Search for direct slepton and gaugino production in final states with two leptons and missing transverse momentum with the ATLAS detector in pp collisions at $\sqrt{s} = 7$ TeV

The ATLAS Collaboration

Abstract

A search for the electroweak pair production of charged sleptons and weak gauginos decaying into final states with two leptons is performed using 4.7 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 7$ TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excesses are observed with respect to the prediction from Standard Model processes. In the scenario of direct slepton production, if the sleptons decay directly into the lightest neutralino, left-handed slepton masses between 85 and 195 GeV are excluded at 95% confidence level for a 20 GeV neutralino. Chargino masses between 110 and 340 GeV are excluded in the scenario of direct production of wino-like chargino pairs decaying into the lightest neutralino via an intermediate on-shell charged slepton for a 10 GeV neutralino. The results are also interpreted in the framework of the phenomenological minimal supersymmetric Standard Model.
Search for direct slepton and gaugino production in final states with two leptons and missing transverse momentum with the ATLAS detector in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV

The ATLAS Collaboration

Abstract

A search for the electroweak pair production of charged sleptons and weak gauginos decaying into final states with two leptons is performed using 4.7 fb\(^{-1}\) of proton-proton collision data at \(\sqrt{s} = 7 \) TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excesses are observed with respect to the prediction from Standard Model processes. In the scenario of direct slepton production, if the sleptons decay directly into the lightest neutralino, left-handed slepton masses between 85 and 195 GeV are excluded at 95\% confidence level for a 10 GeV neutralino. Chargino masses between 110 and 340 GeV are excluded in the scenario of direct production of wino-like chargino pairs decaying into the lightest neutralino via an intermediate on-shell charged slepton for a 10 GeV neutralino. The results are also interpreted in the framework of the phenomenological minimal supersymmetric Standard Model.

1. Introduction

Weak scale Supersymmetry (SUSY) \[1\,2\] is an extension to the Standard Model (SM). It postulates for each known boson or fermion the existence of a particle whose spin differs by one-half unit from the SM partner. The introduction of these new particles provides solutions to the hierarchy problem \[10\,13\] and, if R-parity is conserved \[14\,15\], a dark matter candidate in the form of the lightest supersymmetric particle (LSP). R-parity conservation is assumed in this letter, hence SUSY particles are always produced in pairs. In a large fraction of the SUSY parameter space the LSP is the weakly interacting lightest neutralino, \(\tilde{\chi}_1^0 \).

Gluinos (\(\tilde{g} \)) and squarks (\(\tilde{q} \)) are the SUSY partners of gluons and quarks. Charginos (\(\tilde{\chi}_i^\pm \), \(i = 1, 2 \)) and neutralinos (\(\tilde{\chi}_j^0 \), \(j = 1, 2, 3, 4 \)) are the mass eigenstates formed from the linear superposition of the SUSY partners of the Higgses and electroweak gauge bosons: higgsinos, winos and the bino (collectively, gauginos). The SUSY partners of the charged leptons are the selectron, smuon and stau, collectively referred to as charged sleptons (\(\tilde{\ell}^\pm \)). The SUSY partners of the standard model left-handed leptons are referred to as left-handed sleptons. If the masses of the gluinos and squarks are greater than a few TeV and the weak gauginos and sleptons have masses of a few hundreds of GeV, the direct production of weak gauginos and sleptons may dominate the production of SUSY particles at the Large Hadron Collider (LHC). Such a scenario is possible in the general framework of the phenomenological minimal supersymmetric SM (pMSSM) \[19\]. Naturalness suggests that third generation sleptics, charginos and neutralinos should have masses of a few hundreds of GeV \[20\,21\]. Light sleptons are expected in gauge mediated \[22\] and anomaly mediated \[23\,24\] SUSY breaking scenarios. Light sleptons could also play a role in helping SUSY to provide a relic dark matter density consistent with observations \[25\,26\].

