The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/111469

Please be advised that this information was generated on 2017-10-30 and may be subject to change.
A novel marine nitrite-oxidizing *Nitrospira* species from Dutch coastal North Sea water

Suzanne C. M. Haaijer1*, Ke Ji1, Laura van Niftrik1, Alexander Hoischen2, Daan Speth1, Mike S. M. Jetten1, Jaap S. Sinninghe Damsté3 and Huub J. M. Op den Camp1

1 Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
2 Department of Human Genetics, Nijmegen Center for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Nijmegen, Nijmegen, Netherlands
3 Department of Marine Organic Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Texel, Netherlands

e-mail: s.haaijer@science.ru.nl

Heyendaalseweg 135, Nijmegen, University Nijmegen, Netherlands

March 2013 | Volume 4 | Article 60 | www.frontiersin.org

INTRODUCTION

The ocean is the largest reservoir of fixed nitrogen on Earth containing about five times more fixed nitrogen than terrestrial systems (Gruber, 2008) which renders marine systems of major importance to global nitrogen cycling. Nitrogen, as the bioavailable forms of ammonium and nitrate, is one of the key nutrients in marine waters and may limit primary production especially in coastal systems (Downing, 1997; Wollast, 1998; Zehe and Xieda, 2011). Most of the fixed organic nitrogen in the ocean is converted to nitrate by remineralization consisting of ammonification and nitrification (Gruber, 2008). In the two-step process of nitrification, ammonia is oxidized first to nitrite by aerobic ammonia-oxidizing microorganisms and then to nitrate by aerobic nitrite-oxidizing microorganisms.

The microbial mediators of nitrification have intrigued scientists ever since the hallmark publication by Winogradsky (1890) in which not only the ability of nitrifying organisms to withdraw energy from mineral substances was reported but it was also concluded that these microorganisms assimilate carbon from carbon dioxide. At present, after 120 years of research efforts, many nitrifying microorganisms are available in culture, and therefore amenable to physiological characterization, but marine species are underrepresented. For instance, when evaluating the phylogeny of β-proteobacterial ammonia-oxidizing bacteria (AOB) Aakra et al. (2001) examined no less than 38 isolates of which only five had a marine origin. In the review by Koops and Pumpeining-Röser (2001) on the distribution and ecophysiology of nitrifying bacteria the phylogenetic relationship of 19 cultured AOB species is shown and for only five of those species a preference for a marine habitat is indicated. In marine ecosystems ammonia-oxidizing archaea (AOA) species have been shown to outnumber their bacterial counterparts based on direct cell counts and gene (16S rRNA and amoA) copy numbers (Francis et al., 2005; Wuchter et al., 2006; Mincer et al., 2007). Currently, however, the only two cultured AOA species with a marine or estuarine origin are *Nitropumilus*...
Marine species have been found in four of the recognized nitrite-oxidizing bacterial genera (Nitrosospira, Nitrospina, Nitrobacter, and Nitrooccus; Ward and Carlucci, 1983). For the genus Nitrospina (Alavi et al., 2007) no marine species are presently known. The recently described nitrite oxidizer Nitrovolucerus hol-hollandicus (Sorokin et al., 2012), which in contrast to the previously known proteobacterial nitrite oxidizers belongs to the Chlorella phylum, was isolated from a reactor treating sewage plant digester effluent and no data on its salt tolerance or environmental distribution is yet available.

Within the process of nitrification ammonia oxidation to nitrite is the rate-limiting step and nitrite rarely accumulates in the process of nitrification (Philips et al., 2002; Arp, 2009). This may explain why nitrite-oxidizing bacteria (NOB) are often overlooked in marine environmental studies concerning nitrification. Recent findings in the Namibian oxygen minimum zone (OMZ) by Füssel et al. (2011), however, indicate that nitrite oxidation rates may even exceed ammonia oxidation rates. Marine Nitrospira species have been isolated from a surface water sample of the Gulf of Maine (Watson et al., 1986) as well as from marine recirculation aquaculture system biofilters (Keuter et al., 2011; Brown et al., 2013).

In addition they have been described as inhabitants of marine sponges (Hoffmann et al., 2009; Off et al., 2010). Nitrospira species have been detected in both coastal and open ocean habitats (Suzuki et al., 2004; DeLong et al., 2006; Bernan et al., 2010) based on 16S rRNA gene sequences. Moreover, co-variation of archaeal amoA and 16S rRNA genes with Nitrospina-like 16S rRNA genes has been observed which suggests that Nitrospira NOB may be natural nitrite-oxidizing partners of marine AOA (Minor et al., 2007; Santoro et al., 2010).

Within the process of nitrification ammonia oxidation to nitrite is the rate-limiting step and nitrite rarely accumulates in the process of nitrification (Philips et al., 2002; Arp, 2009). This may explain why nitrite-oxidizing bacteria (NOB) are often overlooked in marine environmental studies concerning nitrification. Recent findings in the Namibian oxygen minimum zone (OMZ) by Füssel et al. (2011), however, indicate that nitrite oxidation rates may even exceed ammonia oxidation rates. Marine Nitrospira species have been isolated from a surface water sample of the Gulf of Maine (Watson et al., 1986) as well as from marine recirculation aquaculture system biofilters (Keuter et al., 2011; Brown et al., 2013).

In addition they have been described as inhabitants of marine sponges (Hoffmann et al., 2009; Off et al., 2010). Nitrospira species have been detected in both coastal and open ocean habitats (Suzuki et al., 2004; DeLong et al., 2006; Bernan et al., 2010) based on 16S rRNA gene sequences. Moreover, co-variation of archaeal amoA and 16S rRNA genes with Nitrospina-like 16S rRNA genes has been observed which suggests that Nitrospira NOB may be natural nitrite-oxidizing partners of marine AOA (Minor et al., 2007; Santoro et al., 2010).

Fluorescence in situ hybridization (FISH) analyses using probes targeting all nitrite-oxidizing genera known at that time by Füssel et al. (2011) on Namibian OMZ samples demonstrated the presence of only Nitrospina and Nitrooccus NOB in equal abundance.

