The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/111456

Please be advised that this information was generated on 2017-12-15 and may be subject to change.
Unified character of correlation effects in unconventional Pu-based superconductors and δ-Pu

A. B. Shick,1,2 J. Kolorenc,2 J. Rusz,2,3 P. M. Oppeneer,3 A. I. Lichtenstein,4 M. I. Katsnelson,5 and R. Carluz1

1European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, D-76125 Karlsruhe, Germany
2Institute of Physics, ASCR, Na Slovance 2, CZ-18221 Prague, Czech Republic
3Dept. of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden
4University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
5Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

(Dated: January 17, 2013)

Electronic structure calculations combining the local-density approximation with an exact diagonalization of the Anderson impurity model show an intermediate $5f^6-5f^6$-valence ground state and delocalization of the $5f^5$ multiplet of the Pu atom $5f$-shell in PuCoIn$_5$, PuCoGa$_5$, and δ-Pu. The $5f$-local magnetic moment is compensated by a moment formed in the surrounding cloud of conduction electrons. For PuCoGa$_5$ and δ-Pu the compensation is complete and the Anderson impurity ground state is a singlet. For PuCoIn$_5$ the compensation is partial and the Pu ground state is magnetic. We suggest that the unconventional d-wave superconductivity is likely mediated by the $5f$-states antiferromagnetic fluctuations in PuCoIn$_5$, and by valence fluctuations in PuCoGa$_5$.

PACS numbers: 74.70.Tx, 74.45.+c, 74.20.Mn, 74.20.Pq

Providing a consistent description of correlation effects in the electronic structure of elemental actinides and their compounds is a complex problem due to the interplay between the localized and the itinerant nature of the 5f electrons. It is commonly accepted that 5f-electrons in light actinides form rather broad conduction bands whereas for the heavy actinides the 5f states are atomic-like. Johansson [1] described this situation as a “Mott transition in the 5f-electron sub-system” taking place between Pu and Am when moving along the Periodic Table. Katsnelson et al. [2] linked the broadening of the 5f band to the “atomic collapse” characterizing the transformation from the high-temperature expanded and the low-temperature compressed phases of Pu.

A quantitative description of the Mott transition in actinides [3] was obtained by the dynamical mean-field theory (DMFT) [4] more than 20 years after the concept was formulated. Further DMFT studies suggested an intermediate-valence nature of the Pu-atom 5f shell [5] and provided justification for the experimentally proved absence of magnetism in δ-Pu [6].

The intermediate-valence and nonmagnetic character of the $5f$ shell can play an important role in stabilizing the superconducting state exhibited by PuCoGa$_5$ below a critical temperature T_c of 18.5 K. [7,8]. The unconventional character of superconductivity in this compound is now generally accepted but the microscopic mechanism responsible for electron pairing remains unknown. The d-wave symmetry of the superconducting gap in PuCoGa$_5$ has been proven by point-contact spectroscopy experiments [9] that also provided the first spectroscopic measurements of the gap amplitude and its temperature dependence.

Recently, superconductivity has been discovered also in PuCoIn$_5$ [11], with $T_c = 2.5$ K. The experimental studies of this compound were immediately followed by conventional density functional theory (DFT) calculations in the local-density generalized-gradient approximation (LDA/GGA) [12,13]. Keeping in mind a well known failure of DFT in the case of δ-Pu [3], it can be expected that LDA/GGA does not provide an accurate description of the electronic structure for this strongly correlated material. A few static mean-field correlated band theory calculations were also performed [12,13], making use of different flavors of the LDA/GGA plus Coulomb's U (LDA+U) method. While being an improvement over the conventional band theory, the LDA(GGA)+U falls short in describing the itinerant-to-localized crossover of the $5f$ manifold in δ-Pu [3] and PuCoGa$_5$ [10].

Here, we report electronic structure calculations of PuCoIn$_5$, PuCoGa$_5$ and δ-Pu performed by combining LDA with the exact diagonalization (ED) [15] of a discretized single-impurity Anderson model [16]. In this approach, the band structure obtained by the relativistic version of the full-potential linearized augmented plane wave method (FP-LAPW) [17] is consistently extended to account for the full structure of the $5f$-orbital atomic multiplets and their hybridization with the conduction bands [18].