This letter presents the first search for direct left-handed slepton pair production at the LHC, and a dedicated search for direct chargino pair production in final states with two leptons (electrons, \(e \), or muons, \(\mu \)). Searches for the general pair production of gauginos decaying into two-lepton final states are also presented. The analysis presented in this letter is not sensitive to right-handed slepton pair production which has much lower cross-section.

1.1. Direct Slepton and Chargino Pair Production

Sleptons can be produced directly in a process similar to Drell-Yan production \[27\]. The search in this letter targets the direct pair production of left-handed charged sleptons, where each charged slepton \(\tilde{\ell} \) (selectron or smuon) decays through \(\tilde{\ell}^\pm \rightarrow \ell^\pm \tilde{\chi}_1^0 \), yielding a final state with two same flavour (SF) charged leptons. The undetected \(\tilde{\chi}_1^0 \) gives rise to large missing transverse momentum in the event. Previous experimental searches for direct slepton production \[28\] assumed gaugino unification. In the present work this assumption is dropped, thereby removing the lower limit on the mass of the \(\tilde{\chi}_1^0 \). Direct chargino pair production, where each chargino decays through \(\tilde{\chi}_1^\pm \rightarrow \ell^\pm \nu \tilde{\chi}_1^0 \) leads to a signature similar to that of slepton pair production. The analysis presented also targets this production channel and subsequent decay, setting limits on the chargino mass, without the assumptions on the mass of the \(\tilde{\chi}_1^0 \) usually present in trilepton searches.
1.2. Other Weak Gaugino Production

In the general framework of the pMSSM, several weak gaugino production channels can lead to final states with two leptons. Production modes such as $\tilde{\chi}_2^0 \tilde{\chi}_1^\pm$ or $\tilde{\chi}_2^0 \chi_{1,2,3,4}^\pm$, with the subsequent decays $\tilde{\chi}_2^0 \rightarrow \ell^\pm \tilde{\chi}_1^0$ and $\chi_{1,2,3,4}^\pm \rightarrow q\bar{q} \tilde{\chi}_1^0$ are addressed by a signal region containing two leptons and two jets. In order to complement existing and future trilepton searches a dedicated signal region with two same charge leptons is designed to be sensitive to weak gaugino production channels can lead to final states with transverse energy due to the presence of two $\tilde{\chi}_1^0$.

Model-independent visible cross-section upper limits are obtained in each signal region to address the large variety of possible production and decay modes in the gaugino sector. The results are also interpreted in the framework of the pMSSM. This search is not sensitive to weak gaugino decays via on-shell Z bosons. Previous limits on weak chargino and neutralino production have been placed at LEP [28], the Tevatron [29, 30] and at the LHC [31, 32].

2. The ATLAS Detector

The ATLAS experiment [33] is a multi-purpose particle physics detector with a forward-backward symmetric cylindrical geometry and nearly 4π coverage in solid angle. It contains four superconducting magnet systems, which include a thin solenoid surrounding the inner tracking detector (ID), and barrel and end-cap toroids supporting a muon spectrometer. The ID occupies the pseudorapidity region $|\eta| < 2.5$ and consists of a silicon pixel detector, a silicon microstrip detector (SCT), and a transition radiation tracker (TRT). In the pseudorapidity region $|\eta| < 3.2$, high-granularity liquid-argon (LAr) electromagnetic (EM) sampling calorimeters are used. An iron-scintillator tile calorimeter provides coverage for hadron detection over $|\eta| < 1.7$. The end-cap and forward regions, spanning $1.5 < |\eta| < 4.9$, are instrumented with LAr calorimeters for both EM and hadronic measurements. The muon spectrometer surrounds the calorimeters and consists of a system of precision tracking chambers ($|\eta| < 2.7$), and detectors for triggering ($|\eta| < 2.4$).