The elucidation of the ecophysiology of marine nitrite oxidizers in part is complicated by the difficulties in combining molecular data (e.g., presence and abundance of particular genes or species) with cultivation-derived parameters (e.g., proof of physiological capabilities, affinities, growth rates, salt tolerance). Increasing the availability of cultured species and ultimately determining their key physiological traits is helpful because it will aid in designing directed environmental research. Knowledge of physiological constraints of different strains and species, for instance, enables making informed guesses about which particular strain or species inhabits a certain habitat. To increase the number of cultivated marine nitrite oxidizers, a bioreactor set-up was used in the present study to first enrich a marine assemblage of aerobic ammonia oxidizers and nitrite oxidizers and ultimately solely the nitrite oxidizers from North Sea coastal water. The microbial community composition was evaluated by FISH analyses and the phylogenetic position of the enriched aerobic ammonia oxidizers and nitrite oxidizers determined by 16S rRNA gene sequence [polymerase chain reaction (PCR) and metagenome data] based analyses. The cell plan of the enriched
of the influent was increased manually in small (∼10 ml day−1) steps whenever NO3− levels remained below 2 mg/L to a final rate of 100 mg/L per day. To retain biomass, the reactor content was allowed to settle once for a week after which clarified liquid was removed to maintain a maximum reactor volume of 2 L. Removal of wall growth and fourfold dilution of the biomass were performed as described above for 2 and 4 months. The nitrifier concentration was raised from 10 to 20, 40, 60, 80 mM and finally 100 mM after 6, 9, 10, 10.5, and 11 months, respectively, by increasing the flow rate from 40 to 100 ml per day in 10 ml steps keeping NO3− levels below 2 mg/L. In order to prevent suboptimal nitrifier oxidizer growth rates due to carbon limitation, the gas flow of 80 ml/min of air was supplemented to prevent suboptimal nitrite oxidizer growth rates due to carbon limitation, the gas flow of 80 ml/min of air was supplemented to maintain a maximum reactor volume of 100 ml per day. To retain biomass, the reactor content was operated for 12 months with nitrite as the sole substrate. It has furthermore been reported that iron as well as phosphate may become limiting compounds for growth (van de Vossenberg et al., 2008) when a medium containing only natural sea salts is used to enrich marine microorganisms. Therefore, the influent was supplemented with 0.261 ml/L 1 M KH2PO4 and 0.45 ml/L of a 5 g/L FeSO4·7H2O ≥99% (Sigma-Aldrich, Germany) from 7.5 months onward. The influent nitrite concentration was raised from 10 to 20, 40, 60, 80 mM and finally 100 mM after 6, 9, 10, 10.5, and 11 months, respectively, by increasing the flow rate from 40 to 100 ml per day in 10 ml steps keeping NO3− levels below 2 mg/L. In order to prevent suboptimal nitrifier oxidizer growth rates due to carbon limitation, the gas flow of 80 ml/min of air was supplemented to prevent suboptimal nitrite oxidizer growth rates due to carbon limitation, the gas flow of 80 ml/min of air was supplemented to maintain a maximum reactor volume of 100 ml per day. To retain biomass, the reactor content was operated for 12 months with nitrite as the sole substrate.

CHEMICAL ANALYSES
To estimate nitrate concentrations liquid samples were measured directly using Merckquant® teststrips (range for nitrate 10–500 mg/L). Nitrite 2–80 mg/L, Merck BV, Schiphol-Rijk, the Netherlands. At least once a week, 0.5 ml aliquots were centrifuged (3 min 10,000 g) and the resulting supernatants were used for more elaborate colorimetric analyses to monitor residual ammonium and nitrite concentrations. To measure nitrite, a colorimetric method adapted from Griess-Romijn-van Eck (1966) was used. A mixture of 50 μl with 0.5 ml of reagent A (10 g of sulfanilic acid in 1 L 1 M HCl) and 0.5 ml reagent B (1 g l-1-N-naphthylethenediamine dihydrochloride in 1 L distilled water) was incubated for 10 min at room temperature, and measurements were taken at 540 nm. Ammonium concentrations were determined using ortho-phthalaldehyde (OPA) reagent (Both, 1971; Taylor et al., 1974). The OPA reagent consisted of 0.54 μl of OPA dissolved in 10 ml of absolute ethanol, with 50 μl of β-mercaptoethanol, and filled to 100 ml with sodium phosphate buffer (0.3 M pH 7.3). To measure ammonium concentrations between 0.25 and 5 mM 50 μl sample was mixed with 800 μl OPA reagent, incubated (20 min, room temperature, in the dark), and the extinction measured (420 nm). To measure in the range of 5–500 μM, 100 μl of sample was mixed with 2 ml OPA reagent containing only 0.054 g/100 ml OPA, incubated (20 min, room temperature, in the dark) and measured with a fluorescence spectrophotometer (excitation 411 nm, emission 482 nm, slit size 5 nm, 600 V).

PHOTOBACTRIA IN SITU HYBRIDIZATION
Biomass was harvested from 20 ml reactor material by centrifugation (10 min 10,000 × g) and fixed for FISH analyses by addition of 4% w/v paraformaldehyde, incubating on ice (2 h), centrifuging (15 min 10,000 × g) and washing the resulting pellet with phosphate buffered saline (PBS, pH 7.2) and finally adding PBS and 100% EtOH (1:1) to reach a volume of 10% of the original sample. Fixed material was stored at −20°C until analysis. FISH analyses on fixed biomass from the start, after 1 and 6 months of the nitrite-fed period were performed as described by Amann et al. (1990), using 10 μl fixed material per hybridization. Vectashield (Vector Laboratories, Inc., Burlingame, CA, USA) mounting medium with DAPI (4,6-diamidino-2-phenylindole) was used to enhance the fluorescent signal and stain all DNA. Specifications and details of probes used in this study are presented in Table 1. Probes were purchased as Cy3-3, Cy5-5, and 6(3)-carboxyfluorescein-N-hydroxysuccinimide-ester (FLUOS) labeled derivatives from Thermohybaid (Ulm, Germany). To visualize Nitrospumus AOB and Nitrospumus NOB simultaneously, probes NEU 655 (FLUOS) and NTSPA 712 (Cy5) were used together with their respective competitors (competitor probes consisted of unlabeled oligonucleotides) in single hybridizations at a formamide concentration of 35%. To detect Nitrospum sp. NOB, hybridizations were performed at 20% formamide concentration with probe NTSPN693. To stain all bacteria, a mixture of probes EUB338, EUB338 II, and EUB338 III was used for all hybridizations. Microscopic inspections were performed at a 1000-fold magnification. For image acquisition a Zeiss Axioplan 2 epifluorescence microscope (Zeiss, Jena, Germany) was used with the standard software package (version 3.1). Abundance estimates of cells hybridizing with a particular probe were based on visual inspection of three randomly taken FISH microscopy pictures per hybridization.

