inad
equate. It should be noted that the number of presentations is much higher than 
in most other studies on back propagation, and that single-precision floating point 
operations were used. At other times, back propagation manages to recover from 
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Hidden units 

(M) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

μ 

Value Unit ( M T A ) 

N = 5 N = 10 

19.49 34.90 

35.16 36.89 

36.96 39.52 

39.71 39.41 

37.80 39.82 

37.12 37.49 

41.27 38.69 

39.14 41.83 

35.36 40.51 

37.19 38.74 

35.92 38.78 

Recruitment ( M R A ) 

JV = 5 JV = 10 

19.01 34.92 

27.07 36.86 

26.30 37.67 

24.93 36.97 

27.53 39.15 

32.84 38.99 

29.31 39.36 

25.98 39.49 

29.49 42.84 

28.22 40.24 

27.07 38.65 

Binary ( M T B ) 

І = 5 N = 10 
9.53 8.58 

26.17 39.63 

59.18 39.64 
54.85 47.95 
61.06 53.79 
45.60 60.18 
13.87 51.94 
33.11 55.74 
32.23 61.67 
48.94 61.60 

38.45 48.07 

Table 6.6: Signal to Noise ratio Ds/rt (in dB) in a NxMxl network, in 
three input coding schemes, the number of hidden units M is varied, 
the number of input units being N = 5 or N = 10. Also included is the 
mean Dg/ff per coding scheme value of JV. 

Ds/N, at O.lxT 

Dgftf, at Τ 

% 

Value Unit (MTA) 

N = 5 N = 10 

21.88 36.19 

35.92 38.78 

60.91 93.32 

R e c r u i t m e n t ( M R A ) 

ЛГ = 5 JV = 10 
23.05 35.69 
27.07 38.65 
85.15 92.34 

B i n a r y ( M T B ) 

JV = 5 JV = 10 
20.20 27.42 
38.45 48.07 
52.54 57.04 

Table 6.7: Average Signal to Noise ratios Dg/N (in dB) in NxMxl net
works, at 0.1 of total training time Γ, for three input coding schemes. 

JV is the number of input units. Also shown is the percentage of Ds/tr 

at 0.1T relative to the Dg/rf at the end of training. 

such "catastrophes". Figure 6 shows the learning curves for the lOxMxl networks. 

It can be seen that the learning curves are much more regular, also in the case of 

binary coding. Figures 5 and 6 also give clues concerning the learning speed. Value 

unit coding (MTA) initially learns fastest, followed by recruitment coding (MRA). 

Learning a binary representation is relatively slow and less well-behaved. Table 6.7 

shows the signal to noise ratio after 120000 presentations of input/output pairs 

(6316 epochs). This point is at about one third of the point where most learn

ing curves are flattening and at about one tenth of the total training duration. 

Here, the initial difference between value unit and recruitment coding virtually 

disappears, binary coding still displaying lowest values. Networks with a number 

of hidden units M = 10 learn faster than in case M = 5. 
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Figure 5. 
Learning curves for a 5xMxl network, using a) value unit (MTA), b) recruitment (MRA), 
and c), binary (MTB) coding of the input. Curves to the right of the panel represent best 
and worst reproduction (architecture denoted by 5xMxl) at the end of training. 
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Figure 6. 
Learning curves for a lOxMxl network, using a) value unit (MTA), b) recruitment (MRA), 
and c), binary (MTB) coding of the input. Curves to the right of the panel represent best 
and worst reproduction (architecture denoted by lOxMxl) at the end of training. 
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6.4 Discussion 

The decreasing accuracy of the input /output mapping in case of increasing M 
in an NxM or IxM network is most probably due to the collinearity problem. Since 
all output units are equipotential in terms of their plasticity, an infinite number 
of solutions (combinations of weight and threshold values) is possible. Also, the 
IxMxl architecture is limited with respect to the level of obtainable accuracy. For 
this latter case, i.e., the Single-unit Activation or rate coding, it can be predicted 
that in a non-linear mapping, a biological single-unit receptor needs a bundle of 
fixed, (non-plastic) connections to an intermediate layer containing a large number 
of units. This constraint is used in network models by Kanerva (1988). 

In the NxMxl networks, stable learning occurs if the number of units used in the 
input encoding is sufficiently high. In value unit (MTA) and recruitment (MRA) 
coding, the adding of hidden units only has a marked effect on the accuracy as 
long as the general shape of the output function has not been reached. After that 
point, improvements are marginal. Binary coding (MTB) is very sensitive to the 
number of hidden units. In the current experiment, the presence of hidden units 
NxMxl was needed to obtain a good binary mapping. Potentially, this scheme 
may yield a high accuracy, but the unpredictable learning behavior may be one 
of the reasons that prevented its natural evolution in biological systems. Value 
unit encoding leads to faster initial learning by a multi-layer perceptron than 
recruitment coding, in terms of the absolute error. However, recruitment coding 
is faster in terms of reaching the plateau of the signal-to-noise ratio in case of a 
small (N=5) number of units. Value unit encoding has an advantage in terms of 
accuracy when only a small number of units is used. 

The differences between value unit and recruitment coding as applied in the 
teaching of a non-linear function to a multi-layer perceptron are small. Results 
seem to indicate that in case of a limited number of input units (5) the value unit 
scheme has a slight advantage in terms of accuracy and the recruitment scheme 
has an advantage in terms of learning speed. If a larger number of units is used 
(10) this difference disappears. However, there may be other grounds for choosing a 
particular coding scheme. If the behavior of single units is noisy, as in the biological 
neuron, it can be predicted that recruitment coding is much more robust, and 
therefore a better choice. With respect to the modeling of handwriting, the results 
indicate that for the coding of a quantity (e.g., displacement), the learning of a non
linear relation is easier the more input units are used in a value unit or recruitment 
scheme. Using a single input neuron and rate coding, delegating the solution of 
the non-linear mapping to the hidden units is more difficult than using multiple 
input neurons. Findings (NxM studies) also indicate that it is advantageous to 
reduce the number of units representing the output range, relative to the number 
of units in the preceding layer. It can be hypothesized that the high proportion of 
biological neurons having a large fan-in/fan-out ratio (Crick & Asanuma, 1987) is 
related to their ability to represent a non-linear mapping of the input domain by 
dendritic topology. 
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Chapter 7 

Neural Network Models of 
Temporal Pattern Generation 

Lambert R.B. Schomaker 

A b s t r a c t 

Most contemporary neural network models deal with essentially static, 
perceptual problems of classification and transformation. Models such as 
multi-layer feedforward perceptrons generally do not incorporate time as an 
essential dimension, whereas biological neural networks are inherently tem
poral systems. In modeling motor behavior, however, it is essential to have 
models that are able to produce temporal patterns of varying duration and 
complexity. Several representations of time are dealt with, i.e., spatialized 
(topological) time models, temporal flow models, and recurrent networks. 
An alternative model is proposed, based on a network of pulse oscillators 
consisting of neuron/interneuron (NiN) pairs. Due to the inherent temporal 
properties, a simple NiN net, taught by a pseudo-Hebbian learning scheme, 
is able to display repetitive behavior which is much harder to teach to static 
non-pulse models. Two network models, a recurrent net and a pulse oscillator 
net are compared, using the simulation of pen-tip movement in handwriting 
as a common reference. 

7.1 Introduction 

T h e p r o d u c t i o n of complex p a t t e r n s of activity along several dimensions is prob

ably t h e most intr iguing aspect of motor control . However, it is also a most difficult 

'The major part of this chapter will appear as: Schomaker, L.R.B. (1991). A neural-oscillator 
model of temporal pattern generation. Human Movement Science, z, их. This study was supported 
by Esprit, project P419 
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problem to tackle since we do not currently have sufficient insight in the function
ality and architecture of the neural systems that provide for motor control. There 
exists a long and fruitful tradition of measuring physiological parameters in de
tailed parts of the nervous system, but it is hard to integrate the vast amount 
of empirical detail into a more general theory. Therefore, a viable approach may 
be the creation of models that are based upon general electrophysiological mech
anisms of single cell behavior, trying to find an architecture which is able to dis
play a known functionality in motor behavior. The goal of the current paper is 
to describe possible general, neurally inspired, mechanisms for the production of 
complex but smooth multi-dimensional motor patterns, as opposed to the produc
tion of discrete-element sequences. Other functions in motor control like sensory 
feedback and inverse kinematics or kinetics computation (the degrees of freedom 
problem) are not considered here. Neither are mono-phasic targeting movements, 
as described in models by Bullock & Grossberg (1988) or by Houk et al. (1989). 
The central issue here is the generation of patterns. 

The origin of a movement pattern 

Traditional reaction time oriented studies in cognitive psychology did not con
cern the "internals" of the motor system. In cognitive motor theory, the production 
of a pattern is reduced to an abstract buffering and release of symbolic entities by 
an information processing system which is assumed to operate much like a com
puter (Sternberg et al., 1983; Schomaker et al., 1989). On the other hand, purely 
cybernetica! or system-theoretical accounts explain only servo-like control without 
explicitly specifying where the "set-level" or target time functions originate from. 
Only completely sensor-ruled behavior can be explained in terms of feedback alone. 
In his "closed loop" approach, Adams (1971) uses the additional abstract concept 
of memory trace to describe the origin of movement patterning. Although the non
linear dynamics as used in synergetics (Gibsonian motor theory) has an advantage 
in terms of the potential complexity of motor patterns that can be described in 
their kinematical and kinetica! aspects, the latter theory fails to account for the 
concatenation of movement segments 1 . Transitions between oscillatory modes of 
behavior are not completely explained by the bifurcation phenomenon (Parker & 
Chua, 1987a; 1987b) as a "deus ex machina" mechanism, because also here, the 
ultimate origin of the parameter change leading to the new global system state 
must be identified. In the case of long-duration pattern production such as in 
handwriting, it is more parsimonious to assume the existence of internal "motor 
representations" for movement segments that are fluently concatenated during ex
ecution, than it is to try to model longer sequences by complex and numerically 
vulnerable differential equations. An example is an oscillatory handwriting model 
by Hollerbach (1981). From the synergetics point of view, it is attractive, being an 
autonomous mass-spring oscillator model. On the other hand, it needs 13 parame
ters, and the model unrealistically assumes (Hulstijn & van Galen, 1983; van Galen 

1 Movement segment: a limited-duration kinematic and/от kinetic, neural or myoelectric activa
tion pattern, depending on the level of observation. 



Representing Time 153 

et al, 1986) that writers plan words as a whole in advance. Also, there is more to 
motor behavior than oscillatory movement. It is useful to make a distinction be
tween (a) models that describe the chaining of basic movement segments, and 
(b) models that describe the shaping of an individual movement segment. This 
distinction is not sharp and depends on the definition of "movement segment". 
The solution is to classify a given model as a chaining or shaping type model by 
asking the question how the model would handle the extreme case of very long-
duration patterns vs its handling of details at a short time scale (< ІООтз). The 
shaping functionality typically requires implicit knowledge of the biomechanics of 
the output system, yielding neural activity that compensates for unwanted biome-
chanical side effects or making effective use of the properties of the output device. 
Hierarchically, shaping is of a lower level than chaining, i.e., a chaining module 
drives a shaping module. The distinction between chaining and shaping becomes 
evident in handwriting, where overleamed basic patterns (allographs) are chained 
into ñuent movements. Also in speech, the occurrence of coarticulation effects can 
be described as shaping being influenced by the chaining process. Anticipation and 
perseveration errors in handwriting, typing, and speech indicate problems in the 
chaining process itself. 

In order to develop a neurally inspired model of motor control that explains both 
chaining and shaping functionality, more study is needed. Below we will discuss 
how the time dimension is incorporated in current artificial neural networks, and 
see if and how different models can display the chaining or shaping functionality 
that are required in motor control. 

Time in neural network models 

Time is relevant to several aspects of neural network modeling. In the first place, 
it is of importance in the learning phase. For instance, teaching an input/output 
relation to a multi-layer network by back propagation (Rumelhart, Hinton, & 
Williams, R.J., 1986) generally takes hundreds of iterations. In the second place, 
time plays an important role in the operational phase of a network. How much time 
is needed to produce valid output values after presentation of an input pattern? 
In most multi-layer network models this time is Axed, assuming parallel "com
putation" by all the units, using an amount of time which is independent of the 
complexity of the relation between input pattern and output pattern. Obviously, 
this is not in agreement with behavior of the biological systems, as witnessed by 
a host of reaction time studies (Sternberg et al., 1983). Thus, the multi-layer per-
ceptron models as such do not seem to incorporate time as a natural dimension. 
In this respect, Hopfield nets (Hopfield, 1982) and Boltzmann machines (Hinton & 
Sejnowski, 1986) display more correspondence with the biological neural networks 
because here, the duration of their relaxation is indeed dependent on the stimuli. 
However, the duration of the relaxation phase in the Boltzmann machine can be 
quite long, even if fast and parallel computing units are used, and the response 
time cannot easily be predicted on the basis of pattern complexity. 
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Unfortunately for students of motor control, most artificial neural network mod
els ignore some essential features of biological networks that are related to time. 
Biological neurons are pulse oscillators, producing action potential trains by a 
stochastic point process, whereas artificial neurons as used in a perceptron are 
mostly only level reservoirs. Apart from specific physiological modeling studies, 
there is a limited number of general network models based on pulse oscillators 
(Torras i Genis, 1986; Perette and Niez, 1986; Hartmann and Drue, 1990; Tam 
and Perkel, 1989), and Von der Malsburg (1988). Also usually ignored is the fact 
that connections between units in a biological neural network imply transmission 
delays, the duration of which is determined by inter-unit distance and diameter 
of the axons. Typical axonal delay values are 8 ms/m to 1700 ms/m (Grossman, 
1973). Other criticisms with respect to artificial neural networks exist (Crick & 
Asanuma, 1987), e.g., the limited Fan-out/Fan-in ratio in the neocortex as op
posed to the connectivity demands of the fully interconnected artificial nets that 
are often used. 