The starting point of our approach is the multi-band Hubbard Hamiltonian [19] $H = H^0 + H^{\text{int}}$. $H^0 = \sum_{i,j,\gamma} H_{ij}^{\gamma} c_i^\dagger \gamma c_j \gamma$, where i,j label lattice sites and $\gamma = (l m \sigma)$ mark spinorbitals $\{\phi_\gamma \}$, is the
one-electron Hamiltonian found from \textit{ab initio} electronic structure calculations of a periodic crystal; H_{int} is the on-site Coulomb interaction\cite{19} describing the f-electron correlation. We assume that electron interactions in the s, p, and d shells are well approximated in DFT.

The effects of the interaction Hamiltonian H_{int} on the electronic structure are described by a k-independent one-particle selfenergy $\Sigma(z)$, where z is a (complex) energy. The selfenergy is constructed with the aid of an auxiliary impurity model describing the complete seven-orbital $5f$ shell. This multi-orbital impurity model includes the full spherically symmetric Coulomb interaction, the spin-orbit coupling (SOC), and the crystal field (CF). The corresponding Hamiltonian can be written as\cite{10}:

$$H_{\text{imp}} = \sum_{km\sigma'} \left[e_f^{k\sigma'} b^\dagger_{km\sigma'} b_{km\sigma'} + \sum_{m\sigma} \xi \sigma \sigma' f^\dagger_{m\sigma} f_{m\sigma}
ight]$$

$$+ \sum_{mm'\sigma\sigma'} \left[\xi \mathbf{1} \cdot \mathbf{s} + \Delta_{\text{CF}} \right] b_{mm'\sigma} f_{m'\sigma'}$$

$$+ \sum_{km\sigma'} \left[V^k \right] \sigma \sigma' f^\dagger_{m\sigma} b_{km'\sigma'} + \text{h.c.} \right]$$

$$+ \frac{1}{2} \sum_{mm'm''m'''} \left[U_{mm'm''m'''} f^\dagger_{m''m'} f_{m''m'} + \text{h.c.} \right]$$

where $f^\dagger_{m\sigma}$ creates an electron in the $5f$ shell and $b^\dagger_{mn\sigma}$ creates an electron in the “bath” that consists of those host-band states that hybridize with the impurity $5f$ shell. The energy position ξ_f of the impurity level, and the bath energies ξ are measured from the chemical potential μ. The parameter ξ specifies the strength of the SOC and Δ_{CF} is the crystal-field potential at the impurity. The parameter matrices V^k describe the hybridization between the $5f$ states and the bath orbitals at energy ξ^k.

The band Lanczos method\cite{13} is employed to find the lowest-lying eigenstates of the many-body Hamiltonian H_{imp} and to calculate the one-particle Green’s function $[G^{\text{imp}}(z)]_{\pi\pi'}$ in the subspace of the f orbitals at low temperature ($k_B T = 1/500$ eV). The self-energy $[\Sigma(z)]_{\pi\pi'}$ is then obtained from the inverse of the Green’s-function matrix $[G^{\text{imp}}]$.

Once the self-energy is known, the local Green’s function $G(z)$ for the electrons in the solid, is used to construct an effective LDA+U potential V_U, which is inserted into Kohn–Sham-like equations:

$$-\nabla^2 + V_{\text{LDA}}(r) + V_U + \xi (\mathbf{1} \cdot \mathbf{s}) \Phi^\dagger_k(r) = \epsilon_k \Phi_k(r).$$

These equations are iteratively solved until self-consistency over the charge density is reached. In each iteration, a new Green’s function $G_{\text{LDA}}(z)$ [which corresponds to $G(z)$ from Eq. (2) with the self-energy Σ set to zero], and a new value of the $5f$-shell occupation are obtained from the solution of Eq. (3). Subsequently, a new self-energy $\Sigma(z)$ corresponding to the updated $5f$-shell occupation is constructed. Finally, the next iteration is started by evaluating the new local Green’s function, Eq. (4).