3. Simulated Samples

3.1. Standard Model Production

Monte Carlo (MC) simulated event samples are used to develop and validate the analysis procedure and to evaluate the SM backgrounds in the signal region. The dominant backgrounds include fully leptonic tt, $Z/\gamma^* +$jets, single top and dibosons (WW, WZ and ZZ). Production of top quark pairs is simulated with POWHEG [34], using a top quark mass of 172.5 GeV. Samples of W to $l\nu$ and Z/γ^* to ll, produced with accompanying jets (of both light and heavy flavour), are obtained with ALPGEN [35]. Diboson (WW, WZ, ZZ) production is simulated with SHERPA [36] in signal regions requiring jets and with HERWIG [37] elsewhere. Single top production is modelled with MC@NLO [38, 40]. Fragmentation and hadronisation for the ALPGEN and MC@NLO samples are performed with HERWIG, using JIMMY [41] for the underlying event, and with PYTHIA [42] for the POWHEG sample. Expected diboson yields are normalised using NLO QCD predictions obtained with MCFM [43, 44]. The top-quark contribution is normalised to approximate next-to-next-to-leading order (NNLO) calculations [45]. The inclusive W and Z/γ^* production cross-sections are normalised to the next-to-next-to-leading order (NNLO) cross-sections obtained using FEWZ [46]. MC@NLO samples are used to assess the systematic uncertainties associated with the choice of generator for tt production, and AcerMC [47] samples are used to assess the uncertainties associated with initial and final state radiation (ISR/FSR) [48]. ALPGEN, HERWIG and SHERPA samples are used to assess the systematic uncertainties associated with the choice of generator for diboson production. SHERPA is used to evaluate the small contribution from internal conversions.

3.2. Direct Slepton and Direct Gaugino Production

Four signal regions are designed, optimised for the discovery of various SUSY models where sleptons or gauginos are directly produced in the pp interaction. The pMSSM framework is used to produce two sets of signal samples, one where sleptons are directly produced and one where gauginos are directly produced. These samples are used to set the limits on the masses of the directly produced sleptons and gauginos. Samples are also produced in a simplified model at given LSP and chargino masses, and are then used to set limits on the chargino mass, independently of the $\tilde{\chi}_1^0$ mass. In all SUSY models the masses of the squarks, gluinos and third generation supersymmetric partners of the fermions are large (2.5 TeV in the direct slepton production pMSSM models and 2 TeV in the direct gaugino pMSSM and simplified models).

The direct slepton models are based on those described in Ref. [49]. Masses of all gauginos apart from the $\tilde{\chi}_1^0$ are set to 2.5 TeV. The sensitivity of the present search to a given model is determined by the slepton production cross-section and by the mass of the $\tilde{\chi}_1^0$, which affects the kinematics of the final state leptons. The mass of the bino-like $\tilde{\chi}_1^0$ is varied by scanning values of gaugino mass parameter M_1 in steps of 20 GeV in the range 20–160 GeV. The common selectron and smuon mass is generated in the range 70–190 GeV, scanned in steps of 20 GeV.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the z-axis along the beam pipe. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity η is defined in terms of the polar angle θ by $\eta = -\ln \tan(\theta/2).$
In the considered simplified models, the masses of the relevant particles \((\tilde{\chi}^0_1, \tilde{\tau}, \tilde{\ell}, \tilde{\chi}^0_3, \tilde{\chi}^0_1)\) are the only free parameters. The latter are wino-like and \(\tilde{\chi}^0_3\) is bino-like. The \(\tilde{\chi}^\pm_1\) are pair-produced via the \(s\)-channel exchange of a virtual gauge boson and decay via left-handed sleptons, including \(\tilde{\tau}\), and \(\nu\) of mass \(m_\nu = m_{\tilde{\ell}} = (m_{\tilde{\chi}^0_1} + m_{\tilde{\chi}^0_3})/2\) with a branching ratio of 50% each. The cross-section for \(\tilde{\chi}^\pm_1\) pair production in these models is as high as 3 pb for a chargino mass of 50 GeV and decreases rapidly at higher masses, reaching below \(\sim 0.2\) pb for masses above 200 GeV.