Spatialized representations of time 

The denial or omission of the inherent temporal characteristic which biological 
networks possess, has sometimes lead to odd multi-layer models for the recogni
t ion of sequences of patterns, as noted by Stometta et al. (1987). In these models, 
time is represented by columns of input units, one column per time step, for a 
fixed number of time steps. Network models of this type can thus be described as 
a more complex form of tapped delay lines1. Apart from the disadvantage in terms 
of the number of units if long sequences are to be recognized, the main short
coming of such a system is its inadequate representation of patterns of varying 
length. Also, since the time steps are fixed, these models cannot handle tempo
rally "jittering" input patterns either. An example of a speech recognition network 
where time is "spatialized", i.e., represented topologically, is the TRACE model 
by McClelland and Elman (1986). A well-known model for the production of 
temporal patterns, i.e., keyboard typing, is given by Rumelhart & Norman (1982). 
This model, originating from work by Estes (1972), is also based on spatialized 
time, but the topology and the connectivity of the network is pre-structured by 
a planning agent. A sequence of discrete motor actions, key strokes, in time is 
produced by activations in an explicitly structured chain of units. A unit in this 
chain inhibits activity in all its successors until it has fired, thereby inducing a 
fixed sequential order, that occasionally may be disrupted by noise, as in real hu
man typing. This model is a precursor to contemporary neural network modeling 
enterprises in cognitive science. Actually, the model is still of a hybrid nature since 
it contains a symbolic parser which parses a letter sequence and transforms it into 
a so-called key press schema. The key press schema is in fact a highly structured 
"special-purpose" network which is geared to perform the key strokes in sequence. 
Although the model is very original and describes several phenomena also occur
ring in human typing there are some problems with it. First, the model describes 

'Hence the term Time Delay Neural Network (TDNN) that is used sometimes. 
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discrete-time, discrete-value pattern production as opposed to continuous time, 
continuous value pattern production. Second, its highly structured architecture 
involves both activation and connectivity specification of movement segments in 
the "programming stage". Although connectivity specification is possible in princi
ple by using multiplicative synapses in a neural network model, the original paper 
does not describe such structuring. Third, it is unclear how such a system should 
be trained. Fourth, inspection of figure 4 (Rumelhart & Norman, 1982, p. 17), 
which displays activation levels during a typing sequence, will reveal the suscep
tibility of the design to noise and the importance of fine threshold tuning. And 
fifth (Jordan, 1985), without specific modifications, the general architecture is not 
able to produce repetition of a given action unit. Consecutive repetition, e.g. A A 
is represented by a specific doubling action unit influencing the next action which 
follows. Alternation ABA can be solved similarly. But the model really comes into 
trouble when repetition over longer serial position differences must occur (ABCA), 
in which case the sequence must be broken up into e.g. ABC-Α by a parser. As 
we have noted in handwriting, however, writers experience problems in correctly 
reproducing longer sequences of cursive /e/'s and /i/'s, e.g., /elidile/ at a normal 
writing speed, which indicates that humans also have trouble producing repetition 
of identical patterns (Schomaker et al., 1989), an argument which may be in favor 
of the Rumelhart & Norman (1982) chaining type model with unique context-free 
representations for each motor segment and a limited temporal scope. 

Gradually, the importance of a more general and flexible representation of time 
is gaining recognition. Instead of considering, e.g., transmission delays as a nui
sance which increases computational complexity, use can be made of their special 
properties, thus turning a liability into a virtue. Furthermore, the use of recur
rent connections such that the state of a network at time t is influenced by the 
activation states of the units at time t — Δι offers a wide range of behaviors that 
are absent in the feedforward architectures. Notably, the variable-length sequence 
problem and the temporal jitter problem in speech and handwriting recognition 
could potentially be solved by recurrent network architectures (Robinson, 1989; 
1990). In what follows we will describe shortly some network models which make 
no use of pre-structured spatialized time representations. 

The temporal flow model 

In multi-layer networks, Watrous & Sbastii (1987) developed a so-called 
"temporal flow" model for recognition purposes: transforming a temporal signal 
into a static representation. The basic characteristic of such a network is that, 
contrary to the standard multi-layer perceptron architecture, single units have 
auto-recurrent links. A network like this is somewhat less sensitive to small time 
axis deviations than is the case in topological coding of time. The recurrent connec
tions impose a "capacity" or first-order recursive filtering on the unit activation. 
The attractiveness of the temporal flow model lies in the fact that temporal infor
mation is handled by the distributed single-unit dynamics. In order to train such 
a network, a modified back propagation rule was given, which takes into account 
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the unit activations over a short time window preceding time t in the input and 
target time functions. Watrous & Shastri (1987) taught the network to discrimi
nate between two 16-channel time functions containing the spectral content for the 
spoken words "no" and "go". As the target output function, a ramp function was 
chosen which increases for the output unit corresponding to the required response 
and decreases for the non-matching unit. This representation was chosen under 
the assumption that a listener continuously builds up evidence for the detection 
of a specific word. 

The temporal now model can also be used as a production model, transforming 
a static representation or a short seed sequence into a (longer) temporal signal. 
Rumelhart, Hinton & Williams (1986) describe a model of the production of 
discrete sequences of patterns by a 3-layer network with recurrent loops within 
the hidden layer and within the output layer. The connections between layers are 
feedforward only. The idea is to feed the system with an initial seed pattern, which 
initiates a path through the state space, such that the activation of the output units 
in time is a completion of the total (taught) pattern. As an example, after having 
learned the sequences AA1212 and BA2312, presenting AA to the network should 
lead to the subsequent successive output states 1,2,1 and 2. A network of this 
type is claimed to handle fixed time step inconsistencies as well, after the proper 
amount of training. With respect to modeling motor behavior, the model relies on 
a discrete-value representation and is more a chaining type model than it is of 
the shaping type. A large amount of training is required to capture even these 
relatively simple patterns. Both in recognition and production, the complexity 
of patterns is limited by the first-order characteristics of the single units, which 
also puts a limit on the complexity of the pattern which can be produced by the 
network as a whole. Using higher-order transfer characteristics for the single units 
will allow for more complex "impulse responses" to be generated by such models in 
production and to capture higher-order dependencies between the system states at 
different points in time in recognition, than is the case with the first-order recurrent 
links. Theoretically, the temporal flow model can thus be used in shaping and 
chaining. 

Recurrence in fully interconnected single-layer networks 

By allowing transmission delays between units in a Hopfleld network, Coolen 
and Gielen (1988) were able to store a number of sequences of binary patterns in 
such a net, provided that ρ <C N where ρ is the number of patterns and N is 
the number of units. Williams & Zipser (1988) developed a learning algorithm 
for a network consisting of a single layer of fully interconnected units. Part of 
the layer receives input from the outside world, another part of the layer consists 
of "output" units whose behavior must follow some time function based on the 
initial inputs. This network can learn some interesting dynamic behaviors like 
delayed XOR mapping, parenthesis matching or sinusoidal oscillation. A pervasive 
problem in training these recurrent networks is the often slow learning speed and 
the inability to escape from non-optimal solutions. To solve this problem, special 
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(less general) versions of learning rules exist. With respect to motor models, it is 
as yet unclear how fruitful the idea of fully interconnected single-layer networks 
will be with respect to the chaining and shaping aspects in motor control. 

Recurrence in multi-layer perceptrons 

Jordan (1985) developed a framework for the production of sequences by train
able recurrent multi-layer perceptrons. In this type of networks, the input layer 
consists of externally driven connections for the selection of learned sequences 
combined with connections representing the network's (previous) output state. 
Jordan was able to model limited, variable length sequences containing repetitions 
and alternations (AA,AABB,AABA,ABAC,ACABAA). These sequences are of a 
discrete-value, discrete-time nature. The longer the sequence, the longer the teach
ing phase lasts. Other experiments include speech production where coarticulation 
effects could be modeled using this architecture. In the latter case, the patterns 
consist of activations for different speech features, and are of a continuous value, 
discrete-time nature. Interesting properties of this model are the trainability, the 
distributed representation of the temporal system state and the natural inclusion 
of "coarticulation" effects. This models seems to combine chaining and shaping 
functionality. 

A pulse oscillator ensemble model 

A question which may be asked is: "why try to model temporal behavior using 
static cells if nature itself has come up with an inherent temporal system: the 
neuron as a stochastic generator of action potentials in time"? Why not consider 
biological networks as complex systems of oscillators and resonators? Indeed, oscil
lators and resonators potentially offer interesting capabilities like entrainment, syn
chronisation, complex pattern generation and completion by resonance (cf. Hebb's 
cell assemblies), that their static perceptron-like counterparts do not have (Eck-
hom et al., 1988; Skarda & Freeman, 1987). The problem with respect to modeling 
is that there exists no robust training mechanism for dynamical pulse oscillator 
networks, comparable to back propagation (PDP group), the learning rules de
veloped by Grossberg (Carpenter & Grossberg, 1987), or Kohonen (1987). But 
there are other arguments in favor of more physiologically oriented models. The 
mechanism of motor unit recruitment (De Luca, 1979; Van Boxtel & Schomaker, 
1983) reveals how a neural pulse oriented system can escape from the limited in
formation capacity (Ballard, 1986) that a single axon suffers from. By a combined 
recruitment & firing rate control, a neural system can easily implement non-linear 
mappings that are required in a given Input/Output mapping problem. An in
teresting trainable pulse oscillator model is given by Torras i Gems (1986) who 
tried to teach neurons to fire at a given frequency. The learning rule consists of a 
dual process: the average membrane potential being incremented to increase the 
firing frequency if the cell is being activated often, and decrementing the average 
membrane potential if a depolarization occurs prematurely within a time window 
after the afferent driving neuron has fired. 
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Taking for granted the oscillatory behavior of neurons, it can be hypothesized 
that pattern generation, i.e., shaping, can be brought about by the selective 
combination of neural activity in a large ensemble of neurons. This hypothesis is 
similar to the Fourier-based composition of a signal. The main differences are that 
in this proposed model, the constituent candidate oscillator frequencies Sc phases 
are not in any way distributed evenly along the frequency 8c phase axis and that 
the signal shape is not sinusoidal. The phase relationship between the oscillators, 
however, may be constant if interconnections or a common triggering source ex
ists. Also, the oscillators do not have to fire at a constant frequency, emitting 
evenly distributed pulses. In fact, the envisaged system may profit from the fact 
that the neuron ensemble contains a rich set of non-linear oscillators to capture 
a wide spectral range without requiring subtle distributions of fixed frequencies. 
A simple and basic mechanism to modulate oscillatory behavior of neurons is the 
mechanism of Neuron-inhibitory Intemeuron (NiN) interaction (Figure 1) which 
is widely present at several levels of the central nervous system (Sloviter & Con
nor, 1979; Pratt & Jordan, 1979). Without claiming that this mechanism is the 
only or even the most important mechanism in producing complex spiking pat
terns, it is striking to see the variety of patterns that can be produced by a NiN 
pair of neurons (Figure 2). If the recurrent inhibition is weak, the NiN behaves 
almost as a normal single neuron. Depending on the parameters of the NiN pair, 
responses like delayed burst, single delayed discharge and grouping of spikes kan 
be obtained. Figure 3 shows the configuration of an ensemble of NiN oscillators 
and their connection to (two) output lines through a trainable weight matrix. 

Figure 1. An example of a single NiN oscillator. Closed circles denote an excitatory 
connection (input gain and weight WÍJ are positive), the open circle denotes 
the inhibitory recurrent connection (weight Wj¡ negative). Each neuron has 
its own time constants and threshold for spiking. 
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Figure 2. 
Time functions of the common excitatory input (a), and the spike output of units 
in an ensemble of artificial NiNs (b) Summing the membrane potentials yields a 
graded potential similar to an "evoked potential" (c). 

At this point, it appears interesting to compare the recurrent perceptron model 
with the proposed pulse oscillator model. How fast do they learn, how accurately 
are patterns reproduced, and how sensitive are they to intrinsic noise? Before 
describing two experiments, however, it is necessary to outline a common func
tionality that any pattern generator must be able to display. 

General features needed in a motor pattern production system 

In the production of motor patterns, four basic events or phases can be identi
fied, both in chaining and in shaping: 
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Figure 3. A network of Neuron/inter-Neuron (NiN) oscillators as a model for neural 
pattern production. The Wik denotes the connection strengths between a 
NiN oscillator and the output. 
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1. System Configuration. 