In order to determine the bath parameters V^k and ξ^k, we assume that the LDA represents the non-interacting model. We then associate the LDA Green’s function $G_{\text{LDA}}(z)$ with the Hamiltonian of Eq. (1) when the coefficients of the Coulomb interaction matrix are set to zero ($U_{mm'm''m'''} = 0$). The hybridization function $\Delta(\epsilon)$ is then estimated as $\Delta(\epsilon) = -\frac{1}{\pi} \text{Im} Tr [G_{\text{LDA}}^{-1}(\epsilon + i\delta)]$. The curve obtained for $\Delta(\epsilon)$ is shown in Fig. 1 together with the $j = 5/2, 7/2$ projected LDA densities of the f-states. The results also show that the hybridization matrix is, to a good approximation, diagonal in the $\{j, j_z\}$ representation. Thus, we assume the first and fourth terms in the impurity model, Eq. (1), to be diagonal in $\{j, j_z\}$, so that we only need to specify one bath state (six orbitals) with $\epsilon^k = \epsilon_{3j = 5/2}$ and $V^k = \epsilon_{3j = 5/2}$, and another bath state (eight orbitals) with $\epsilon^k = \epsilon_{3j = 7/2}$ and $V^k = \epsilon_{3j = 7/2}$. Assuming that the most important hybridization is the one occurring in the vicinity of E_F, the numerical values of the bath parameters V^k are found from the relation\cite{20}:

$$\sum_{k} \left| V^k \right|^2 \delta(\epsilon^k - \epsilon) = -\Delta(\epsilon)/N_f$$

integrated over the
energy interval, \(E_F - 0.5 \text{ eV} \leq \epsilon \leq E_F + 0.5 \text{ eV} \), with \(N_f = 6 \) for \(j = 5/2 \) and \(N_f = 8 \) for \(j = 7/2 \). The bath-state energies \(\epsilon_{5/2,7/2} \) shown in Table I are adjusted to approximately reproduce the LDA 5f-state occupations \(n_{5/2} \) and \(n_{7/2} \).

<table>
<thead>
<tr>
<th>Material</th>
<th>(n_{5/2})</th>
<th>(n_{7/2})</th>
<th>(\epsilon_{5/2})</th>
<th>(V_{5/2})</th>
<th>(\epsilon_{7/2})</th>
<th>(V_{7/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>PuCoIn_5</td>
<td>4.78</td>
<td>0.39</td>
<td>0.36</td>
<td>0.21</td>
<td>-0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>PuCoGa_5</td>
<td>4.38</td>
<td>0.76</td>
<td>0.25</td>
<td>0.29</td>
<td>-0.07</td>
<td>0.34</td>
</tr>
<tr>
<td>(\delta)-Pu</td>
<td>4.16</td>
<td>0.85</td>
<td>0.33</td>
<td>0.27</td>
<td>-0.01</td>
<td>0.36</td>
</tr>
</tbody>
</table>

In the calculations we used an in-house implementation \([21, 22]\) of the FP-LAPW method that includes both scalar-relativistic and spin-orbit coupling effects. The calculations were carried out assuming a paramagnetic state with crystal structure parameters for PuCoIn_5, PuCoGa_5, and \(\delta \)-Pu taken from Refs. \([11, 23, 24]\), respectively. The Slater integrals were chosen as \(F_0 = 4.0 \text{ eV} \), and \(F_2 = 7.76 \text{ eV} \), \(F_3 = 5.05 \text{ eV} \), and \(F_6 = 3.07 \text{ eV} \) \([22]\). They correspond to commonly accepted values for Coulomb’s \(U = 4.0 \text{ eV} \) and exchange \(J = 0.64 \text{ eV} \). The SOC parameters \(\xi = 0.28 \text{ eV} \) for PuCoIn_5 and PuCoGa_5 and 0.29 eV for \(\delta \)-Pu were determined from LDA calculations. CF effects were found to be negligible and \(\Delta_{\text{CF}} \) was set to zero. For the double-counting term entering the definition of the LDA+U potential, \(V_{U_{\text{FLL}}} \), we have adopted the fully-localized (or atomic-like) limit (FLL) \(V_{\text{dc}} = U(n_f - 1/2) - J(n_f - 1)/2 \). Furthermore, we set the radii of the atomic spheres to 3.1 a.u. (Pu), 2.3 a.u. (Co), 2.3 a.u. (Ga), and 2.5 a.u. (In). The parameter \(R_{Pu} \times K_{\text{max}} = 10.54 \) determined the basis set size, and the Brillouin zone (BZ) sampling was performed with 1152 k points. The self-consistent procedure defined by Eqs. \([4, 9]\) was repeated until the convergence of the 5f-manifold occupation \(n_f \) was better than 0.01.