EXTRACTION HIGH MOLECULAR WEIGHT DNA
Biomass was harvested from 20 ml reactor content by centrifugation (20 min, 2400 × g) after 3.5 months with ammonia, and after 6 months with nitrite as the sole substrate, respectively. Biomass was also harvested from 50 ml reactor content after 12 months with nitrite as the substrate. High molecular weight DNA was extracted using a cetyltrimethyl-ammoniumbromide (CTAB) and sodium dodecyl sulfate (SDS)-lysis-based method adapted from Zhou et al. (1996). Biomass was suspended and incubated for 30 min at 37°C in a mixture of 675 μl CTAB extraction buffer (1g/100 ml CTAB, 100 mM Tris, 100 mM EDTA, 100 mM sodium phosphate, 1.5 M NaCl, pH 8), 50 μl lysozyme (10 mg/ml, 66200 U/mg) and 30 μl Rnase A (10 mg/ml, ≥5000 U/mg). After addition of 50 μl of proteinase K (10 mg/ml, 20 U/mg) and incubation for 30 min at 37°C, the mixture was supplemented with 150 μl 10% SDS and incubated at 65°C for 2 h. DNA was recovered by phenol/chloroform extraction and isoamyl alcohol precipitation after which it was suspended in 40 μl ultrapure water (MilliQ, Millipore SA, Molsheim, France) and stored at 4°C until use.

PCR REACTIONS, CLONING, SEQUENCING, AND SEQUENCE ANALYSES
Polymerase chain reaction reactions (30 cycles, followed by a final extension for 10 min at 72°C) were performed in a T gradient PCR apparatus (Whatman Biometra, Göttingen, Germany) using primer NEU 653 (FLUOS) and NTSPN 153 (Cy5). The PCR product was isolated on a cesium chloride gradient. The DNA was ligated into a pUC19 vector and cloned into JM109 electrocompetent E. coli cells. The positive clones were sequenced using the BigDye Terminator version 3.1 cycle sequencing kit on an ABI PRISM 3730xl Genetic Analyzer (Applied Biosystems, Foster City, CA).

Table 1. Probes were purchased as Cy3-3, Cy5-5, and 6(3)-carboxyfluorescein-N-hydroxysuccinimide-ester (FLUOS) labeled derivatives from Thermohybaid (Ulm, Germany). To visualize Nitrospumus AOB and Nitrospumus NOB simultaneously, probes NEU 655 (FLUOS) and NTSPA 712 (Cy5) were used together with their respective competitors (competitor probes consisted of unlabeled oligonucleotides) in single hybridizations at a formamide concentration of 35%. To detect Nitrospum sp. NOB, hybridizations were performed at 20% formamide concentration with probe NTSPN693. To stain all bacteria, a mixture of probes EUB338, EUB338 II, and EUB338 III was used for all hybridizations. Microscopic inspections were performed at a 1000-fold magnification. For image acquisition a Zeiss Axioplan 2 epifluorescence microscope (Zeiss, Jena, Germany) was used with the standard software package (version 3.1). Abundance estimates of cells hybridizing with a particular probe were based on visual inspection of three randomly taken FISH microscopy pictures per hybridization.

PCR REACTIONS, CLONING, SEQUENCING, AND SEQUENCE ANALYSES
Polymerase chain reaction reactions (30 cycles, followed by a final extension for 10 min at 72°C) were performed in a T gradient PCR apparatus (Whatman Biometra, Göttingen, Germany) using primer NEU 653 (FLUOS) and NTSPN 153 (Cy5). The PCR product was isolated on a cesium chloride gradient. The DNA was ligated into a pUC19 vector and cloned into JM109 electrocompetent E. coli cells. The positive clones were sequenced using the BigDye Terminator version 3.1 cycle sequencing kit on an ABI PRISM 3730xl Genetic Analyzer (Applied Biosystems, Foster City, CA).
Table 1 | Oligonucleotide specifications.