2. Start of Pattern. 

3. Execution of Pattern. 

4. End of Pattern. 

Sys tem conflguration. This stage is known as motor programming, coordinative 
structure gearing, preparation, planning, schema build-up etc.3 It involves the de
termination of the pattern and the end effector system which is going to be used. 
As a general model one may think of a list of binary values representing a system 
configuration. 
Start of pattern. After configuring the system for the task at hand, there must 
be a signal releasing the pattern at the correct time. 
Execution of pattern. The duration of this phase and the actions that are 
performed depend on pieces of information such as the amount of time that has 
passed, the distance from a spatial target position or force target value, or even 
the number of motor segments produced. It can be hypothesized that an incorrect 
representation or implementation of this stage leads to errors as in stuttering and 
the counting problem in the production of strokes in the cursive handwriting of 
/m/ and /w/. An easy experiment is the cursive writing of the word /minimum/ 
without dots, keeping the eyes closed, and writing at normal or slightly accelerated 
speed. 
End of pattern. There must be a signal or condition which identifies in a non-
ambiguous manner that the systems that are involved do not have to be engaged 
in the production of the pattern any longer. The importance of this signal is less 
clear from a pre-structured network like the timing model of Rumelhart & Norman 
(1982), but it appears essential in recurrent networks. Without special provisions, 
a recurrent system which has learned a repetitive pattern, say A AB A AB, will go 
on producing this pattern unless en external event signals the end of the pattern. 
Similarly, for non-repetitive patterns, a recurrent network may indulge in infinite 
chaotic babbling after correctly reproducing a pattern. The same problem may 
occur in pulse oscillator networks4. 

There are basically two solutions to represent the Execution of pattern phase 
and the End of pattern event. First there is the autonomous solution, assuming 
a within-pattern relative time scale from which the current state can be derived. 
Second, there is the feedback-dependent solution, where sensory or efference-copy 
information is needed to determine the relative within-pattern phase or the end 

'There are subtle distinctions between these concepts. "Planning" hierarchically precedes "Pro
gramming". Both concepts sulfer from an algorithmic connotation, which in the case of motor 
control may be only justifiable for high-level (symbolic) task planning. 

4A version of the NETtalk model (pronouncing English words that are presented optically) by 
Sejnowski & Rosenberg (1986) displays a similar problem after reading the last input character. 
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of the pattern (Bullock & Grossberg, 1988). Note that in the case of counting 
discrete events, e.g., the writing of strokes in /m/'s or /w/'s, the necessity of 
feedback becomes evident. 

Finally, an important feature of a plausible neurally inspired model is that it 
should be able to tolerate a moderate amount of noise on the single unit activations. 

We will now proceed to describe an experiment with two types of network 
models to perform the shaping task of individual letters in cursive handwriting, 
without describing their chaining into movement patterns encompassing a word. 

7.2 Method 

Experiment 1 concerns the training of Vx(t) and Vy(t) pen-tip velocity func
tions to a Jordan (1985) type network, modified to handle "continuous" functions. 
To achieve this, the output of a 3-layer network is coupled back to part of the 
input layer, providing for a recursive filter-like functionality by saving the last η 
output values produced in time, for each output channel. Note that this "tapped 
delay" is different from the spatialized time organizations in that η is no hard 
constraint on the maximum pattern duration. Apart from the delayed output in
formation, the input layer is fed by a selector pattern (Figure 4). The System 
Configuration phase, which determines the movement pattern selection, is out
side the model. The Start Pattern phase is signaled by a switch from relaxation 
(0.1) to maximal activation (0.9) of an input line which selects the movement pat
tern to be produced. To give the movement production model information about 
the within-pattern relative time during the Execute Pattern phase, the activa
tion of the relevant selector line is exponentially decaying during the duration of 
the movement. Contrary to the schema for striking a key in Rumelhart & Nor
man (1982), there is no explicit signaling of the End of Pattern phase. The time 
constant of the decay is chosen such that the selector activation is lower than 
0.2 at the end of the movement pattern. Training is done using a normal back 
propagation algorithm with this difference that instead of a momentum term the 
function W¡An) — ßWij(n) + (1 — ß)Wij(n — 1) is used to separate effects of learn
ing speed η from effects caused by the smoothing factor β. Single unit activation 
levels contained 0.1% added noise from a uniform distribution. The real-valued 
input and output variables were coded using a combined activation and position 
scheme ("flying spot", Chapter 6). The network structure was as follows. The out
put layer consisted of 2 output units for Vx and Vy. The input layer consists of 5 
time delay taps for both channels, using 2 units per tap in "flying spot" coding, 
and a selector channel also using 2 units, yielding a total of 22 input units. There 
were 15 hidden units, which is less than the number of input units to enforce 
"generalization" or smoothing on the time functions. The selector channel was fed 
with an exponentially decaying signal. Relevant dependent variables are learning 
speed and the normalized rms error between target and produced patterns. Also 
investigated is the ability to store more than one pattern in a single network. 
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Figure 4. A modified Jordan (1985) network for the learning of continuous-value smooth 
time functions. 
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Experiment 2 concerns the training of X and Y pen-tip displacement func

tions to a pulse oscillator network of Neuron/Inter-Neuron pairs. The NiN pairs 

are mutually independent in the current version of the model. The parameters for 

the neurons are drawn from a uniform probability distribution and are not modi

fied during training for this initial experiment. The System Configuration phase, 

which determines the movement pattern selection, is outside the model. The Start 

Pattern phase, Execute Pattern Phase, and End Pattern phase are determined by 

activating the Neurons of a set of NiN pairs, and releasing the activation at the 

end of the pattern (square wave). The firing behavior of each neuron (including 

intemeurons) is governed by a general neuron model by Perkel et al. (1964, in 

Torras i Genis, 1986) (see Appendix). Training is achieved by use of an experi

mental training rule that is based on the correlation between single NiN activity 

and the error between target time function and obtained time function. The rule is 

non-local. In a sense, it combines Hebbian, or covariance learning, with the delta 

rule: 

&Wxk = η-τ^Ι - г») (7.1) 

where W^ is the connection strength between a single NiN г and output line 

к, η' is the learning speed, r' is the correlation between NiN oscillator i's activity 

«,(<) and the error time function e(<) = Ук(і) — Ofc(t). The target function is ]/*(<), 

Ojt(i) is the output of line k, r9 is the overall correlation between the output ο*(ί) 

and the target yk{t)· The squashing term ensures smaller weight changes, the 

more ojt(i) approaches yk(t)· Furthermore, Wtk is smoothed, similar to the use of 

a momentum term in back propagation: 

W:k(t) = aW,k(t) + (1 - a)W:k(i - At) (7.2) 

The common output Ofc(t) is the low-pass filtered (F), weighed sum of individual 

NiN spike outputs u^t): 

Ok(i) = F(£W^t{t)) (7.3) 
t 

where к = 1 or к = 2 for the X and Y displacement target signals, respectively. 

Note that a single NiN г contributes to different output lines к. The low-pass 

filtering (cut-off frequency 10 Hz) is used to simulate a virtual "muscle" system 

(Teulings and Maarse, 1984). 

Single unit activation levels contained 0.1% added noise from a uniform distri

bution. There is no between-NiN connectivity. The NiN parameters are unchanged 

in this experiment. They are drawn from a uniform distribution, bounded by "rea

sonable" extremal parameter values (Appendix). There were 400 NiN oscillators, 

η' = 0.1, a = 0.02 

In both experiments, the training sets consist of the pen-tip movement signals 

(X(t),Y(t) or Vx(t)) Vy(t)) of isolated cursive characters of a single writer. The 

data were obtained using a Calcomp 9000 series digitizer, sampling at 100 Hz. 



Representing Time 165 

The letters used here were manually isolated from whole words using a handwrit
ing editor program. The beginning and end of a pattern were padded with zeroes 
(relaxed state) corresponding to a 50ms real-time duration. Neural network sim
ulation software was written in Fortran-77 and simulations were executed on a 
VAXstation 2000 computer. 

7.3 Results 

Experiment 1. 

Training the recurrent network, using 2000 presentations of the Vx,Vy pattern of 
an / a / , lasting .66s (66 samples) costs over 3 hours of computation on a VAXstation 
2000. Figure 5 gives an overview of some training histories, (letters /a,b,c,d,e,f/) 
concerning the teacher-forced behavior. Figure 6 gives an overview of the training 
history, concerning the free running recurrent operation. Note the different scale 
of figures 5 and 6. The free-running mode of the network never showed a legible 
approximation of the handwriting in this experiment, and the learning history is 
irregular for / e / and /ƒ/ . Figure 7 shows a typical simulation result. Only the 
feedforward "teacher-forced" operation leads to в mimicking of the handwriting 
pattern. In the free-running operation, the pattern degenerates rapidly as a con
sequence of bias and the 0.1% noise imposed on the units. Figure 8a and b show 
similar results for an 18x10x2, 4-tap architecture after 4500 and 6000 pattern pre
sentations, respectively. Only after over 10000 training trials, we were able to teach 
an /a/ to a recurrent network (Figure 8c). In this case the state space trajectory 
was robust, allowing for a 5% noise on the selector channel in the free run. How
ever, in the latter case, 50% of the input units consisted of selector units, reducing 
the recurrent state influence on the trajectory evolution. Experiments with other 
letters from the alphabet produced very comparable results. 

Experiment 2. 

Training the NiN network, using 500 presentations of the X,Y pattern of an /a/, 
lasting .66s (66 samples) costs about 2 hours of computation on a VAXstation 2000. 
Figure 9 shows typical training histories for 6 cursive letters /a,b,c,d,e,f/, reaching 
a flat learning curve after 300 presentations. However, the learning rule apparently 
does not always leads to convergence. The deviating /i/ is due to a failure in 
matching the Y-amplitude, while the shape of pattern is still approximated. This 
can be inferred from figure 10, showing the simulation results for the 6 letters. 
The amplitudes of X(t) and Y(t) output were normalized to the amplitude of the 
target pattern. The error is largest at the end of the pattern, due to the low-pass 
filtering of the output. In the a, the X(t) signal is only roughly approximated. 

The NiN network performed better than the recurrent network, also for the 
teacher-forced operation, which can be inferred from the asymptotic normalized 
rms values in figures 5 and 9. 
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100 200 300 400 500 
Presentation 

Figure 5. Training histories of teacher-forced behavior for letters /a,b,c,d,e,f/ for 
the recurrent network, vertical velocity signal Vy. 
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0.0 I • • ' ' • 
0 100 200 300 400 500 Presentation 

Figure 6. Training histories of free-running behavior for letters /a,b,c,d,e,f/ for the 
recurrent network, vertical velocity signal Vy. 
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Selector 01 

Tap205Qu02 
Tap20bQu01 
Tap204üu02 
Tap204Qu01 
Tap203Qu02 
Tap2030u01 
Tap202Qu02 
Tap202Qu01 
Tap201Qu02 
Тао201Ои01 
Tacl05Qu02 
TaplOSQuOl 
Tapl04Qu02 
TaplOIQuOl 
Tapl03Qu02 
Tapl03Qu01 
TaDl02Qu02 
Tapl02Qu01 
Tapl01QjO2 
faplOlQuOl 
DecaylOu32 
DecaylQuOj. 

Out2Q'j01 
OuLlQuOl 

Figure 7. Simulation results after 2000 pattern presentations for the recurrent network. 
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Pattern 01 
Target 
Tearher-forced 
Free run 

Selector 01 

Tap204Qu02 
Tap204Qu01 
Tap203Qu02 
Tap203Qu01 
Tap202Qu02 
Tap202Qu01 
Tap201Qu02 
Tap201Qu01 
Tapl04Qu02 
Tapl04Qu01 
Tapl03Qu02 
Tapl03Qu01 
Tapl02Qu02 
Tapl02Qu01 
Tapl01(2u02 
TaplOlQuOl 
DecaylQu02 
DecaylQuOl 

y-

Out2Qu01 
OutlQuOl 

Figure 8a. 

Simulation results after 4500 presentations of an /f/, for a 18x10x2 recurrent 

network. 
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Tap204Qu02 
Tap204Qu01 
Tap203l2u02 
Tap203Cu01 
Tap202Qu02 
Tap202Qu01 
Tap201Qu02 
Tap201Qu01 
Tapl04QuO? 
Tapl04Qu01 
Tapl03Qu02 
Tapl03Qu01 
Tapl02Qu02 
Tapl02Qu01 
TaplOlQuO? 
TaplOlQjOi 
DecaylQa02 
DecaylQjOl 

Out2Qu01 
OutlQaOl 

Figure 8b. 
Simulation results after 6000 presentations of a /d/, for a 18x10x2 recurrent 
network. 
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Selector 

Vx(t) 
^ч/ -̂

Vy(t) K^^. 
t -• 

- ^ Spatial output 

Figure 8c. Simulation results after over 10000 presentations of an 
/a/, 36x6x2 recurrent network. 
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Figure 9. Training histories for the NiN network. 
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X(t) 

гЛЛл 
/vn 

Y < ,y\/\A 
-¡¿•''л /•V 

Figure 10. 
Simulation results for the 6 letters /a,b,c,d,e,f/ after 500 presentations to the NiN 
network. For each panel, the top time function trace is X(t), next trace is Y(t). Target 
and output pattern can be distinguished by looking at the abrupt ending of the target 
as opposed to the smooth ending of the network output. In each panel, the bottom 
left pattern represents the target letter, bottom right is the shape of the output letter. 
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7.4 Discussion 

A problem with the recurrent network is the degeneration of patterns in the free 
running state. This means that such an architecture will be strongly dependent 
on correct feedback to compensate for the internal errors and biases introduced at 
each time step. Whereas this seems a reasonable assumption in the case of discrete 
patterns (typing), it is not clear if this is true for the case of continuous patterns. 
In handwriting, visual feedback, at least, does not seem to be a primary factor 
in maintaining pattern integrity (van Galen et al., 1987). It should be noted that 
the findings are relevant to the used limited-sized networks only. Computational 
demands inhibit the experimentation with large-size networks. For example, it is 
to be expected that a larger number of units for an input variable in "flying spot" 
coding increases the robustness of the recurrent network. Although the recurrent 
multi-layer perceptron is an attractive model in its generality, it did not display 
a convincing "natural" functionality. The learning speed was very slow. Also, we 
were not able to store more than one pattern in a single recurrent network, which 
reduces its likelihood as being the basis for both chaining and shaping. Dedi
cated learning rules may alleviate these problems to some extent, but potentially 
introduce new degrees of freedom that may even be less realistic from the physio
logical point of view. Summarizing: the training of the recurrent network appears 
to be a "forcing" of an essentially static system to display temporal behavior. Al
though the general idea remains attractive, more study is needed in the field of 
the training of recurrent networks in general. 