We are now ready to discuss the solution of Eq. (1). For PuCoIn_5, the ground state of the cluster formed by the 5f shell and the bath is given by a superposition of a magnetic sextet (23\%) and a non-magnetic singlet (77\%), with occupation numbers \(\langle n_f \rangle = 5.40 \) in the shell and \(\langle n_{\text{bath}} \rangle = 8.40 \) in the bath states. This ground state is not a singlet and carries a non-zero magnetic moment. For the 5f shell alone, the expectation values of the spin \(\langle S_f \rangle \), orbital \(\langle L_f \rangle \) and total \(\langle J_f \rangle \) angular moments can be calculated as \(\langle X_f^2 \rangle = X_f(X_f + 1), \langle X_f = S_f, L_f, J_f \rangle \), giving \(S_f = 2.27 \), \(L_f = 3.90 \), and \(J_f = 2.09 \). The individual components of the moments vanish, \(\langle S_f^2 \rangle = \langle L_f^2 \rangle = 0 \), unless the symmetry is broken by an external magnetic field.

In the case of PuCoGa_5, on the other hand, the hybridized ground state of the impurity is a non-magnetic singlet with all angular moments of the 5f-bath cluster equal to zero \(\langle S = L = J = 0 \rangle \). It consists of \(\langle n_f \rangle = 5.30 \) f states and \(\langle n_{\text{bath}} \rangle = 8.70 \) bath states. In a pictorial way, we can imagine that the magnetic moment of the 5f shell (for which we get \(S_f = 2.18 \), \(L_f = 4.05 \), \(J_f = 2.43 \)) is completely compensated by the moment carried by the electrons in the conduction band. As the value of the 5f magnetic moment fluctuates in time, because of the intermediate-valence electronic configuration, this compensation must be understood as dynamical in nature. The same situation is realized in \(\delta \)-Pu (\(S_f = 2.11 \), \(L_f = 4.21 \), \(J_f = 2.62 \)), whose ground state is found to be a nonmagnetic singlet with \(\langle n_f \rangle = 5.21 \) and \(\langle n_{\text{bath}} \rangle = 8.79 \).

The 5f-orbital density of states (DOS) obtained from Eq. (2) for the three investigated compounds is shown in Fig. 2. Below the Fermi energy \(E_F \) the DOS exhibits the three-peak structure typical for Pu and for a number of its compounds, and its shape is in good agreement with experimental photoemission spectra. It can be noticed that the multiplets for the atomic \(f^6 \) configuration \((f^6 \rightarrow f^5 \) transition, lying closer to \(E_F \)) are better resolved than for the \(f^5 \) part of the spectrum \((f^5 \rightarrow f^4 \) transition).

Comparison with previous LDA+Hubbard-I (HIA) calculation \([18]\), and PuCoGa_5 \([20]\) shows that the three-peak manifold lying above \(2 \text{ eV} \) binding energy has a slight upright shift towards \(E_F \). At binding energies around \(4 \text{ eV} \), the LDA+HIA peaks are substantially modified, and in the LDA+ED calculations they are spread over a \(\sim 3 \text{ eV} \) energy interval. These changes in the DOS are induced by the hybridization and suggest partial delocalization of the \(f^5 \) multiplet. This is a situation suggested first by Hanzawa \([27]\) in intermediate-valence rare-earth compounds such as SmS or SmB_6, where fluctuations occur between two atomic-like \(4f \) configurations. Here, the 5f states remain localized for the \(f^6 \) configuration but become itinerant for the \(f^5 \) one.

As the many-body resonances lying closer to the Fermi energy are produced by \(f^6 \rightarrow f^5 \) multiplet transitions, they are in way analogs to the Racah peaks, specific transitions between Racah multiplets \([28]\) of \(f^n \) and \(f^{n\pm1} \). On the other hand, these structures determine the metallic character of the investigated materials that can therefore be considered as a realization of a Racah metal, situated between the two limiting cases represented by fully localized intermediate-valence rare-earth compounds and metallic systems \((e.g., \text{nickel})\) with a non-integer number of \(d \) electrons.