For the other weak gaugino production channels, a set of pMSSM models with intermediate sleptons in the gaugino decay chain are generated. The right-handed sleptons, with a common mass for all three generations, are inserted with a combination of single and double lepton triggers. The single electron triggers vary with the data taking period, and the double lepton triggers reach similar plateau efficiencies, but at lower \(p_T\) thresholds: \(> 17\) GeV for the dielectron trigger, and \(> 12\) GeV for the dimuon trigger; for the electron-muon trigger the thresholds are 15 and 10 GeV respectively. One or two signal leptons are required to have triggered the event, and be matched to the online triggered leptons: one lepton if one is above the appropriate single lepton trigger plateau threshold, or two leptons if there is no such lepton. An exception to this rule is applied in the \(\mu\mu\) channel. In this case when one lepton is above the single lepton trigger plateau threshold, and the other above the double lepton threshold, a logical OR of both triggers is used to recover efficiency.

Jet candidates are reconstructed using the anti-\(k_T\) jet clustering algorithm \([55]\) with a distance parameter of 0.4. The jet candidates are corrected for the effects of calorimeter non-compensation and inhomogeneities by using \(p_T\) and \(\eta\)-dependent calibration factors based on MC simulations and validated with extensive test-beam and collision-data studies \([56]\). Only jet candidates with transverse momenta \(p_T > 20\) GeV and \(|\eta| < 4.5\) are subsequently retained. Jets likely to have arisen from detector noise or cosmic rays are rejected \([56]\). Electron candidates are required to have \(p_T > 10\) GeV, \(|\eta| < 2.47\), and pass the “medium” shower shape and track selection criteria of Ref. \([57]\). Muon candidates are reconstructed using either a full muon spectrometer track matched to an ID track, or a partial muon spectrometer track matched to an ID track. They are then required to have \(p_T > 10\) GeV and \(|\eta| < 2.4\). They must be reconstructed with sufficient hits in the pixel, SCT and TRT detectors.

The measurement of the missing transverse momentum two-vector, \(\vec{p}_T^{\text{miss}}\), and its magnitude, \(E_T^{\text{miss}}\), is based on the transverse momenta of all electron and muon candidates, all jets, and all clusters of calorimeter energy with \(|\eta| < 4.9\) not associated to such objects. The quantity \(E_T^{\text{miss,rel}}\) is defined as:

\[
E_T^{\text{miss,rel}} = \begin{cases}
E_T^{\text{miss}} & \text{if } \Delta\phi_{\ell,j} \geq \pi/2 \\
E_T^{\text{miss}} \times \sin \Delta\phi_{\ell,j} & \text{if } \Delta\phi_{\ell,j} < \pi/2
\end{cases}
\]

where \(\Delta\phi_{\ell,j}\) is the azimuthal angle between the direction of \(\vec{p}_T^{\text{miss}}\) and that of the nearest electron, muon or jet. In a situation where the momentum of one of the jets or leptons is significantly mis-measured, such that it is aligned with the direction of \(\vec{p}_T^{\text{miss}}\), only the \(E_T^{\text{miss}}\) component perpendicular to that object is considered. This is used to significantly reduce mis-measured \(E_T^{\text{miss}}\) in processes such as \(Z/\gamma^* \rightarrow e^+e^-\mu^+\mu^-\) \([58]\).

Signal electrons, muons and jets are then selected. Signal electrons are further required to pass the “tight” \([57]\) quality criteria, which place additional requirements on the ratio of calorimetric energy to track momentum, and the number of high-threshold hits in the TRT. They are also required to be isolated: the \(p_T\) sum of tracks above 1 GeV within a cone of size \(\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} = 0.2\) around each electron candidate (excluding the electron candidate itself) is required to be less than 10% of the
electron p_T. Signal muons must also be isolated: the p_T sum of tracks within a cone of size $\Delta R = 0.2$ around the muon candidate is required to be less than 1.8 GeV.