The NiN pulse oscillator ensemble model displayed a fast but uncertain learning 
behavior. The learning rule does not always lead to convergence. More analytical 
work is necessary in this field. The accuracy of the pattern reproduction depends on 
the distribution of the neuron parameters in the ensemble. In this experiment, the 
neuron parameters were unmodifiable. After dedicating a set of NiNs to a pattern 
through a weight matrix, fine tuning can be obtained theoretically by adapting 
the neuron parameters. To achieve this, learning rules similar to the one used by 
Torras i Genis (1986) have to be identified. Other interesting features of the NiN 
network are the natural oscillation and the influence of the general activation level 
on the average firing rate, allowing for pace modulation. One can predict that there 
will be a range in which the pace of a given pattern can be varied, breaking down 
outside the working range. Doubling of a movement segment can be produced by a 
single NiN oscillator. In this sense, doubling errors in typing can be modeled as the 
result of an increased drive on a group of NiN oscillators. Summarizing: the NiN 
network model may be a promising way of modeling motor behavior. Much more 
work is needed with respect to its physiological credibility, learning rules, and its 
capacities in terms of faithfully modeling motor parameter invariance. Obviously, 
any neural network model of pattern production in motor behavior should display 
a functionality that exceeds the mere storage and retrieval of a pattern. 
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7.5 Appendix 

A neuron model by Torras i Gems (1986) is described as: 
While (Л, + P.) < Ξ, relax: 

dPb/dt = -ч.(Рь-Ры) 

dP./dt = -T..P. + X 

dH/dt = -тк.(Н-Нл) 

у = О 

Otherwise, fire: 

A = Рм 

P. = О 

Я = Яо 

У = 1 

where the variables are: 
Рь spontaneous membrane potential 
P, post-synaptic potential 
Я firing threshold 
χ input 
у output 

and the constants are: 
Рьо membrane potential directly after firing 
Ры asymptotic membrane potential in relaxed state 
Яо firing threshold directly after firing 
Яі firing threshold in relaxed state 
т\, time constant of membrane potential 
τ, time constant of post-synaptic potential 

Th time constant of threshold change after firing 
A simplification yielding qualitatively the same type of behavior is: 
While ( P t + P.) < Я V Р ь > Яо, relax: 

dPbjdi = -ч.(Рь-Рк1) 

У = О 

Otherwise, fire: 

Рь = Рьо 

У = 1 

Always: 

dP./dt = - т , . (Р . - χ) 
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Here the threshold H remains constant. Input χ = [0,1]. The latter type was 
used in experiment 2 as reported here. A NiN pair is connected by: 

Xi = X + Wji.yj 

Xj = Wij.yi 

У = Уі 

where: 
X 

Xi 

*i 

Уі 

Уз 
Wij 

Wji 

У 

external input to the NiN 
input to the neuron 
input to the intemeuron 
output of the neuron 
output of the intemeuron 
forward weight from neuron to intemeuron 
recurrent weight from intemeuron to neuron 
NiN output 

Parameter range (uniform probability density function): 

Parameter 

η 
т. 
Нг 

Но 
РЬх 
Wij 

Wji 

Min 
0.1 
0.0001 
0 
0 
0 
0.01 
-2 

Max 
0.999 
0.1 
0.9 
1 
0.9 
2 
1 
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Chapter 8 

Inverse kinematics by neural 
networks * 

L.R.B. Schomaker 

8.1 Introduction 

Assuming that the problems of the representation of quantity and time are suffi
ciently dealt with in the preceding two chapters, it becomes interesting to ask how 
a motor system is able to control time functions of quantities (i.e., displacement 
or velocity), to produce handwriting movements with an effector system such as 
an arm. Both from human motor studies and in applied research in robotics it is 
becoming evident that for a motor control system, it is advantageous to perform 
the original movement planning in an internal representation of the extra-personal 
world instead of controlling the effectors by activation patterns based on a intra
personal representation of muscles and joints, solely. The ultimate goal of motor 
control is to exert a desired effect in the extra-personal space, thus it seems more 
appropriate to plan tasks like, e.g., collision avoidance, in a representation that is 
isomorphous to the workspace, than it is to perform this planning in the intra
personal representation of the effectors. In robotics, this insight is apparent from 
the control modes that are available for existing systems. Table 1 depicts the 
evolution of robotics, initially only allowing for control in an intra-corporal (intra
personal) representation in terms of joint angles. Gradually, the inclusion of the 

'Approximate text of lectures: Inverse kinematics by neural networks. Workshop on Levels of 
Motor Control, organized by the Human Movement Behaviour group of the Netherlands Institute 
for Advanced Study (NIAS) 1989/1990, Dept. of Psychology, Nijmegen University, Dec 1 1989; 
Entge experimenten met N-laags netwerkmodellen van schrijfmotoriek: inverse kmematica en tem
porele patronen. Colloquium, Dept. of Medical Physics and Biophysics, Nijmegen University , Oct 
16 1989. Supported by Esprit, project P419 
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time and force domain develops as the field of robotics matures. The specification 

of kinematics is required to adapt to task demands (velocity) and minimize spatial 

error. The specification of kinetics (joint torques) allows for a further reduction in 

the spatial error, a reduction in the energy dissipation, a reduction of mechanical 

wear and the adaptation to task demands (e.g. torque values, given a required 

task-space contact force vector). The latter point also introduces the necessity for 

adaptive compliance control in object handling. 

Table 1. Historical development of control modes in robotics. 

Phase 

1 
2 
3 
4 
5 

6 

Time axis 

1960's 

i 
i 
i 
1 

1990's 

Control of: 

joint angles 
spatial begin- and endpoint of the end effector 
interpolation through spatial "via"-points 
kinematics: displacement, velocity, acceleration. 
kinematics and kinetics: forces, torques. 

kinematics, kinetics and compliance. 

It should be noted that there is a large discrepancy between industrial practice 

("Phase 3") and academic interest ("Phase 6"). The development seems to indicate 

that an increasing number of variables must be controlled, going from effector-

oriented control to task-oriented control. Does this imply that all these domains 

are under explicit and detailed pre-computed control in human motor control, 

where a very high degree of motor skills is present? It can be hypothesized that 

computational demands necessitate a different solution. Here, it is informative 

to take a look at the human motor system and a number of "natural" types of 

movement control. Table 2 gives an overview of different types of motor tasks 

and the domain on which the controlling system should focus to maximize the 

performance. 

Tabic 2: Focus of control of a motor system and task type. 

Task Type 

interception 
object handling 
object transport 
locomotion 
navigation 

communication 

Example 

catching a ball 
picking up a cigarette 
moving a glass of wine 
climbing stairs 

obstacle avoidance 

handwriting, gesture 

Control 
Focus on: 

T + P 
K + C 
K + D 

K + D + C 
К 
К 

P=Position 
К=Kinematics 
D=Dynamics 
T=Time of contact 
C=Compliance 
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The notion of a "focus of control" does not imply that the subordinate domains 
are always completely neglected. In handwriting, for instance, compliance control 
can be autonomous (passive) if the writer configures the writing hand as a com
pressible mass-spring system, or the compliance is controlled according to a specific 
strategy as evidenced from pen force fluctuations (Schomaker, 1990). Thus, for 
each motor task, the essential control domain(s) can be determined. The problem, 
however, is the transformation of the task-domain constraints into intra-personal 
effector activation patterns. In most non-trivial motor tasks, this transformation 
concerns a limited number of degrees of freedom in task-space, and a large number 
of degrees of freedom in intra-personal space caused by an inherent redundance 
of the effector system. This type of problem is called "ill-posed" since there is no 
or no unique solution. In perception, there is a similar complementary problem 
in that one can never have enough optical sensors (eyes, cameras) to create an 
unambiguous internal representation of a natural visual scene. Given a number 
of Umiting assumption beyond the scope of this thesis, and taking the kinematics 
domain as an example, one can write the transformation problem as: 

[6Θ]Τ = J-^SX^f (8.1) 

Desa & Roth (1985); Brady et al. (1982) 

where Θ denotes the vector of joint angles in a manipulator, X and Φ denotes 
the end effector position and orientation with respect to the base, J is the Jaco-
bian matrix. In words: small changes in joint angles Θ can be calculated from the 
product of the inverse of the Jacobian, given the current manipulator state (Θ), 
with the vector containing changes in X and Φ. So the Jacobian matrix must be 
non-singular, which is not generally true. In robotics, the geometry of manipula
tors is designed as to allow for a solution for the inverse of the Jacobian since the 
problem becomes rapidly intractable with an increasing number of degrees of free
dom (joints). A well-known example is the standard 6-df industrial robot where 
the wrist is spherical (3 df), effectively only leaving 3-df for the actual position 
control. Given the geometrical and mechanical complexity of the human motor 
system, the analytical approach is of little use. The ease with which we perform 
complex motor tasks exemplifies that the biological motor system apparently found 
a solution to this problem. The question arises what type of neural architecture is 
involved in this essential aspect of motor control. If we look at human movements, 
the following aspects are apparent: 
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• The number of anatomical degrees of freedom is very large. 

• Movement and reaction times do not depend on the number of degrees of 
freedom involved in a motor action. 

• Stiffness regulation and the amount of activity per joint can be controlled 
dynamically, as opposed to the equalized solution that existing algorithms 
for the calculation of inverse kinematics provide. 

• Movement time of fast, ballistic movements depends on the required accuracy 
by MT=a + b log2 (2A/W) (Fitts' law) where MT is movement time, A is 
amplitude of movement, and W is diameter of target. 

• Human movements are less accurate than are those of a mechanical manip
ulator. 

An ideal model of motor control should account for these observations. For ex
ample, if in humans the calculation of inverse kinematics were be done by active 
computation according to an analytical model (Luh & Lin, 1984), even one would 
expect a strong relation between movement complexity and reaction time. This is 
not the case. Pressing a button or starting to run in a steeple-chase occur with 
approximately equal reaction times. Looking at the inverse kinematics transforma
tion problem, it appears that there are two functions involved: the transformation 
problem as such, e.g. from Cartesian or low-dimensional space to angular high-
dimensional space, and the handling of redundance, sec. Later in this chapter, 
two small-scale experiments will be reported on neural network solutions to the 
transformation problem as such. Alternatives to the closed form (with a Jacobian) 
are the "table lookup" (Albus, 1975), feedforward neural networks (Josin, 1988; 
Kuperstein & Rubinstein, 1989; Massone & Bizzi, 1990; Pellionisz & Llinas, 1980), 
Hopfield networks (Gielen & Coolen, 1989), and dedicated neural network models 
(Eckmiller, 1988). 

A general, unified model of motor control has evolved gradually from work 
by Bizzi (1980), Hogan (1985), Morasso & Tagliasco (1986), Morasso & Mussa 
Ivaldi (1987), and others. As a starting point, this model considers muscles to 
be tunable springs. The next step is to assume a potential elastic energy field 
(PEF), generated by the manipulator system as a whole. The shape of the energy 
landscape is determined by the spring-like characteristics of a large number of in
dividual muscles and their mechanical connectivity with respect to the anatomy 
of the limb segments (bones and ligaments). According to this theory, motor con
trol is not so much the specification of local muscle activity to obtain a local 
joint angle or torque, but rather a shaping of the elastic energy field. The sys
tem will tend to maintain a configuration of minimum potential energy. Changing 
the shape of the energy landscape yields movements along a virtual trajectory. 
If the manipulator meets an external object, the resulting size and direction of 
force depends on the energy difference between the current imposed state and 
the target state. Such a model reduces the redundance problem to a large extent. 
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However, more constraints are needed (see Table 2) in many motor tasks. Also, 
the motor control system must occasionally make decisions, e.g., to choose from 
several end-effector approaching strategies (Rosenbaum et al., 1990), to solve the 
redundance. Nevertheless, the PEF model is very attractive as a starting point. 
For instance, stiffness control can be represented as deepening sinks in the P E F 
field, which can be achieved by increased muscular co-contraction. New findings 
indicate that stiffness control may be related to movement duration as specified in 
Fitts ' Law (Van Galen & Schomaker, 1991). High stiffness ensures higher stability 
in case of the small ("difficult71) target sizes of a Fitts experiment. Increased co-
contraction means increased stiffness, reducing the gain of the mechanical transfer 
function of the effector system. The motor control system has the choice to either 
elongate movement duration or to put in more force. The latter strategy, how
ever, yields higher instability, which is inconsistent with the motor task demands. 
Consequently, movement duration is scaled. However, more experimental work is 
needed to confirm this stiffness-related explanation of Fitts ' Law. 