<table>
<thead>
<tr>
<th>Name</th>
<th>Used for</th>
<th>Sequence (5′→3′)</th>
<th>Position</th>
<th>Target</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU8338</td>
<td>FISH</td>
<td>GCTGCCCTCCCGTAGGAGT</td>
<td>338</td>
<td>Most Bacteria</td>
<td>Amann et al. (1990)</td>
</tr>
<tr>
<td>EU8381</td>
<td>FISH</td>
<td>GCAATCACCCTCGTAGGAGT</td>
<td>338</td>
<td>Most Planctomycetales</td>
<td>Daims et al. (1999)</td>
</tr>
<tr>
<td>EU8381</td>
<td>FISH</td>
<td>GCTGCCCTCCCGTAGGAGT</td>
<td>338</td>
<td>Most Verrucomicrobiales</td>
<td>Daims et al. (1999)</td>
</tr>
<tr>
<td>NEU653</td>
<td>FISH</td>
<td>CCCCCCTCTCGACA CTA</td>
<td>653</td>
<td>Most Nitrospira</td>
<td>Wagner et al. (1995)</td>
</tr>
<tr>
<td>Competitor NEU653</td>
<td>FISH</td>
<td>TCCATCCCCCTCTCGCG</td>
<td></td>
<td>Nitrosomonas spp</td>
<td></td>
</tr>
<tr>
<td>NTS1742</td>
<td>FISH</td>
<td>CGGCTCAGCGACCGGCT</td>
<td>712</td>
<td>Most members of the phylum</td>
<td>Daims et al. (2001)</td>
</tr>
<tr>
<td>Competitor NTS1742</td>
<td>FISH</td>
<td>CGGCTCAGCGACCGGCT</td>
<td></td>
<td>Nitrospirae</td>
<td></td>
</tr>
<tr>
<td>NTS5663</td>
<td>FISH</td>
<td>TCCCATATATACCGGTATT</td>
<td>693</td>
<td>Nitrospira gracies</td>
<td>Juretschko et al. (1998)</td>
</tr>
<tr>
<td>616F</td>
<td>PCR</td>
<td>AGAGTTTGATYMTGGCTCAG</td>
<td>8</td>
<td>Bacteria</td>
<td>Juretschko et al. (1998)</td>
</tr>
<tr>
<td>630R</td>
<td>PCR</td>
<td>CAKAAAGGAGGTGATCC</td>
<td>1529</td>
<td>Bacteria</td>
<td>Juretschko et al. (1998)</td>
</tr>
<tr>
<td>NTS5158R</td>
<td>PCR</td>
<td>CCCGTTCGGCTTCGAAAGT</td>
<td>1158</td>
<td>Most Nitrospira</td>
<td>Mainsere et al. (2006)</td>
</tr>
<tr>
<td>NSE97F</td>
<td>PCR</td>
<td>AGCGTCCGACGGCTAGGAAATA</td>
<td>87</td>
<td>Most Nitrospira</td>
<td>This study</td>
</tr>
<tr>
<td>NSE1124R</td>
<td>PCR</td>
<td>TCTCTCAAGTGCTCCCGGCCCA</td>
<td>1124</td>
<td>Most Nitrospira</td>
<td>This study</td>
</tr>
<tr>
<td>610F</td>
<td>Sequencing</td>
<td>GTCCAGAGCCGCGGCT</td>
<td>479</td>
<td>Most bacteria</td>
<td>Udinova et al. (2001)</td>
</tr>
<tr>
<td>M13F</td>
<td>Sequencing</td>
<td>GTAACGAGGCCGCGC</td>
<td>Region flanking cloning site</td>
<td>pOE7MT easy vector</td>
<td>—</td>
</tr>
<tr>
<td>M13R</td>
<td>Sequencing</td>
<td>CAGGAAGAACAGTCA</td>
<td>Region flanking cloning site</td>
<td>pOE7MT easy vector</td>
<td>—</td>
</tr>
</tbody>
</table>

*E. coli numbering.

GoTaq Green Master Mix (Promega Benelux BV, Leiden, the Netherlands). A PCR cycle consisted of, 1 min at 95°C, 1 min at annealing temperature (Ta) and 1.5 min at 72°C. For each 25 μl volume PCR reaction, 1 μl of 10-fold diluted high molecular weight DNA was used as the template. Resultant products were cloned using the pQE-EM T easy vector cloning kit (Promega Benelux BV, Leiden, the Netherlands). Plasmid DNA was extracted using the GeneJet Plasmid Miniprep Kit (Fermentas GMBH, St. Leon-Rot, Germany). Clones were checked by restriction analysis of plasmid DNA (EcoR1, Fermentas GMBH, St. Leon-Rot, Germany). Sequencing (Sanger method) was performed at the division DNA diagnostics of the Human Genetics department of the University Medical Centre Nijmegen St Radboud. The ContigExpress program of the Vector NTI Suite 7.0 software package (InforMax) was used to assemble full-length clone sequences. 16S rRNA gene sequences are available from GenBank under the following accession numbers: KC706457-706479. For sequences sharing at least 99% sequence identity (see “Results”) a representative sequence has been submitted. For the North Sea nitrifier enrichment cultures clone Cb9 (KC706457) represents the Nitrospira sp., Cb12 (KC706458) the Nitrospira sp. and Cb18 (KC706459) “Candidatus Nitrospira salsa.” For the North Sea time evolution...
series sequences clone P3_4 represents the cluster of 15 *Nitrospira* sequences.

METAGENOME SEQUENCING AND RECONSTRUCTION OF THE 16S rRNA GENE SEQUENCE OF THE DOMINANT NOB

DNA extraction performed on 50 ml reactor biomass at the end of the incubation with nitrite as the sole substrate yielded 15 μg DNA based on spectrophotometric estimation using NanoDrop technology (Thermoscientific, USA). Eight microgram was subsequently used for pyrosequencing using the Roche 454 GS FLX Titanium sequencer (Roche, Switzerland) at the Department of Human Genetics Nijmegen at the Center for Molecular Life Sciences, Institute for Genetic and Metabolic Disease of the Radboud University Nijmegen Medical Center. To estimate *Nitrospira* abundance, all generated reads were mapped using CLC Bio Genomics Workbench (version 5.5.1) to a custom 16S rRNA gene sequence database which consisted of all unaligned sequences in release 18.29 (2,328,464 sequences) of the RDP 16S rRNA database (Cole et al., 2009), from which all sequences containing “uncultured” or “unidentified” in the description were removed. The resultant database (available upon request) contained 339,774 16S rRNA gene sequences. Through mapping (cutoff 90% identity over 90% of the read length) of the sequence reads on this database *Nitrospira* sp. 16S rRNA gene sequence reads were identified. The 16S rRNA gene sequence of the dominant *Nitrospira NOB* was reconstructed through a de novo assembly of those reads using the CLC genomics workbench.

TRANSMISSION ELECTRON MICROSCOPY

To investigate the cell morphology of the enriched NOB using TEM, biomass harvested from 100 ml reactor content (by centrifugation for 20 min., 2400 × g) after 8 months of operation with nitrite as the sole substrate was taken. Cryofixation was performed by high pressure freezing and was followed by freeze-substitution in acetone containing 2% osmium tetroxide, 0.2% uranyl acetate, and 1% water, embedding in Epon resin and sectioning using an ultramicrotome for TEM analysis. Sample preparation was performed as described previously by van Niftrik et al. (2008).