Signal jets are subject to the further requirements $p_T > 30$ GeV, $|\eta| < 2.5$ and a "jet vertex fraction" greater than 0.75. The jet vertex fraction is defined as the total track momentum associated to the jet and coming from the primary vertex divided by the total track transverse momentum in the jet.

The jet vertex fraction quantifies the fraction of track transverse momentum from the primary vertex, associated to a jet. This variable is used to remove jets that originated from other collisions, and also discards jets without reconstructed tracks.

A b-tagging algorithm [50], which exploits the long lifetime of weak b- and b-hadron decays inside a candidate jet, is used to identify jets containing a b-hadron decay. The mean nominal b-tagging efficiency, determined from $t\bar{t}$ MC events, is 80%, with a misidentification (mis-tag) rate for light-quark/gluon jets of less than 1%. Scale factors (which depend on p_T and $|\eta|$) are applied to all MC samples to correct for small discrepancies in the b-tagging performance observed in data with respect to simulation.

Basic data quality requirements are then applied. Selected events in each signal region (SR) and control region (CR) must satisfy the following requirements. The primary vertex in the event must have at least five associated tracks and each event must contain exactly two signal leptons of opposite sign (OS) or same sign (SS). Both of these leptons must additionally satisfy the full list of lepton reconstruction criteria. The processes directly targeted by each SR are stated explicitly in Table 1.

Table 1: Decay modes targeted by each SR, $\tilde{\chi}_i^\pm$ denotes either a chargino or a neutralino. In decays producing three real leptons, one must be mis-reconstructed or fall outside the acceptance of the detector.

<table>
<thead>
<tr>
<th>Targeted Process</th>
<th>Signal Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ell^+\ell^- \rightarrow (\ell^+\nu_{\ell}^+) + (\ell^-\nu_{\ell}^-)$</td>
<td>SR-m_{T2}</td>
</tr>
<tr>
<td>$\tilde{\chi}i^\pm + \tilde{\chi}i^\mp \rightarrow (\ell^+\nu{\ell}^+) + (\ell^-\nu{\ell}^-)$</td>
<td>SR-m_{T2}, SR-OSjveto</td>
</tr>
<tr>
<td>$\tilde{\chi}_i^0 \rightarrow (\ell^+\ell^- + q\bar{q})$</td>
<td>SR-2jets</td>
</tr>
<tr>
<td>$\tilde{\chi}_i^0 \rightarrow (\ell^+\ell^- + q\bar{q})$</td>
<td>SR-SSjveto, SR-OSjveto</td>
</tr>
</tbody>
</table>

5. Signal Regions

In this analysis four SR are defined. The first and main SR (labelled SR-m_{T2}) exploits the "stransverse" mass variable, m_{T2} [64, 65], to provide sensitivity to both $\tilde{\chi}_1^\pm$ and $\tilde{\ell}^\pm$ pair production. This variable is defined as:

$$m_{T2} = \min_{q_T + r_T = p_T^\text{miss}} \left(\max \left(m_T(p_T^F, q_T), m_T(p_T^F, r_T) \right) \right),$$

where p_T^F and p_T^miss are the transverse momenta of the two leptons, and q_T and r_T are two vectors which satisfy $q_T + r_T = p_T^\text{miss}$. m_T indicates the transverse mass, m_{T2}.

5.1. Direct Slepton and Chargino Pair Production

In SR-m_{T2} the properties of m_{T2} are exploited to search for $\tilde{\ell}^\pm\tilde{\ell}^\mp$ and $\tilde{\chi}_1^\pm\tilde{\chi}_1^\mp$ production followed by decay to final states containing exactly two OS leptons (of different flavour, DF, or same flavour, SF), no signal jets, and E_T^miss from the two $\tilde{\chi}_1^0$. In this SR $t\bar{t}$ and WW are dominant backgrounds. For large mass differences between the
sleptons (charginos) and the lightest neutralino, the m_{T2} distribution for signal events extends significantly beyond the distributions for $t\bar{t}$ and diboson backgrounds. The optimised value for the lower m_{T2} requirement is 90 GeV, just above the W boson mass (which is the approximate end-point of the WW and $t\bar{t}$ distributions).