8.2 Two modeling experiments with a planar arm 

The P E F model, or "equilibrium theory" still requires a transformation from 
target space to intra-personal effector space. The learning of the inverse kine
matics transformation on the basis of random limb segment movements ("motor 
babbling") was tested on two network types: 

• A Kohonen-type net, learning feature vector quantization (LVQ) 

• A 3-layer perceptron, trained by back-propagation (MLP) 

A planar arm, 3 df, with constrained joint angle ranges was used. Teaching was 
done by generating random joint angles І and presenting end effector position and 
joint angles to the Kohonen network. The multi-layer perceptron also received 
specification of the end effector orientation (Phi), as it was evident in an early 
stage that learning was difficult on the basis of position alone. Arm parameters 
(limb segment proportions approximating a human arm) are as follows: 

Joint 

1 
2 
3 

Limb 

0.500 
0.375 
0.100 

"min 

30.0 
30.0 
140.0 

"max 

250.0 
170.0 
190.0 

From pilot studies it was evident that these constraints are essential in reducing 
the solution space and in minimizing the occurrence of singularities. It can be 
hypothesized that hard constraints like the maximum of 180 degrees for a human 
elbow angle not only introduce mechanical stability, but also alleviate the problem 
of learning a body representation. 
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Figures 1 and 2 show a grid of obtained end effector positions, testing the total 

work field, хЦ-40,40]. y=[-40,40]. Both figures show the general shape of the work 

field for such an arm. Clearly the Kohonen LVQ net outperformed the multi-layer 

perceptron (MLP), but it also has a much larger number of cells than the MLP 

(1600 vs 36), and is more or less a table-lookup solution. 

Figures 3 and 4 show the joint angle nomogram over the work field, for the 

shoulder joint ( = 1 ) (Figure 3) and the elbow joint ( = 2 ) (Figure 4). Apart from 

the typical work field shape, it is evident that joint angles vary smoothly. 

Workspace grid after 56000 presentations 

Figure 1. Accuracy of reaching end effector positions after 56000 presentations of posi
tions and joint angles, Kohonen network. 



Representing tJie effector system 185 

Figure 2. Accuracy of reaching end effector positions after 250000 presentations of posi
tions and joint angles, 12x21x3 multi-layer perceptron. 
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Figure 3. Shoulder joint angle distribution over the work field in grey scale representation, 
Kohonen network. 
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Figure 4. Elbow joint angle distribution over the work field in grey scale representation, 
Kohonen network. 
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Summary of results: 

Kohonen LVQ: 

• Learning is faster than in the MLP 

• An "average solution" is found 

• Spatial error is distributed almost homogeneously over the work field 

• Many units (columns) are needed: NmNy{Nj0i^ + -Npo«.) 

• The "out-of-bounds" behavior is predictable 

A Multi-layer perceptron (MLP) trained by back propagation: 

• Learning is slow 

• A limited number of cells is needed, compared to the LVQ network 

• A stable average solution was not found after 80000 presentations 

• The "out-of-bounds" behavior is unpredictable 

Unpredictable "out-of-bounds" behavior refers to the situation where the plan
ning agent specifies an end effector location outside the work field. In this case, 
evidently, ego-motion is implicitly required. An MLP just produces unpredictable 
values for the joint angles, whereas in the LVQ network, the mechanism of thresh
olding can be used to detect "out-of-bounds" coordinates, since vectors that did 
not occur during training contain unspecified values. The disadvantage of the LVQ 
network in terms of the number of units that are needed to represent the effec
tor system becomes clear if one realizes that apart from the joint angles, also 
joint torques need to be specified. In object manipulation, the parameterization 
of other solutions than the average arm configuration necessitates an even higher-
dimensional representation of the effector, making a topological implementation 
unlikely, unless modulation of the LVQ feature space itself can be described and 
explained. In MLP networks, on the other hand, parametrization can be obtained 
relatively easy by adding input lines, theoretically. In practice, however, as be
comes evident from the current experiments, training complete-workfield inverse 
kinematics for a redundant arm to an MLP by standard back propagation appears 
to be difficult. More research is needed to find out how we can reconcile the no
tions of topological body representation and distributed multi-layer neural pattern 
transformations. 



Representing (Jie effector system 189 

8.3 Conclusion 

In the modeling experiments, we considered the representation of a 2-D 
workspace of a 3-df arm. In experimenting with these models, it became clear 
that the regular use of the term Degree of Freedom is confusing. Since joint angles 
in biological arms have a limited range, it would be better to speak of Degrees 
of Limited Freedom. A self-organizing system with unconstrained joint angles will 
experience more difficulty representing a mapping from task space to effector space 
than a system with constrained joints. More specifically, the fact that the human 
elbow has a working range of 20 to 180 degrees instead of, say, 340 degrees is very 
likely to enhance self-organized learning of the effector system in "motor babbling" 
to a significant extent. 

For demonstration purposes, the LVQ network was succesfully used to simulate 
large handwriting movements like a human would produce on a school blackboard 
by upper arm, forearm and wrist movements, holding the fingers in a fixed attitude. 
As such, this is not more than an illustration that the inverse kinematics transform 
using this method works in practice. 

Summarizing, the redundance problem in motor control can be largely reduced, 
by assuming (a) a potential elastic energy field model (equilibrium theory), (b) 
by considering internal effector constraints like working range of joint angles and 
torques, and, last but not least, (c) the motor task requirements. From the neural 
network modeling point of view, the challenge is to translate these insights into a 
working model of human motor control. 
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Chapter 9 

Recognition of cursive 
handwriting movements 

The complementary approach to the simulated production of handwriting move
ments by a computer is the automatic recognition of original handwriting move
ments that are being produced by the human writer. Schematically: 

Simulation: Discrete Symbols —> Continuous Movement 

Recognition: Continuous Movement —• Discrete Symbols 

In the simulation process, inherently discrete entities had to be connected in a 
fluent way. In the handwriting movement recognition process, an inherently con
tinuous stream of actions must be segmented in discrete entities, representing a 
sequence of characters. This chapter describes how knowledge of the motor system 
in handwriting can be used in an on-line handwriting recognition system. Also, 
the knowledge that has been collected about the properties and peculiarities of 
the handwriting movement signals as recorded by a digitizer in the analysis of 
experimental data will be used in the implementation of a recognition system. 
Methods have been developed to estimate typical parameters of handwriting, e.g. 
estimating baseline orientation, recovering the lineation from the displacement 
signal, detecting loops, and describing individual stroke shapes. Automatic hand
writing description and recognition methods can also be used in the analysis of 
experimental data. As an example, the description of a writer's Cursive Connec
tions Grammar (Chapter 3) has been a manual, interactive procedure. The further 
development of recognition techniques will allow for a solution to this problem, 
minimizing manual intervention. 
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A Handwriting Recognition System Based on 
Properties of the Human Motor System * 

Lambert R.B. Schomaker & 
H.L. Teulings 

A b s t r a c t 

The human reader of handwriting is unaware of the amount of background 
knowledge that is constantly being used by a massive parallel computer, his 
brain, to decipher cursive script. Artificial cursive script recognizers do not 
have access to a comparable source of knowledge or of comparable compu
tational power to perform top-down processing. Therefore, in an artificial 
script recognizer, there is a strong demand for reliable bottom-up processing. 
For the recognition of unrestricted script consisting of arbitrary character se
quences, on-line recorded handwriting signals offer a more solid basis than 
the optically obtained grey-scale image of a written pen trace, because of the 
temporal information and the inherent vectorial description of shape. The 
enhanced bottom-up processing is based on implementing knowledge of the 
motor system in the handwriting recognition system. The bottom-up informa
tion will already be sufficient to recognize clearly written and unambiguous 
input. However, ambiguous shape sequences, such as / m / vs / n . . / or /a/ 
vs / c / / , and sloppy stroke patterns still require top-down processing. The 
present paper discusses the handwriting recognition system as being devel
oped at the NICI. The system contains six major modules: (1) On-line dig
itizing, pre-processing of the movements and segmentation into strokes. (2) 
Normalization of global handwriting parameters. (3) Extraction of motoricaJly 
invariant, real-valued, feature values per stroke to form a multi-dimensional 
feature vector and subsequent feature vector quantization by a self-organizing 
two-dimensional Kohonen network. (4) Allograph construction, using a sec
ond network of transition probabilities between cell activation patterns of the 
Kohonen network. (5) Optional word hypothesization. (6) The system has 
to be trained by supervised learning, the user indicating prototypical stroke 
sequences and their symbolic interpretation (letter or N-gram naming). 

'Published 1990 in: Proceedings of the International Workshop on Frontiers in Handwriting 
Recognition (pp. 195-211). Montreal: CENPARMI Concordia. Supported by Esprit, project P419 

195 



196 

9.1 Introduction 

There axe many advantages if data can be entered into a computer via hand
writing rather than via typing (Teulings, Schomaker & Maarse, 1988). These ad
vantages are acknowledged by hardware manufacturers who are testing the market 
with 'electronic paper' with built-in computer systems for recognizing elementary 
pen movements (e.g., Hayes, 1989). Electronic paper consists of an integrated liq
uid crystal display (LCD) plus digitizer. Although the user acceptance of this 
kind of hardware will depend on the solution of some technical and ergonomi
ca! problems that are currently present (visual parallax, surface texture, stylus 
wire), it seems relevant to develop on-line handwriting recognition systems for un
constrained handwriting. Several commercial systems exist that recognize on-line 
handprint, but cursive script recognition has still not been solved satisfactorily 
(Tappert et al., 1988). Ideally, a recognition system should be able to recognize 
both handprint, for accuracy, and cursive script, for optimal writing speed. How
ever, the major problem in cursive-script recognition is the segmentation of a word 
into its constituting allographs prior to recognizing them, while the allographs have 
different numbers of strokes (Maier, 1986). Indeed, even for human readers cursive 
script is sometimes ambiguous. One advantage of on-line recognition is that in 
case the system is not able to disambiguate, the correct output can be provided by 
the user interactively. However, the most important advantage of including on-line 
movement information is, that it contains more information than the unthinned, 
quantized images of the optically digitized pen traces. Consider for instance the 
final allograph /τη/ which may appear in the spatial domain as a single horizontal 
curl, but in the time domain still displays the three pen-speed minima. This kind of 
extra information is needed to compensate for the large amount of top-down pro
cessing done by the 'understanding' human reader of handwriting. The enhanced 
bottom-up processing is based on implementing knowledge of the motor system in 
the handwriting recognition system. Our efforts to introduce handwriting as an ac
ceptable skill in the office environment has resulted in a multinational consortium 
(PAPYRUS) aimed at building software and hardware for a simple electronic note 
book, allowing the user to enter data into a computer without using a keyboard. 

In Teulings et al. (1987) a modular architecture for the low-level bottom-up 
analysis of handwriting was introduced, our so-called Virtual Handwriting System 
(VHS). The present paper discusses the handwriting recognition system as being 
developed at the NICI. The system contains six major modules which are also 
found in several other recognition systems (e.g., Srihari & Bozinovic, 1987, for 
off-line handwriting). 

1. On-line recording of handwriting, pre-processing consisting of lowpass fil
tering and differentiation and finally, segmentation into intended movement 
units ('strokes'). 

2. Normalization of various motorical degrees of freedom. 
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3. Computation of feature values ('feature vector') per stroke which are mo
tor invariants or salient to the human perceptual system, followed by the 
quantization of stroke shapes using a self-organizing Kohonen network. 

4. Construction of letter (allographic) hypotheses from sequences of quantized 
strokes. 

5. Construction of word hypotheses from sequences of allographic hypotheses. 

6. Supervised learning of the relation between stroke-vector sequences and al
lographs. 

Below, these modules will be discussed in terms of their purpose, the knowl
edge of the motor system or the perceptual system used, its realization and its 
performance. 

9.2 Recording, Pre-processing, and Segmentation 

Purpose. 

The pre-processing stage consists of all operations needed to provide a solid base 
for further processing. At this stage the data consist of a continuous signal without 
any structure. The first operation is to split the continuous signal into batches that 
can be processed separately. We suggest that a word is the easiest batch to be 
processed. Then for each word, the signal, containing noise from different sources 
(e.g., the digitizing device), is low-pass filtered. Finally the continuous movement 
is segmented into basic movement units. Knowledge of the human motor system 
provides an empirically and theoretically basis for the segmentation heuristics. 

Motor sys tem. 

The control of the muscles involved in producing the writing movements is of 
a ballistic nature: each stroke has only a single velocity maximum (Maarse et al., 
1987) and a typical duration between 90 and 150 ms. Shorter-lasting motorical 
actions are very unlikely to be the result of intentional muscle contractions. For 
an appropriate pre-processing it is relevant to understand the frequency spectrum 
of handwriting movements. The displacement spectrum contains a large portion 
of very low-frequency activity, mainly due to the ramp-like shape of the horizontal 
displacement. This is not true for pen movement direction and velocity. The latter 
signal is estimated by calculating the first time derivative. The differentiation 
suppresses the low-frequency components that are present in the displacement 
spectrum, and a more informative spectral shape emerges. In Teulings Sc Maarse 
(1984) it has been shown that the velocity amplitude spectrum is virtually flat 
from 1 to 5 Hz where it has a small peak and then declines to approach the noise 
level at about 10 Hz. Therefore, a low-pass filter with a fiat pass band from zero 
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to 10 Hz will remove the high-frequency noise portion of the signal while leaving 
the relevant spectral components of the handwriting movement unaltered. In order 
to prevent oscillations (Gibbs phenomenon) it has been shown that the transition 
band should not be too narrow (e.g., at least 8/3 of the width of the passband). 
From the bandwidth of at least 5 Hz follows that the movement can be most 
parsimoniously represented by about 10 samples per second. Since the endpoints 
of the strokes appear to be about 100 ms apart, the time and position of the stroke 
endpoints as determined by two consecutive minima in the absolute velocity are 
a good basis for reconstruction (Plamondon Sc Maarse, 1989). Points of minimum 
velocity correspond with peaks in the curvature (Thomassen & Teulings, 1985). 