DETECTION OF THE ENRICHED NITROSPIRA NOB IN COASTAL NORTH SEA WATER

To verify that the enriched *Nitrospira* originated from the North Sea and was not a contaminant from our laboratory, high molecular weight DNA samples from a North Sea time series (Wuchter et al., 2006; Pitcher et al., 2011) were screened for the presence of *Nitrospira* by PCR analyses. A new primer pair perfectly matching the full-length 16S RNA sequence of the enriched *Nitrospira*, was designed (primers NSE7F and NSE1124R). These primers were tested in PCR reactions (T\(_{a}\) 80°C) using the DNA extracted from the enrichment after 6 months of operation with nitrite as the substrate as a template. In addition, test reactions were performed using high molecular weight DNA extracted from *Nitrospira defluvii* and *Nitrospira marina* cells and plasmid DNAs containing partial (1073 nt) 16S rRNA gene sequences from *Nitrospira* sublineages I (*Nitrospira defluvii*-like, 2 plasmids), II (*N. marina*-like, 2 plasmids), and IV (*N. marina*-like, 2 plasmids). To screen the North Sea time series, six pools were prepared from partial aliquots (3 μl of each sample) of the high molecular weight DNA samples from the time series (see Table 2 in the Results). Prior to amplification, 3 μl of each pool was purified by excision of DNA-containing bands from low-melting point agarose gel (Electron wide range, low melting agarose, VWR BDH Prolabo) after electrophoresis to remove substances possibly interfering with PCR amplification. PCR products were cloned, and for 25 clones (3–5 clones picked per pool) plasmid DNA was extracted and sequencing performed with primers M13F and M13R.

RESULTS

NORTH SEA AOB AND NOB ENRICHMENT WITH AMMONIA AS THE SUBSTRATE

After a lag phase of 10 days, microbial ammonia oxidizers became active in the enrichment with ammonia as the substrate. Within 9 days, 500 μM NO\(_3^-\) was produced from 500 μM NH\(_3\)\(_2\). A second aliquot of 400 μM ammonium induced further nitrite accumulation at a higher rate (400 μM within 2 days) which indicates growth of ammonia oxidizers. After adopting a continuous mode of operation (D = 0.25 per day) to avoid nitrite toxicity, all supplied ammonium (750 μM) was converted to nitrite in a 1:1 ratio up to 3 months of operation. Hereafter, the nitrite concentration dropped to zero within a 14 day period indicating a rapid increase in nitrite oxidizer activity. During the subsequent stepwise increase of the influent NH\(_4\)Cl concentration to 3 mM (after 4.5 months of operation), NH\(_4\)\(_2\) as well as NO\(_2\)\(_2\) reactor concentrations remained zero indicating complete consumption of both nitrogen species and therefore an active co-culture of ammonia and nitrite oxidizers.
Haaijer et al. A novel North Sea Nitrospira species converting 0.75 mmol of nitrogen per liter per day. The raise to 10 mM NH₄Cl (after 5.5 months of operation) resulted in an ammonium and nitrite accumulation to final concentrations (at 6 months of operation) of 1.8 mM and 100 μM, respectively. During the last half month of operation therefore approximately 2 mmol of nitrogen were consumed per liter per day.

The PCR performed with general bacterial primers on DNA extracted from biomass after 5.5 months of operation with ammonia as the substrate yielded correct-sized inserts (1500 nt). The 20 clones picked for plasmid isolation yielded 20 partial (695–845 nt) 16S rRNA gene sequences of which six contained recognizable nitrifier 16S rRNA sequences based on BlastN searches of the National Center for Biotechnology Information (NCBI) database and taxonomic assignment using the Classifier tool of the RDP. Taxonomic assignment of the remaining sequences resulted in five sequences assigned to uncultured bacteria, two to unclassified Planctomycetes, three to the genus Physiotaenia within the Planctomycetes, two to unclassified α-proteobacteria, one to the genus Phaeobacter within the α-proteobacteria, and one to unclassified Anaerolineae within the Chloroflexi. Nearly full-length 16S rRNA gene sequences generated from the clones containing a recognizable nitrifier sequence resulted in three Nitrosomonas (AOB) sequences (clones Cb9, 10, and 15; >99% shared sequence identity), two Nitrospina (NOB) sequences (clones Cb12 and 16; 99.5% shared sequence identity), and one Nitrospira (NOB) sequence (clone Cb18). The phylogenetic position of the putative Nitrosomonas-like AOB is shown in Figure 1 which illustrates that the sequence from the enrichment culture is related to Nitrosomonas marina but does not cluster closely to any cultivated Nitrosomonas species. The closest match in the NCBI database (96% sequence identity) with a cultivated species was the 16S rRNA gene sequence of Nitrosomonas sp. NM51 (Purkhold et al., 2000). This implies that the enriched AOB may represent a previously uncultured Nitrosomonas species. The closest match in the NCBI database (99% sequence identity) was to an uncharacterized marine clone sequence (JF514271, clone LXE3). For another sequence (FJ628323, clone NitA40631, Schmidova et al., 2009) sharing 99% sequence identity to the sequence of the enriched North Sea AOB it was known that this sequence was retrieved from brackish water from the anoxic fjord Nitinat Lake, which is an environment with an ammonium concentration between 20 and 200 μM. The Nitrospina (NOB) sequences shared only 92% sequence identity to the 16S rRNA gene sequence of the cultivated species Nitrospina gracilis strain 3/211 (FR865038). The

![16S rRNA gene sequence based phylogenetic tree showing the position of the enriched North Sea AOB (bold) within the betaproteobacterial AOB.](image)

FIGURE 1 | 16S rRNA gene sequence based phylogenetic tree showing the position of the enriched North Sea AOB (bold) within the betaproteobacterial AOB. This unrooted bootstrap/1000 replicated consensus tree was inferred using the neighbor-joining algorithm. Total of 1285 nucleotides were considered in the alignment. Bootstrap values are shown at the internal nodes. The scale bar is in the unit of the number of base substitutions per site.
Within the first month of the nitrite-fed period (manual supply of *Nitrospira marina* of probe NTSPN693 was observed which suggests that the ammonium-fed enrichment (Figure 2A) consisted mainly (approximately 80% of the total population) of bacteria hybridizing with probe NEU653. This indicates dominance of halotolerant/halophilic *Nitroso- monas*-like AOB. In addition, around 10% of the bacterial population hybridized with probe NTSPA712 indicating the presence of *Nitrosopila*-like NOB. No hybridization with probe NTSPN693 was observed which suggests that *Nitrospira* NOB were a minority within the nitrifier community.