Both PuCoGa_5 and \(\delta \)-Pu display a temperature-independent magnetic susceptibility at low temperatures \([3, 29]\). Analogous to the intermediate-valence rare-earth compounds \([30]\), the magnetic susceptibil-
The electronic specific-heat coefficient can be estimated as \[\gamma = \frac{\pi^2}{3 k_B^2} \text{Tr}[N(E_F)(1 - \frac{\partial^2}{\partial \omega^2})](\omega=0) \]. For \(\delta \)-Pu, we get \(\approx 44 \text{ mJ K}^{-2} \text{ mol}^{-1} \), in very good agreement with experimental data. For PuCoGa\(_5\), we get \(\approx 43 \text{ mJ K}^{-2} \text{ mol}^{-1} \) which is smaller than the experimental value of 80–100 mJ K\(^{-2}\) mol\(^{-1}\). For PuCoIn\(_5\), the estimated \(\gamma \) value of \(\approx 52 \text{ mJ K}^{-2} \text{ mol}^{-1} \) is even further away from the experimental value of \(\approx 180 \text{ mJ K}^{-2} \text{ mol}^{-1} \). In this case, it is difficult to obtain an accurate value for \(\gamma \) due to the sharp DOS peak in the vicinity of \(E_F \) (see Fig. 2). When taken right at the DOS peak position, the \(\gamma \) value of 95 mJ K\(^{-2}\) mol\(^{-1}\) is obtained. Also, note that a possible enhancement of \(\gamma \) due to the electron-phonon interaction is not taken into account.

FIG. 2. (Color online) \(f \)-electron density of states (DOS, \(j = 5/2, 7/2 \) projected) for the Pu atom in PuCoIn\(_5\) (a), PuCoGa\(_5\) (b) and \(\delta \)-Pu (c).

FIG. 3. (Color online)(Top) The band structure with \(f \)-weight fatbands for PuCoIn\(_5\), and (bottom) the Fermi surface of PuCoGa\(_5\) and PuCoIn\(_5\) obtained from LDA+ED calculations. The shade of colors encodes the size of the energy gradient.

Figure 3 shows the band structure and the corre-
sponding Fermi Surface (FS) for PuCoIn$_5$, calculated from the solutions of Eq. 3, which represents an extended LDA+U static-mean-field band structure with the 5f^5-states occupation matrix obtained from the local impurity Greens function Eq. 2. For comparison, Fig. 5 shows also the FS for PuCoGa$_5$ (Fig. S2 of Ref. 10). Close similarities in the band structure of the two compounds are immediately apparent. Both are compensated multiband metals, as the Fe-based superconductors, and for both materials the f bands move away from the Fermi level when the Coulomb-U is included, as can be seen by examining the f-weighted fatbands. The Fermi surfaces are composed by four sheets (1–4), one that is hole-like (FS-1) and three that are electron-like (FS-2,3,4). The Fermi velocities ratio $v_{\pi}^2/(v_{\pi}^2)$ of 1.54 for PuCoIn$_5$, and 1.55 for PuCoGa$_5$ are calculated in reasonable agreement with the experimental anisotropy of the critical field H_{c2}, 2.0 for PuCoIn$_5$, and indicate a two-dimensional character of the electronic structure.

DFT electronic structure calculations for Pu-based 115 material have recently been reported by Ronning et al. 13 and Zhu et al. 12 Their analysis of the DFT band structure and FS (see, e.g., Figs. 3 and 4 of Ref. 12) indicated two possible superconducting gap symmetries, the so-called $s\pm$ and $d_{x^2−y^2}$, which correspond to a pairing potential peaked at the $(\pi,\pi,0)$ reciprocal lattice position. The conclusion was drawn that for Pu-based “115” superconductors, the $s\pm$ order parameter is more likely than the $d_{x^2−y^2}$ one. This is in contradiction with point-contact spectroscopy results 10 showing a zero-bias conductance anomaly that is not expected for $s\pm$ gap symmetry 32.

The presence of a 5f local moment dynamically compensated by the surrounding conduction electrons together with the f^5-f^6 intermediate-valence ground state in PuCoGa$_5$ and PuCoIn$_5$ opens various possibilities for unconventional superconductivity. In PuCoIn$_5$ the Pu f-shell local moment is not fully compensated and superconductivity could be related to an antiferromagnetic quantum critical point 11,33. On the other hand, in PuCoGa$_5$ the ground state is a singlet and it seems more plausible that superconductivity results from a valence instability, as in heavy-fermion superconductors 34.

We are grateful to D. Daghero and L. Havela for helpful comments and discussion. We acknowledge financial support from Czech Republic Grants No. GACR P204/10/0330 and No. GAAV IIA100100912 and from DFG Grant No. 436 TSE 113/53/0-1.

References