Realizing that the vertical movements appear to be less irregular than the hor
izontal progression, Teulings et al., (1987) suggested to weigh the vertical compo
nent higher than the horizontal component in the calculation of a biased absolute 
velocity signal (up to factor of 10). 

Realization. 

Handwriting movements are recorded on a CalComp2500 digitizer with a res
olution of about 0.1 τη m and a sampling frequency of 125 Hz using a pen which 
contains a solid state transducer to measure the ajrial pen pressure synchronously 
with pen tip position. A pressure threshold serves as a sensitive pen on/off paper 
detector. The data were not corrected for non-simultaneous sampling of χ and y 
(Teulings & Maarse, 1984) nor for variations of pen tilt (Maarse, Janssen & Dexel, 
1988). 

Filtering, and time derivation are done using frequency domain fast Fourier 
transforms. In stroke segmentation, time points are chosen which are about 100 
ms or more apart. This is done by selecting the lowest absolute velocity minimum 
within a time window of 50 ms around a given minimum (Teulings & Maarse, 
1984). 

Word segmentation is not based on particular information of the motor system 
but rather on perceptual cues. It is done by detecting a fixed horizontal displace
ment while the pen is travelling above the paper beyond the right or the left 
boundary of the last pen-down trajectory. 

Performance . 

The performance of this straight-forward pre-processing does not appear to be 

the main source of recognition error in the present system. 
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9.3 Normalization 

Purpose. 

A particular problem in handwriting recognition is its extensive variability. A 
given letter can be produced in several ways, each having its own typical shape, 
e.g., lower case /a/ vs upper case /A/ or the well-known different variants of 
the /t/. The shape variants for a given letter are called allographs. Thus, first 
there is the between-allograph variability (I): a writer might select different letter 
shapes in different conditions or at free will. Second, there is the within-allograph 
shape variation in which the topology of the pattern is not distorted (II), the error 
source being (psycho)motor variability. Topology can be defined as the number of 
strokes and their coarsely quantized relative endpoint positions. Third, there is the 
within-allograph shape variation which actually does distort the topology of the 
pattern, by the fusion of two consecutive strokes into a single ballistic movement 
(III) in fast and/or sloppy writing. These three types of variabilities will all be 
prevalent to some degree under different conditions. Table 1. gives an impression 
of the estimated order of these variabilities depending on context and writer. The 
context of a given allograph is defined as the identity of the allographic neighbors 
and the serial position of the target allograph. 

Table 1. The estimated order of the degree of handwriting variability that a script recogni
tion system has to handle, under different conditions, for all three types (I-III) of variability 
(1= minimum variability, 4=maximum variability). 

Writer 
Identical 
Different 

Context 
Identical 

1 
3 

Different 
2 
4 

The problem of allographic variation (I) can only be solved by presenting to 
the recognition system at least one prototype for each allograph, as they act as 
different symbols and we do not suppose that an artificial system will be able to 
generalize totally different allographs of the same letter. Also, within-allographic 
variation leading to different topologies (III) is handled by presenting each variant 
to the system separately in the training stage. Theoretically, however, it should be 
possible to recover a 'dean' topological representation of a fused allograph by de-
convolution, or by auto-regressive techniques (Kondo, 1989). However, a large part 
of the within-allographic variation (II), can be solved in the bottom-up analysis by 
normalizing the writing pattern, prior to extracting the features and by choosing 
relatively invariant features. The importance of normalization will be discussed 
here and the choice of invariant features in the next section. 
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Motor system. 

In order to extract the sequence of feature vectors of the handwriting input, 
several normalization steps can be performed (See Thomassen et al., 1988, for an 
overview). The reason is that a sample of a person's handwriting contains vari
ous global subject-specific parameters, like slant or width of the allographs (e.g., 
Maarse, Schomaker & Teulings, 1988). Also, the motor system is able to trans
form handwriting deliberately, e.g., changing orientation, size or slant (e.g., Pick & 
Teulings, 1983). However, these global parameters do not contain any information 
about the identity of the characters. Therefore, the handwriting patterns have to 
be normalized in terms of orientation, vertical size, and slant (Thomassen et al., 
1988). 

It may be anticipated that several alternative normalization procedures can 
be proposed. We require the system to try them all and to learn to use the most 
appropriate ones. As such it resembles Grossman's (1959) statistical motor-learning 
model: a person has a repertoire of several methods for every action and learns 
with time which of those is most appropriate. 

Realization. 

Orientation is defined as the direction of the imaginary base line. Vertical size 
consists of three components: body height, ascender height and descender height 
relative to the base line. Slant is defined as the general direction of the vertical 
down strokes in handwriting (e.g., Maarse Sc Thomassen, 1983). The normalization 
consists of estimating these parameters and then performing a normalization by a 
linear planar transformation towards horizontal orientation and upright. 

Various algorithms to estimate the parameters for each normalization step are 
available and not every algorithm may be appropriate in all conditions. Averaging 
these estimates is probably not the best choice because one estimator ('demon') 
may be totally wrong. A sub-optimal choice of the orientation, for instance, has 
dramatic effects in the subsequent normalization of size or slant. The solution we 
propose is to have the system select the best available, unused estimator using 
the estimators' current confidence and the proven correctness in the past using a 
Bayesian approach (Teulings et al., 1990). This prevents an exponential increase 
in computational demands with an increasing number of estimator algorithms 
(demons). 

Performance . 

The normalization estimators have not yet been evaluated statistically. However, 
both in artificial data (using bimodally distributed estimates of different variance) 
and in handwriting data (using a prototype system with parallel processes), the 
system produces stable and optimized estimates within 30 trials. We observe that 
the system backtracks immediately to the normalization level where apparently an 
inappropriate estimator was chosen first, after which the second best alternative is 
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evaluated. Even though calculation is reduced by taking the 'best first' approach, 
a multiple estimator scheme requires a lot of computation. However, due to the 
modularity of the approach, a solution by means of a network of transputers is 
very well possible. As we are still in a stage of testing with only two writers this 
system was not used currently. Only vertical-size normalization was performed 
using one estimator. The effects of vertical size normalization are relatively small 
as it is only one of several features. Orientation was standardized by lined paper 
on the digitizer and slant can be assumed approximately constant within a writer 
in a standard condition (Maarse, Schomaker Sc Teulings, 1988). However, slant 
does seem to be influenced by the orientation of the digitizer if it is located more 
dist ally than normal, e.g., to the right of the keyboard in a typical workstation 
setting instead of directly in front of the writer. It was observed that the feature 
quantization network partially counteracted these slant variations as evidenced by 
reconstruction of the handwriting trace. 

9.4 Feature extraction 

Purpose. 

Each stroke of the normalized handwriting pattern must be quantified in terms 
of a set of features, a feature vector, that describes the raw coordinates in a more 
parsimonious way. It is important to use features that show a relative invariance 
across replications and across different contexts. As a check for the completeness of 
the feature set the original pattern must be reconstructable from these features. Fi
nally, in order to facilitate the subsequent classification and recognition stages the 
feature vector itself shotild be quantized into a lower-dimensional representation 
space. 

Motor system. 

We employ a set of features which is related to the underlying hypothetical 
motor commands and which is complemented by a few visual features. The fea
ture vector comprises 14 features. Only nine of them are related to the stroke 
itself whereas five refer to the previous or the following stroke and are included to 
capture between-stroke context effects. The procedure to select appropriate fea
tures is to write a number of identical patterns (e.g., 16) at two speed conditions 
(normal and at higher speed, respectively). The invariance of a feature of a partic
ular stroke in those patterns can be tested by estimating its Signal-to-Noise Ratio 
(SNR) (Teulings et al., 1986). The advantage is that SNRs of totally different fea
tures can be compared and the ones with the highest SNR can be selected. The 
preliminary data presented here are based on the central 28 strokes of the word 
'elementary' produced by one subject. It appears that the SNRs are remarkably 
constant between the two speed conditions such that only the averages are pre
sented. In order to assess the invariance across conditions, the between-condition 
correlation of the average stroke patterns of a feature is employed. 
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The features currently employed are: 
(a) The vertical positions of the beginning (Ij) and end of a stroke (Ye) relative 

to the base line and the path length of the stroke (5) all scaled to the average 
body height, also called i-height, referring to the lower case x. In Teulings et al. 
(1986) it has been indicated that especially the relative (vertical) stroke sizes are 
invariant. The SNRs of Ye or Yj, are 4.9, and the SNR of 5 is 4.7, which are typical 
values for spatial characteristics. The between-condition correlations are as high 
as 0.99. 

(b) The directions φη of the five, straight stroke segments between two subse
quent points corresponding with the time moments 

t = il + (n/5) * (t2 - i l ) , 

where t\ and t2 are the time moments of beginning and end of the stroke and 
η = [0,1,...,5], i.e., (φχ,φι,φζ,φ^φι). Here we explicitly use dynamic movement 
information. The rationale is that in equal time intervals the movement direction 
is changing a relatively constant amount (e.g., Thomassen & Teulings, 1985) such 
that each new stroke segment adds an equal amount of new information. The two 
previous and the two following stroke segments (respectively, фь4,фьві and феі,фсз) 
are included as well in order to capture the stroke's context. The SNRs of фі, ...<ДБ, 
are, 7.2, 8.7, 6.3, 2.1, and 1.2, respectively, and the between-condition correlations 
are higher than 0.92. It can be seen that the directions of the first three stroke 
segments are highly invariant both within and between conditions. However, the 
latter two stroke segments show a relatively low SNR but they are kept in the 
feature vector as they are important to reconstruct the stroke shapes. 

(c) The size of the enclosed area between the end of the stroke and the subse
quent stroke (A,.) is rather a visually salient feature. The SNR of Xe is 5.6 and the 
between-condition correlation is as high as 0.999. 

(d) A pen up indicator (P), which shows whether the pen is predominantly up 
or down during a stroke. It may be noted that strokes above the paper also count 
as strokes. As this is a rather coarse binary signal we refrained irom presenting 
any statistics. 

In summary, the selected features show absolutely high SNRs and high between-
condition correlations which indicates that these features contain the basic infor
mation, which constrains the actual movement. As such, these features are attrac
tive to use in a recognition system. Whether this set of features is also a complete 
one, can only be demonstrated empirically. 

Realization. 

It is trivial to estimate the feature values per stroke. It is, however, less triv
ial to quantify the distance between feature vectors. An elegant method to solve 
the problem of irregularly shaped probability distribution functions of the feature 
vector of classes is vector quantization by an artificial self-organizing neural net
work (Kohonen, 1984; Morasso, 1989; Morasso et al., 1990). This type of network 
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performs, in a non-supervised way, a tesselation of cell units into regions, each 
corresponding to a particular prototypical feature vector. The statistical prop
erties of the training set of feature vectors will determine the emergence of the 
prototypical feature vector set. We have used a 20x20 network. Bubble radius and 
learning constant α decrease linearly with the number of iterations, from 20 to 1 
and from 0.8 to 0.2, respectively. The shape of the connectivity within a bubble 
was a monopolar and positive rectangular boxcar. The total set of strokes was 
presented 100 times to the network. Cells representing a quantized vector were 
arranged in a hexagonal grid. 

The completeness of the reduced data is tested by two reconstruction methods. 
In the first method, the writing trace is reconstructed from the sequence of feature 
vectors. An average Euclidean distance measure between reconstructed and origi
nal pattern is used to express the accuracy of reconstruction, and thus, the quality 
of the segmentation procedure as well as the information value of the selected 
features. In the second method, each feature vector is presented to the Kohonen 
network, and will be substituted by the nearest prototypical feature vector. The 
sequence of strokes thus yields a sequence of prototypical feature vectors that can 
be used to reconstruct the original trace in a similar way as described above. The 
accuracy of this reconstruction yields a second distance measure. It indicates the 
quality of the feature vector quantization imposed by the Kohonen network. 

Performance. 

The patterns produced by both reconstruction methods are legible, which is 
in fact the crucial criterion rather than a spatial goodness of fit. Furthermore, 
the reconstructed patterns lack individual and context-dependent characteristics 
which stresses that the selected features reduce the writer dependence as well. 
For example, slant variations due to imperfect normalization will be counteracted 
by the Kohonen network as single strokes are attracted to their closest, general 
prototypes. 

9.5 Allograph hypothesization 

Purpose. 