NORTH SEA NOB ENRICHMENT WITH NITRITE AS THE SUBSTRATE

Within the first month of the nitrite-fed period (manual supply nitrite to 0.5–1 mM final concentrations) an average nitrite consumption rate of 1 mmol per liter per day was observed. Fourfold dilutions of the biomass, after 1 week and after 1 month, respectively, did not result in any observed change in nitrite consumption rate. During the operation in a fed-batch mode (between 1 and 11 months of operation) with stepwise increasing influent nitrite concentration (from 10 to 80 mM) followed by continuous operation (*D* = 0.05 per day; last month of operation) the nitrite consumption rate increased to a final value of 3 mmol per liter per day. The fourfold dilutions after 2 and 4 months of operation, again did not affect the observed nitrite consumption rate. The FISH analyses (Figure 2) of biomass after 1 and 6 months of operation with nitrite as the substrate revealed an increase in *Nitrospira* NOB (to a final ∼80% of the total bacterial population) and decline in *Nitrosomonas* AOB (∼1%), indicating that the population became dominated by *Nitrospira* NOB.

The 8 sequence cloned (AC1-8) obtained through PCR with primers 616F0 and NTSPA1158R using DNA extracted after 6 months of operation, contained 99% identical inserts based on pairwise alignment. Therefore the fully sequenced insert of clone AC6 was used as a representative for phylogenetic analysis (Figure 3). When looking at 16S rRNA gene sequences of taxonomically described species, the enriched North Sea *Nitrospira* is phylogenetically most related (94% identity) to *Nitrospira marina* strain Nb-295 (X82539, Ehrlich et al., 1995). The FISH analyses revealed that the biomass at the end of the ammonium-fed enrichment (Figure 2A) consisted mainly of bacteria hybridizing with probe NEU653. This indicates dominance of halotolerant/halophilic *Nitroso- monas*-like AOB. In addition, around 10% of the bacterial population hybridized with probe NTSPA712 indicating the presence of *Nitrosopila*-like NOB. No hybridization with probe NTSPN693 was observed which suggests that *Nitrospira* NOB were a minority within the nitrifier community.

METAGENOME SEQUENCING AND RECONSTRUCTION OF THE 16S rRNA GENE SEQUENCE OF THE DOMINANT NOB

The 454 sequencing run on DNA extracted from biomass at the end of the incubation with nitrite as the sole substrate (after 12 months) generated, after quality trimming, 1,216,565 single reads with an average length of 405 nt. The mapping of all reads to the custom 16S rRNA gene sequence database resulted in 198 mapped reads, of which 147 mapped to *Nitrospira* sp. 16S rRNA gene sequences. This implies an abundance of *Nitrospira* sp. 16S rRNA genes within the total population of 74% which is in agreement with the 80% abundance estimated from the FISH analysis after 6 months of operation with nitrite as the substrate. The 16S rRNA gene sequence of the dominant *Nitrospira* NOB reconstructed from the 147 *Nitrospira* sp. reads exhibited 99.9% sequence identity to the earlier obtained (clone Cb18 and AC6) sequences resulting from PCR analysis, suggesting that the same species persisted as the dominant NOB within the reactor.

TEM ANALYSIS OF THE ENRICHED NORTH SEA Nitrospira sp.

The biomass was mainly situated in small aggregates in the culture. This was reflected in the electron microscopy pictures generated with the TEM analysis of the biomass, harvested from the enrichment after 8 months. These showed dense clumps of cells seemingly embedded in extracellular material (Figure 4A). Some typical morphological features of a representative cell are pointed out in Figure 4B. Most striking is the large periplasmic space containing many electron dense particles. In addition, large electron light particles are visible in the cytoplasm.

FIGURE 2 | Fluorescence microscopy pictures of the abundance of *Nitroso- monas* AOB and *Nitrospira* NOB during the NOB enrichment. In green: cells hybridizing with probe NEU653 (targeting most halophilic and halotolerant *Nitroso- monas* spp.). In red: cells hybridizing with probe NTSPA712 (targeting most members of the phylum Nitrospirae). (A) Biomass after 1 month; (B) after 3 months; (C) after 6 months of operation with nitrite as the only substrate.
DETECTION OF THE ENRICHED Nitrospira NOB IN COASTAL NORTH SEA WATER

Nitrospira-targeted primer pair 616F/NTSP A1158R did not yield significant amplicons (data not shown) for DNA samples from the North Sea time series, and therefore primers NSE87F and NSE1124R were developed. This primer pair, designed to specifically target the enriched "Candidatus Nitrospira salina", yielded correct-sized (1073 nt) amplicons with all tested templates (high molecular weight DNA from the North Sea enrichment, Nitrospira defluvii and N. moscoviensis as well as plasmid DNA from respectively sublineage I (Nitrospira defluvii-like), II (N. moscoviensis-like), and IV (N. marina-like). This demonstrates that this primer pair functions well for all tested Nitrospira species and does not specifically target the enriched North Sea species.

Screening of the six separate pools (see Table 2) from the North Sea time series of high molecular weight DNA samples with this primer pair resulted in 25 16S rRNA gene clone sequences, of which 22 contained a Nitrospira sequence. Three (clones P3_4, P3_5 and P4_29) clones exhibited a sequence identity of...
99% to the 16S rRNA gene sequences of “Candidatus Nitrospira salina” (Figure 3). The majority (17) of the Nitrospira 16S rRNA gene clone sequences retrieved from the North Sea time series, however, were most closely related (97–99% sequence identity) to a clone sequence (DQ351808, clone Beligica2005/10_ZG-15) retrieved from marine sediment (Gillan and Perner, 2007) and shared only 91–92% sequence identity with the 16S rRNA gene sequence of “Candidatus Nitrospira salina”.

Surprisingly, North Sea time series clone P3_7 contained an insert most resembling the 16S rRNA gene sequence of Nitrospira defluvii (99.5% sequence identity to sequence NC_014355, Lücker et al., 2010) and clone P1_15 an insert resembling the 16S rRNA gene sequence of Nitrospira moscoviensis (97% sequence identity to NR_029287, Ehrich et al., 1995), which are Nitrospira species associated with freshwater environments.

DISCUSSION

BIOREACTOR CULTIVATION OF MARINE NORTH SEA NITRIFIERS

The bioreactor approach adopted to enrich North Sea nitrifiers proved successful. Within 6 months a marine assemblage of AOB and NOB was obtained by means of cultivation with ammonia as the substrate. The results from 16S rRNA gene-targeted PCR followed by cloning and sequencing indicated the presence of putative Nitrosomonas-like AOB (5/20 clones), Nitrospira-like NOB (12/20 clones), and Nitrosopina-like NOB (2/20 clones), representing novel species. The FISH analysis demonstrated the abundance of the Nitrosomonas-like AOB (80% of the total bacterial population) and Nitrospira-like NOB (10%) of the total bacterial population, but failed to detect Nitrosopina cells. Based on these results Nitrosomonas AOB and Nitrospira NOB are assumed responsible for the observed conversion of 2 mmol of ammonium per liter per day. Switching to nitrite as the sole substrate resulted in a high enrichment (80% of the total population based on FISH analysis) of Nitrospira NOB within another 6 months. The Nitrospira 16S rRNA gene sequences obtained from this point in time proved identical to the sequence obtained from the AOB/NOB co-culture indicating the species originally present in the marine assemblage was successfully stimulated. Phylogenetic analysis showed the enriched North Sea Nitrospira represents a novel species (“Candidatus Nitrospira salina”) only distantly related (94% 16S rRNA gene sequence identity) to the next taxonomically described species Nitrospira marina. In the study by Keuter et al. (2011) the Nitrospira in marine enrichment M1, derived from a marine recirculation aquaculture system, is hypothesized to originate from North Sea water because the system was started and refreshed with North Sea water. The high (within species-range) 16S rRNA gene sequence identity (98.7%) of “Candidatus Nitrospira salina” to the 16S rRNA gene sequence retrieved from enrichment M1 corroborates this.

The 16S rRNA gene reads mapping approach and subsequent 16S rRNA gene reconstruction based on metagenomic data corroborated (74% of all 16S rRNA gene reads were affiliated with Nitrospira) the FISH abundance data and showed that the enriched North Sea Nitrospira sp. persisted in the culture converting 3 mmol of nitrite per liter per day after 12 months of operation suggesting a quite stable microbial community. The TEM analysis data fits well with the known cell morphology of Nitrospira species. Watson et al. (1986) reported the presence of a large periplasmic space for Nitrospira marina and the presence of glycogen and polyphosphate deposits in cultures and Spieck et al. (1998) identified electron dense particles from the periplasmic space of Nitrospira mucoviscida as the nitrite-oxidizing enzyme system. In accordance with the aforementioned, the most striking attribute of the enriched North Sea Nitrospira sp. was a large periplasmic space containing putative proteins of the nitrite-oxidizing enzyme system as suggested by the presence of many electron dense particles. In addition, the cytoplasm contained putative storage material, such as glycogen, visible as large electron light particles. Most likely, storage of carbon was triggered by a phosphate limitation during the cultivation. This because TEM analysis was performed on biomass after 8 months of operation and to prevent carbon limitation the reactor had been supplemented with additional CO2 from month 7.5 onward. Additional phosphate to prevent phosphate limitation was provided only after 8 months which may have led to an imbalanced situation in which carbon was plentiful but phosphate was limiting.

RELEVANCE OF THE ENRICHED NITRIFIERS IN DUTCH COASTAL NORTH SEA WATER

It has been reported by Pommerning-Röser et al. (1996) that affinity for ammonia varies among members of different lineages within the AOB genus Nitrosomonas but tends to be relatively similar within a specific lineage. The clustering of the enriched North Sea Nitrosomonas AOB 16S rRNA gene sequence with Nitrosomonas species commonly associated with low substrate environments (Figure 1) therefore suggests this species is likewise adapted to relatively low substrate conditions. This thought is strengthened by the origin of clone sequence FH628323 (clone NitA40631) which shares 99% sequence identity to the sequence of the enriched North Sea Nitrosomonas AOB. This clone sequence was retrieved from brackish water from an anoxic fjord Nitinat Lake (Schmidtova et al., 2009), for which an ammonium concentration between 20 and 200 μM was reported. Maximum ammonium concentrations in the coastal North Sea water from which the enrichment is derived have, however, been reported to range from 10 to 13 μM during the winter months (Pitcher et al., 2011) which implies aerobic ammonia oxidation will likely be catalyzed by microorganisms with even higher affinities for ammonia. Moreover, AOB have been shown to be outnumbered by AOA (based on 16S rRNA and amoA gene copy numbers) in time series of Dutch coastal North Sea water (Wachtler et al., 2006; Pitcher et al., 2011). The enriched North Sea Nitrosomonas AOB therefore might exhibit a low abundance in coastal North Sea water and its contribution to in situ nitrification may be minor. The retrieval of clone sequences (3/20) from the North Sea time series nearly identical to the 16S rRNA gene sequence of “Candidatus Nitrospira salina” proves that this species does occur in the North Sea. The higher abundance of clone sequences (17/22) forming a separate distinct cluster suggests that another Nitrospira species may actually be more abundant and potentially contribute more to in situ nitrification. Moreover, our data suggested that a minor portion of the nitrifier community may have consisted of Nitrosopina NOB after 5.5 months of enrichment with ammonium.
Nitrospira species have often been detected in marine environments (e.g., Mincer et al., 2007; Reman et al., 2010; Santoro et al., 2010; Pusel et al., 2011). Based on our present study, we cannot exclude that Nitrospira NOB may be present in greater abundance or contributing to a greater extent in situ nitrite oxidation. Cultivation in a bio reactor set-up offers a higher degree of control over environmental parameters (pH, T, substrate concentration, product concentration) than more traditional batch cultivation. Selection for a particular species due to the cultivation conditions, however, cannot be excluded completely. Our enrichment was performed with a maximum nitrite concentration of 750 μM (during the first month of operation). Off et al. (2010) reported nitrite concentrations may have contributed to the dominance of “Candidatus Nitrospira defluvii” (isolated from a partially marine sponge to intermediate (6 mM) for Nitrospira marina to high (15–25 mM) for freshwater Nitrospira species. Based on this, the present bio reactor cultivation would be expected to yield a Nitrospira NOB associated with low levels of nitrite. Indeed the closest relatives (based on 16S rRNA gene sequence analysis) of the enriched North Sea Nitrospira originated from recirculation aquaculture systems which were described as relatively low nitrite environments (10–40 μM nitrite reported by Keuter et al., 2011; nitrite below detection reported by Brown et al., 2013). Substrate concentration may have contributed to the dominance of “Candidatus Nitrospira salina” in the final enrichment instead of Nitrospira marina-like or Nitrospira-like NOB.