At this stage the writing pattern is represented as a sequence of prototypical 
strokes. In earlier experiments, we have used a Viterbi algorithm using a lexicon 
of allographs. Each prototypical allograph was represented by its average feature 
vector (no feature vector quantization was performed). A Euclidian distance mea
sure was used that was adapted to angular measures (Teulings et al, 1990). The 
problem with this approach was, that for a given stroke position, there is a dis
tance measure with each of the M=26 prototypes. Solution space is a matrix of 
MxN, where N is the number of stroke positions. Since the allographs mostly have 
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an unequal number of strokes, the plain Viterbi algorithm could not be used. In
stead an iterative version was developed, trying to recognize 1-stroke solutions, 
2-stroke-solution6, and so on, until the N-stroke solution. The path cost factor 
was the modified Euclidean distance, optionally combined with a digram transi
tion probability, each term having its own weight. The results of this technique 
were rather poor so we decided to find a method that yields a smaller solution 
space, on the basis of quantized feature vectors. Another approach used was to 
use 6 feedforward perceptrons, (Nx400)xl60x26, trained by back propagation, one 
perceptron for each class of N-stroked allographs, N=l,...,6. This approach, too, 
yielded too many hypotheses in the MxN matrix. This problem can possibly be 
alleviated to some extent by introducing competition among the output layers of 
different perceptrons. Another solution is proposed by Skrzypek & Hoffman (1989), 
who introduce a final judgment perceptron to combine the output of the N lower 
layers. The problem is, however, that for the recognition of varying-length tem
poral patterns, an optimal neural architecture does not exist, yet. Of the known 
architectures, recurrent nets (Jordan, 1985) are hampered by their limited ability 
to handle long sequences. Temporal flow nets (Stornetta et al., 1987; Watrous & 
Shastri, 1987) are currently being tested in speech recognition. 

Motor system. 

In Teulings et al. (1983) it was indicated that complete allographs are probably 
stored at the level of long-term motor memory. An interesting question is to what 
extent the strokes belonging to one allograph have to be kept together and whether 
the strokes of different realizations of the same allograph may be assembled to 
yield a new allograph. The directions of the stroke segments introduced before 
(i.e., фы,ФЬЪІФІІ •·•) show that the correlations between subsequent stroke segments 
within one stroke range between 0.69 and 0.90 (mean 0.80) whereas the correlations 
between subsequent stroke segments across the separation of two strokes range 
between 0.47 and 0.53 (mean 0.50). This implies that even in identical contexts, 
subsequent strokes are relatively independent. This suggests indeed that allographs 
are probably built up of different strokes that may be assembled from other similar 
allographs. 

Realization. 

Rather than performing a template matching between prototypical allographs 
and an input sequence of strokes, the method we developed at this stage is based 
on the idea of an active construction of allograph hypotheses. This is done by a 
neurally inspired algorithm. Once the writer has labeled allographs interactively, 
and thus created a data base covering a wide range of allographs in different con
texts, the system collects, for each prototypical stroke, its possible interpretations. 
The representation is based on the reasonable assumption that the fundamental 
(root) feature of an allograph is its number of strokes. Thus, two allographs are 
definitely different if their number of strokes differs. Each stroke interpretation has 
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the general form JVraTne(J,trofce/JVJtroti). Thus, a given stroke may be interpreted 
as representing one element of the set {a(l/3),<i(l/3),o(l/2),c(l/l)}. The con
struction of an allograph is a left-to-right process, where the activation level of 
an allograph hypothesis increases stepwise with each interpretation that is a con
tinuation of a previously started trace. The advantage over storing prototypical 
allographs is evident: after labeling three, 3-stroked sequences, each representing 
the allograph /a/, the network will recognize an / a / that corresponds to any 
one of the 27 combinations. The method does not exclude the use of digrams or 
trigrams as graphical entities. However, the computational load on a sequential 
computer will increase quadratically with an increasing number of interpretations 
per prototypical stroke, so the use of trigrams is impractical. 

Performance. 

Table 2 presents the recognition results of two types of handwriting. In Section 
6. the training procedures have been reported for each of the two writers. It may be 
stated that these results have been achieved on unrestricted cursive script of lower 
case letters without the use of linguistic post processing by means of a lexicon. 
On the other hand, the data are optimistic as in case of alternative allograph 
hypotheses (on average about 2 alternatives) the appropriate one was accepted. 
This was done under the assumption that only linguistic post-processing will be 
able to solve these true ambiguities. For instance, /u/ and / n / are sometimes 
written identically. 

Table 2. The recognition rates of allographs and of allograph strokes of five different text 
samples from two writers. 

Subj. 

A 
A 
A 
В 
В 

Text 

AP87 
FE90 
TEKST 
TESTI 
TEST2 

Words 

# 
40 
51 
51 
54 
60 

Time 

(s) 
281 
224 

89 
221 
234 

Allo
graphs 

# 
236 
275 
262 
299 
300 

Recog
nized 

# 
153 
243 
198 
209 
229 

% 
65 
88 
76 
70 
76 

Strokes 

# 
668 
862 
755 
987 
965 

Strokes in 
allographs 

# 
525 
702 
633 
786 
813 

Recog

nized 

# 
368 
657 
542 
544 
608 

% 
70 
94 
86 
69 
75 

Note the difference between the number of strokes that is actually part of an 
allograph and the total number of strokes. Apparently 18.4% of all strokes cannot 
be attributed to letters because they are connecting strokes, hesitation fragments, 
or editing movements. Note that there has been no post processing in any sense. 
Figure 1 gives an impression of the processing stages and the solution space for 
the word /aquarel/. In the reconstructed patterns, circles indicate detection of a 
loop (Ae φ 0). Going from bottom to top, the solution space (d) is liberally ñlled 
with hypotheses of decreasing length as expressed in number of strokes. Shorter 
hypotheses may 'fall down' in holes that are not filled by hypotheses of greater 
length. Each '-' indicates an allograph stroke, a '*' indicates a stroke that is not 
part of an allograph in the target word. 
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Оиулл^ и^ 

(JUyOL^^iL· 

'^i^y^L 
í 

r r i 
i с 
с с i o-
i - i i - i-

e- o-o- e-
3- j - ie-r- i-

s q— ir-s-e- s-
cs- g—e-e- o— r-r-s-
i e - g v-o-a— s- ie-
o-o-y o-i-u—r r—e-
a— q u—a r— a—1-

a~*q u—a **r—e-1-

(a) 

(b) 

(c) 

(d) 

(e) 

Figure 9.1: A sample (a) of an on-line recorded word (/aguareí/), (b) 
reconstruction from the sequence of feature vectors, (c) reconstruction 
from the prototypical feature vectors of the Kohonen network, (d) the 
output solution space, and (e) the classification (target word) as provided 
by the user. See the text for more details. 
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9.6 Optional word hypothesization 

Purpose. 

Apart from yielding a list of hypothesized allographs the bottom-up information 
contains also information to narrow down the number of possibly written words 
in a word lexicon. The word in the list with the minimum distance from a word 
in the lexicon can be selected. However, if the bottom-up process is rather certain 
of a given hypothesized word, then it seems superfluous to use additional lexical 
top-down processing. 

M o t o r s y s t e m and P e r c e p t u a l sys tem. 

It is known that when writing redundant character sequences (i.e., words or 
parts of words that could be recovered with a lexicon of words) the writer uses 
less efforts to produce the allographs neatly. 

From human reading research we know that ascenders and descenders (i.e., the 
contour) are strong cues to recognize the presented word, similar to the function 
of consonants in speech recognition. 

Real iza t ion. 

For the coding of the ascender and descender contour of a word the following 
coding scheme is proposed. Contours are assumed to be equal if their pattern of as
cenders, descenders, and body-sized objects correspond. The body-size characters 
/α,ο,ε,ι,πι,η,ο,Γ,δ,η,υ,ιυ,χ,ζ/ axe recoded as " o " , the descender stroke o{ /g,j,p,q,y/ 
is recoded as " j " , the ascender stroke of /b,d,h,k,l,t/ is recoded as " 1 " , whereas 
the /ƒ/ is a unique class " f because it spans both the ascender and descender 
area in cursive script. In this coding, a /b/ is a combination of an ascender object 
and a body-sized object, i.e., " lo" . This coding assumes that the letters as such 
have been identified. However, if a repetition of N body-size characters Nno" is 
coded by "x", a compressed coding is formed which is not based on the number 
of letters in a word. For instance, the word 'they' can be coded by " l l o o o j " in 
letter-dependent code, and by "Ibcj" in compressed code. For the time being no 
special attention is paid to the allographs with dots /i,j/. 

P e r f o r m a n c e . 

Although the word-hypothesization stage has not yet been integrated it is of 
interest to mention its potential performance. Letter-dependent contour coding of 
a Dutch lexicon of 48000 common words yielded a collision of 4 word hypotheses 
on average for a given code pattern, with a worst case of 398 collisions for the 
code "oooooo". A number of 84.5% of the codes has a number of collisions less 
or equal to the average of 4. Modal code pattern length was 9 codes. 
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Compressed contour coding yielded an average collision of 24 word hypotheses, 
with a worst case of 1953 collisions for the code "xlx". In this case, a number of 
89.3% of the codes has a number of collisions less or equal to the average of 24. 
Modal code pattern length was 5 codes. 

The consequences of these figures for recognition are the following. First, letter-
dependent coding is practically of no use since it is the letter identifìcation itself 
which is the objective in cursive script recognition. Thus, only compressed contour 
coding is useful. The actual gain depends on the linguistic frequencies of the words 
in the different code groups. These frequencies are currently being analyzed. 

9.7 Supervised learning 

Purpose. 

Before a cursive-script recognition system is ready to work, it has to learn how 
to segment a writing pattern in the to-be-recognized allographs. The segmentation 
into allographs of handprint, with sufficient distance between individual allographs 
(e.g., spaced discrete characters, Tappert, 1986), would be relatively straightfor
ward. If the written text is available, the learning module could just assign each 
allograph within the context of a word to a character. Although it is a rather 
cumbersome task to teach a system each allograph that may occur in a person's 
handwriting, it is currently still the most reliable procedure. The reason is that 
the allograph boundaries in cursive script have to be specified somehow. 

Several methods for performing this task in a non-supervised fashion are being 
developed (Morasso et al., 1990; Teulings et al., 1990). Maier (1986) tried to seg
ment an unknown writing trace into allographs using a-priori assumptions about 
the shape of the connecting strokes between allographs. However, such a method 
produces persistent errors (e.g., segmenting allographs like cursive /Ь, , ]> ./Л or 
/j//into two parts). Therefore, teaching is presently done interactively by the user. 

Perceptual system. 

Although this stage is rather artificial it is still important to make the job as 
ergonomie as possible. During supervised learning the experimenter has to tell 
the system which parts of the handwriting trace belong to which allograph. It is 
relatively easy for the perceptual system if the user has to point only to complete 
strokes belong to a certain allograph. The initial connecting stroke of the cursive 
allographs /α,ο,ά,ς,ί,ϊ,τη,η,ο,γ^,ν,,χ/ and /y/ is not included and the initial con
necting stroke of the cursive allographs /b,e,f,h.,k,l,r,s,t,v,w/ and /z/ is included 
because it forms a strong perceptual cue for these allographs. 
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Realization. 

The software tool to teach the system the allographs displays a writing pattern 
with small circle markers on each stroke. The markers indicating the initial and 
final strokes of an allograph and the name of the allograph are successively clicked 
by using the mouse. Occasionally, N-gram names have to be entered by means 
of the keyboard. The naming of N-grams is needed when two allographs regularly 
'melt1 together because of increased writing speed. Typical fused digrams in Dutch 
handwriting are /от/, /er/, and /en/ in many writers. 

Performance. 

Once the procedure is running smoothly it takes on average 5 s per allograph 
to teach the system. After the teaching phase all allographs and their names can 
be made visible in order to assure that no mistakes have been made. Two hand
writings were trained. The first handwriting (Writer A) was a neat constant-size 
handwriting and was trained incrementally up to 1671 prototypes by exposing 
the system to characters it could not discriminate or recognize well. The average 
number of strokes per allograph was 4.7. The second handwriting (Writer B) was 
a normal handwriting with considerable variation of allograph sizes with words. 
The allographs were trained from an a priori determined story of 240 words with 
low word frequencies. The script contained 1366 allographs (a posteriori), the av
erage number of strokes per allograph being 2.9. The total script was written in 
16 minutes. 