Strikingly, the only pools (P3 and P4) from which “Candidatus Nitrospira salina” sequences were derived were also the only pools consisting of samples from outside the winter months (spring and summer; Table 2). Nitrospira defluvii (enriched from wastewater treatment sludge) Speck et al., 2006; Maihner et al., 2008; Lücker et al., 2010) and Nitrospira moscoviciensis (isolated from a partially corroded area of an iron pipe of a heating system, Ehrich et al., 1997) are commonly associated with freshwater environments. The detection of clone sequences most related (99.5% to Nitrospira defluvii, 97% identity to Nitrospira moscoviciensis, respectively) to 16S rRNA gene sequences from these Nitrospira species may be caused by terrestrial input (e.g., riverine influx) at the sampling site.

OUTLOOK

Further research, e.g., selective inhibition experiments of AOA versus AOB activity (Yan et al., 2012), may clarify the role of the enriched Nitrosomonas AOB species in Dutch coastal North Sea water nitrification. Bio reactor enrichments adopting more stringent substrate levels may result in marine microbial assemblages with a totally different species composition, which would be useful to compare and contrast to the one presently described. Collection of in situ abundance data (e.g., by quantitative PCR analyses) for different species of NOB (e.g., “Candidatus Nitrospira salina” versus other Nitrospira sp. and Nitrospira sp.) may help identify which NOB are of relevance to in situ nitrification. Seasonality in the abundance of this species may be corroborated by future reactor or laboratory enrichment experiments performed at different temperatures. Screening of a high resolution time series may aid in elucidating temporal changes in NOB community composition. The availability of the new Nitrospira species enriches our understanding of microbial nitrogen cycling.

ACKNOWLEDGMENTS

The authors would like to thank Holger Daums, Frank Mainzer, Christiane Dorminger, and Hanna Koch from the University of Vienna for valuable discussion as well as their provision of biomass from C. Nitrospira defluvii, N. moscoviciensis and the plasmids containing partial 16S rRNA genes from sublineage I, II, and IV Nitrospira used in this study. Jorin A. Veltman and Christian Gilissen from the UMC Nijmegen are acknowledged for financing/support and primary data analysis/mapping of the 454 sequencer data. The 454 sequencer was financed through ZonMW grant 911.66.36. Angela Pitcher and Elda Pananto from the Royal Netherlands Institute for Sea Research are thanked for providing the North Sea time series of high molecular weight DNA samples and Elly van Dornelaar (Utrecht University) for high pressure freezing for the TEM analysis. Joep Reiten and Krishna Nathoene are acknowledged for their work on the PCR analyses of the enriched North Sea Nitrospira species during their respective BSc internships at the Department of Microbiology of the Radboud University Nijmegen.

SCMH was supported by the Darwin Center of Biogeosciences (project numbers, 1051 and 3011), Daan Speth and Ke Ji by BE-Basic (607–2), Laura van Niftrik by NWO VENI grant 863.09.009) and Mike S. M. Jetten by ERC (Advanced grant 232937).

REFERENCES

Danser, H., Braul, A., Amann, R., Schleifer, K. H., and Wogen, M. (1999). The domain-specific probe EUB338 is insufficient for the detection of all Bacteria development and evaluation of a more comprehensive
March 2013 | Volume 4 | Article 60 |
Haaijer et al. A novel North Sea

Daims, H., Ramsing, N. B., Schleifer, Francis, C. A., Roberts, K. J., Beman, Adherent bacteria in heavy metal con-

A new obligately

moscoviensis sp. nov. and in phylog-

186, 16–23.

mitted salt-marine sediments. Bio-

Geuse-Romijn-van Eck, E. (1996). Physi-

tical and chemical tests for diagnosis of marine pathogenicity. NVL 4, 2 Nederlandse Normalisatie Instituut Rijnip, The Netherlands.
Hoffmann, S., Radax, R., Weckesser, D., Höltappels, M., Larik, G., Rapp, H. T., et al. (2009). Complex nitrogen cycling in the sponge Glasia bar-

Iourischik, S. (2000). Mikrobielle Popu-

lationsstruktur und -dynamik in einer streptomangroven Deelgebiete. Borkum. PhD Disserta-

tion, Department for Microbiology, Technical University Munich, Munich.

N. (2004). Combined mol-

cular and conventional analysis of nitrifying bacterium diversity in acti-

cated sludge: Nitraceaeaceae mobiles and Nitrobacter-like bacteria as dom-

13, 2538–2547.

lation of an autotrophic ammonia-

6, 2245–2256.

5, 1162–1175.

37, 341–351.

161, 440–450.

Limnol. Oceanogr. 60, 153–162.

2011). Crenarchaeol tracks win-

56, 2308–2318.

ric analysis of the anammoxo-

Appl. Microbiol. 64, 2042–2051.

Appl. Environ. Microbiol. 64, 2042–2051.

Appl. Microbiol. 64, 2042–2051.
Haaijer et al. A novel North Sea Nitrospira species

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 30 January 2013; paper pending published: 12 February 2013; accepted: 01 March 2013; published online: 18 March 2013.

Copyright © 2013 Haaijer, Ji, van Niftrik, Hoischen, Speth, Jetten, Sinninghe Damsté and Op den Camp. This open-access article is distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and any copyright notices concerning any third-party graphics etc.