9.8 Conclusion 

It seems that the complex software system requires a powerful machine. A 
system inspired by the human motor system and the human perceptual system 
may seem to confine itself artificially. However, we see that the architecture is a 
very modular one (vertical modularity) and allows parallel modules (horizontal 
modularity). Problems can be very well located in one or two levels of the system. 
As such it seems that can be extended and tested relatively easily. The word 
hypothesization based on varying-length input sequences containing meaningless 
objects (e.g., connecting strokes) is currently a problem that has been solved only 
partially. It is to be hoped that robust artificial neural network models, handling 
noisy sequential data of unbounded lenght, will evolve in the future. This capability 
will be of special importance in languages like, e.g., German and Dutch, where 
nouns and prepositions plus nouns may be concatenated to form strings that are 
unlikely to be an entry in a standard lexicon. 
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Summary 

This study concerns the processes that take place from the moment that a writer 
wants to write down a given word, until one can inspect the finished result. What 
types of transformation are needed, going from planned word to muscle contrac
tion? The approach followed is based on the assumption that new insights can 
be gained by trying to build a working generative computer model of handwrit
ing. Chapter 1 deals with the theoretical aspects of modeling processes of motor 
control. Many viewpoints reveal essential aspects of motor control, but no single 
viewpoint will suffice to provide the building blocks for a working model of hand
writing production. Hence, a "vertical" approach is taken, adopting the necessary 
components for the different processing levels from cybernetics, cognitive motor 
theory, robotics, and connectionism. Chapter 2 discusses an important aspect of 
the pen-tip kinematics during cursive writing: How reproducible are replications of 
writing movements recorded on different occasions? Only if movements are actu
ally reproducible, it makes sense to develop a handwriting production model. This 
chapter forms the starting point of the development of the model, since it shows 
that invariance and replicatability are indeed present in movement patterns with 
the duration of at least a single letter. Chapter 3 presents a computer model of 
handwriting. One of the basic problems that have to be solved is concerned with the 
transformation of discrete entities, i.e., the symbolic representation of a planned 
letter shape (allograph), into a continuous multi-dimensional time function, i.e., 
the movement of the pen tip. This problem is tackled with the assumption that 
strokes are the basic segments in handwriting. The number of strokes is known to 
exert a quantized influence on the reaction time in the programming of handwrit
ing movements by a human writer. In the model, a parsimonious parametrization 
of the strokes is used, which is based on transforming a shape factor into differen
tial timing. Based on findings which indicate that the motor programs in cursive 
handwriting involve movement patterns of this size, the model aims at handwriting 
production that proceeds letter by letter. Consequently, a grammar, dubbed the 
Cursive Connections Grammar, providing rules for generating connecting strokes 
between two planned letters is proposed. Up to this point in the thesis, the model 
has only been concerned with the kinematics of the pen-tip movement. However, 
the important question may be asked if movement kinematics are the only domain 
which is controlled by "motor programs" for handwriting production. Apart from 
the intrinsic forces that generate movement, the pen is in contact with the writing 
surface, yielding normal force and friction. Thus, in Chapter 4, a kinetic aspect 
of writing is studied: What happens to axial pen force during the production of 
several types of movement patterns and what are the implications for movement 
control as specified in the working model? It appears that pen-force fluctuations 
are not a passive biomechanica! phenomenon. Also, in most writers, the pen-force 
pattern during letters is invariant across replications, which supports the notion 
that pen force is a separate domain. Pen-force control and compliance appear to 
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be embedded in the "motor programs" for letter production, in an idiosyncratic, 
writer-dependent fashion. In Chapter 5, a change of perspective takes place. It 
is noted that there are some limitations inherent to a symbolical modeling ap
proach, especially with respect to low-level processes in handwriting control. A 
review of basic artincial neural-network models is presented and their potential 
use both in modeling handwriting movement control and in handwriting recogni
tion is assessed. In the following chapters, three basic issues axe raised with respect 
to motor modeling: The coding of quantity, the representation of time, and the 
representation of the effector system by neurally inspired models. Chapter 6 deals 
with the representation of quantity. Différences between basic types of coding are 
described: Firing-rate control, value-unit coding, and recruitment. In Chapter 7, 
the representation of time in neural systems and the learning of handwriting time 
functions are addressed. A new neural-network model of the production of time 
functions is proposed, consisting of an ensemble of neuron-intemeuron spike oscil
lators. The last of the three neural modeling experiments is described in Chapter 8 
and concerns the problems of the representation of an effector. A planar arm with 
three degrees of freedom is used to compare two neural-network models and their 
ability to learn the transformation of two-dimensional target-movement patterns 
into three-dimensional joint-angle patterns, i.e., the inverse-kinematics problem. 
The neural-network models are trained by random generation of arm movements 
("motor babbling"). A final interesting and relevant problem is computer recog
nition of handwriting movements which is the focus of Chapter 9. Part of the 
knowledge gathered thus far in simulating the production of cursive handwriting 
and in neural-network proved to be helpful in the automatic recognition of hand
writing movements as recorded on-line with a digitizing tablet. An algorithm is 
proposed that performs recognition by actively constructing letter (allograph) hy
potheses on the basis of chains of individual strokes, instead of storing prototypical 
allographs and performing template matching. 



Samenvatting 

Simulatie en herkenning van schrijfbewegingen 
Een verticale benadering van de modelvorming 

op het gebied van de menselijke motoriek 

Dit proefschrift heeft betrekking op de processen die plaatsvinden vanaf het 
moment dat de schrijver een gegeven woord wil opschrijven, tot het moment 
dat hij of zij het schrijfproduct kan inspecteren. Welke soorten transformaties 
zijn er vereist, van woord tot spiercontractie? De hier gevolgde benadering 
is gebaseerd op de assumptie dat nieuwe inzichten kunnen worden verkregen 
door een werkend, generatief computermodel van het cursieve schrijven te 
ontwikkelen. Hoofdstuk 1 behandelt de theoretische aspecten van modelvorming 
op het gebied van motorische processen. Meerdere gezichtspunten verduidelijken 
essentiële aspecten van de motoriek, maar er is momenteel geen enkel theoretisch 
gezichtspunt dat de bouwstenen kan aandragen voor een werkend (computer-
)model van de schrijfbeweging. Daarom wordt in dit proefschrift een "verticale" 
aanpak gevolgd, waarbij de noodzakelijke componenten van de verschillende 
verwerkingsniveaus ontleend zijn aan de cybernetica, de cognitieve motorische 
theorie, de robotica en het connectionisme. Hoofdstuk 2 beschrijft een belangrijk 
aspect van de kinematica van de penpunt gedurende het cursieve schrijven: 
hoe reproduceerbaar zijn replicaties van schrijfbewegingen die op verschillende 
momenten geregistreerd zijn? Immers, alleen als de bewegingspatronen feitelijk 
reproduceerbaar zijn, heeft het zin om een model van de productie van handschrift 
te ontwikkelen. Dit hoofdstuk is een aanknopingspunt voor het ontwikkelen van 
een dergelijk model omdat wordt aangetoond dat er een hoge mate van invariantie 
en repliceerbaarheid is van bewegingspatronen met een duur van minstens een 
letter. Hoofdstuk 3 beschrijft een computationeel model van het schrijven. Eén 
van de basisproblemen die opgelost moeten worden betreft de transformatie van 
discrete entiteiten (de symbolische representaties van "geplande" lettervormen of 
allografen), naar een continue, meerdimensionele tijdfunctie (de bewegingen van 
de penpunt). Dit probleem wordt benaderd door uit te gaan van de bevinding 
dat er fundamentele eenheden in de schrijfbeweging zijn, te weten "halen", 
waarvan het aantal een gekwantiseerde invloed heeft op de reactietijd bij het 
programmeren van schrijfbewegingen door de menselijke schrijver. In het model 
wordt een spaarzame parametrisatie van de haal gebruikt, die gebaseerd is op 
de transformatie van een vormfactor naar differentiële "timing". Het model richt 
zich op de productie van handschrift die letter voor letter voortschrijdt. Dit 
uitgangspunt wordt ondersteund door bevindingen dat de "motor programma's" 
in het cursieve schrijven de omvang van een letter hebben. Een grammatica 
(Cursive Connections Grammar) wordt geïntroduceerd, die de regels bevat voor 
het genereren van verbindingshalen tussen twee opeenvolgende "geplande" letters. 
Tot op dit punt in het proefschrift is alleen de kinematica van de penpunt 
aan de orde geweest. Men kan zich afvragen of dit het enige domein is dat 
gestuurd wordt door "motor programma's". Nog afgezien van de intrinsieke 
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krachten die nodig zijn voor het genereren van de beweging, geldt dat de pen 
in contact is met het schrijfoppervlak, hetgeen leidt tot een normaalkracht, en 
een daaruit voortvloeiende wrijving gedurende de beweging. Daarom wordt in 
hoofdstuk 4 een kinetisch (d.w.z. krachts-) aspect van het schrijven bestudeerd. 
Wat gebeurt er met de axiale penkracht (pendruk) gedurende de productie 
van verschillende typen van bewegingspatronen en wat zijn de implicaties 
voor de sturing van de penbeweging zoals die in het werkend model worden 
gespecificeerd? Het blijkt dat de fluctuaties in de axiale penkracht geen passief 
biomechanisch fenomeen zijn. Tegelijkertijd echter zijn bij de meeste schrijvers de 
krachtspatronen gedurende het schrijven van een bepaalde letter reproduceerbaar 
over meerdere replicaties. Deze bevinding is een ondersteuning van de opvatting 
dat penkracht apart geregeld wordt vanuit het centrale zenuwstelsel. Het lijkt 
erop dat de krachtsregeling in de "motor programma's" is verdisconteerd, 
op een voor elke schrijver idiosyncratische wijze. In hoofdstuk 5 treedt een 
verandering van perspectief op. Enige inherente beperkingen van het in hoofdstuk 3 
gehanteerde symbolische model, met name wat betreft de lage-orde aspecten van de 
motoriek worden behandeld vanuit de optiek van het connectionisme (kunstmatige 
neurale netwerkmodellen). Er wordt een overzicht gepresenteerd van een aantal 
bestaande neurale netwerkmodellen. Tevens wordt hun potentieel belang voor 
de modelvorming op het gebied van de motoriek van het schrijven bekeken. 
In de hierop volgende hoofdstukken worden drie fundamentele onderwerpen 
behandeld met betrekking tot netwerkmodellen van de motoriek: de codering van 
kwantiteit, de representatie van tijd en de representatie van het effectorsysteem. 
Hoofdstuk 6 behandelt de representatie van kwantiteit. De verschillen tussen drie 
bekende neurofysiologische typen codering (vuurfrequentiesturing, topologische 
"value unit" codering en recrutering) worden beschreven in de context van het 
leren van een non-lineaire functie door een meerlaagsperceptron. In hoofdstuk 7 
komt de representatie van tijd in neurale netwerken en het leren van handschrift-
tijdfuncties aan de orde. Een nieuw neuraal netwerkmodel voor de productie van 
temporele patronen wordt geïntroduceerd, bestaande uit een ensemble van neuron-
intemeuron puls-oscillatoren. In hoofdstuk 8 komt vervolgens de representatie 
van het effectorsysteem aan de orde. Hier wordt uitgegaan van een eenvoudige 
twee-dimensionele schrijfarm met drie vrijheidsgraden. Er wordt onderzocht in 
welke mate twee verschillende neurale netwerkmodellen in staat zijn om de 
transformatie van "geplande" twee-dimensionele penpuntbewegingen naar een 
drie-dimensionele tijdfunctie van gewrichtshoeken te leren. Dit wordt gedaan op 
basis van een willekeurig verlopend leerproces ("motor babbling"). Hoofdstuk 9 
betreft de herkenning van schrijfbewegingen met behulp van de computer. Een 
deel van het eerder beschreven onderzoek bleek zeer wel bruikbaar te zijn 
bij de automatische herkenning van handschrift zoals dit "on-line" met een 
schrijftablet door de computer ingelezen wordt. Er wordt een algoritme voorgesteld 
waarin de herkenning van allografen berust op een actieve constructie van 
letterhypothesen op basis van de binnenkomende halenreeksen, in plaats van een 
passieve vormvergelijking met eerder opgeslagen gehele lettervormen. 
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Stellingen 

behorende bij het proefschrift 
Simulation and Recognition of Handwriting Movements 

door Lambert Schomaker 

Nijmegen, 19 maart 1991. 

1. De homothetische assumptie (Viviani & Terzuolo, 1980) blijkt op te gaan 
voor een serie van minstens vier cursief geschreven letters hetgeen een 
ondersteuning is van theorieën die uitgaan van een centrale representatie 
van allografen en een onderbouwing van handschrift-herkenningssystemen 
die uitgaan van de schrijfbeweging (dit proefschrift). 

Viviani, Р., к Terzuolo, V. (1980). Space-time invariance in learned 
motor skills. In G.E. Stelmach & J. Requin (Eds.), Tutorials in motor 
behavior (pp. 525-533). Amsterdam: North Holland. 

2. Voor de productie van verbonden cursief schrift is het voldoende te 
specificeren wat de kromming op het einde van de huidige letter is en welke 
kromming en horizontale en verticale verplaatsing bereikt moeten zijn aan 
het begin van de volgende letter (dit proefschrift). 

3. De regulatie van pendruk gedurende het schrijven is een actief proces waarbij 
schrijvers meer doen dan het configureren van de schrijfhand tot een passief 
massa-veer systeem (dit proefschrift). 

4. Gegeven een voldoende aantal neuronen N om een kwantiteitsdomein te 
representeren in een meerlaagsperceptron, is er geen verschil in accuratesse 
tussen recrutering en een topologische "value unit" (Ballard, 1986)-codering, 
waarbij aangetekend moet worden dat de gevoeligheid voor intrinsieke 
neurale ruis minstens N/2 maal groter is bij topologische "value unit"-
codering (dit proefschrift). 

Ballard, D.H. (1986). Cortical connections and parallel processing: 
Structure and function. Behavioral and Brain Sciences, 9, 67-120. 



5. Puls-oscillator modellen van neurale netwerken doen meer recht aan de 
biologische realiteit dan met de huidige statische netwerkmodellen het geval 
is, en hebben bovendien het voordeel van een natuurlijke incorporatie van 
de dimensie "tijd" (dit proefschrift). 

6. De aanwezigheid van "harde" begrenzingen aan gewrichtshoeken heeft 
behalve een verhoogde biomechanische stabiliteit tot gevolg dat de 
computationeel complexe zelf-organiserende leerprocessen ten behoeve 
van een interne representatie van het effectorsysteem aanzienlijk worden 
vergemakkelijkt (dit proefschrift). 

7. Bij de al dertig jaar telkens terugkerende optimistische berichten over 
automatische handschrift- en spraakherkenning dient men zich te realiseren 
dat zelfs het herkennen van mechanisch geproduceerde drukletters met 
behulp van de computer nog geen uitgerijpte technologie is. 

8. Het vertrouwen van de overheid in de mathematiek van non-lineaire 
functies is blijkbaar nog steeds niet groot genoeg om de anachronistische 
en vaak onrechtvaardige "tabellen" en "schijven" van de sociale en 
belastingwetgeving te vervangen door vloeiende N-de graads polynomen of 
andere spaarzame functies. 
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