A rejection of events with m_T within 10 GeV of the Z mass reduces $Z/\gamma^* +$ backgrounds. For the direct slepton pMSSM models with a 20 GeV neutralino, the product of the kinematic and geometrical acceptance and reconstruction and event selection efficiencies varies between 0.1 and 4.0% in this SR for slepton masses between 90 and 190 GeV. For fixed 190 GeV slepton mass, this product increases from 0.2 to 4.0% as the neutralino mass decreases from 140 to 20 GeV. In the simplified models, for $\tilde{\chi}_1^+\tilde{\chi}_1^-$ pair production, the product of acceptance and efficiency ranges between 1 and 7%, increasing towards higher chargino and lower neutralino masses.

In SR-OSjvet, a different approach to reducing the backgrounds is taken. The m_{T2} variable is not used, and instead more stringent requirements are replaced on E_{miss} to suppress the $t\bar{t}$ background. The dominant Z background is suppressed by rejecting events with m_{T2} within 10 GeV of the Z boson mass. The final requirement, on E_{miss}, further increases sensitivity to the signals which are associated with much higher $E_{\text{T}}^{\text{miss}}$ than the SM backgrounds. In the simplified models, for $\tilde{\chi}_1^+\tilde{\chi}_1^-$ pair production, the product of acceptance and efficiency ranges between 1 and 8%, increasing towards higher chargino and lower neutralino masses.

In SR-mT2 the expected number of direct slepton signal events for $m_{\tilde{t}} = 130$ GeV and $m_{\tilde{\chi}^0} = 20$ GeV is 20.7±0.8(syst)±0.6(theory), where the first uncertainty denotes experimental uncertainties detailed below, while the theory uncertainty contains PDF and scale uncertainties. In SR-OSjvet the expected number of direct chargino pair events with $m_{\tilde{\chi}_1^\pm} = 175$ GeV and $m_{\tilde{\chi}_1^\pm} = 25$ GeV is 67.8±3.4(syst)±2.3(theory).

5.2. Other Weak Gaugino Production

In the production channel and decay $\tilde{\chi}_2^0 \to (\ell^+\ell^-\tilde{\chi}_1^0) + (q\bar{q}\tilde{\chi}_1^0)$ the resulting OS two lepton final state has significant E_{miss} and at least two signal jets. The region SR-2jets is thus sensitive to these decays. In SR-2jets, top background is reduced using a “top-tag” veto. The top-tagging requirement is imposed through the use of the transverse mass variable m_{CT} [63]. This observable can be calculated from the four-momenta of the selected signal jets and leptons:

$$m_{\text{CT}}(v_1, v_2) = [E_T(v_1) + E_T(v_2)]^2 - [p_T(v_1) - p_T(v_2)]^2,$$

where v_1 can be a lepton (l), jet (j) or a lepton-jet combination. Transverse momentum vectors are defined by p_T and transverse energies E_T are defined as $E_T = \sqrt{p_T^2 + m^2}$.

Table 3: Requirements for entering each CR for top, WW and $Z + X$ background estimation in the OS SR. These are used to estimate the top background in all OS SR, WW in SR-OSjvet and $Z + X$ in all SF channels of the OS SR. When each OS SR requires differing CR definitions, the conditions are given as a comma separated list (SR-OSjvet, SR-2jets, SR-mT2). The Z- veto is a rejection of events with m_{T2} within 10 GeV of the Z-mass (91.2 GeV), whereas the Z-veto defines the reverse. In the WW control region the b-jets considered are those with $p_T > 20$ GeV. The values quoted for E_{miss} are in units of GeV.

<table>
<thead>
<tr>
<th>m_{T2}</th>
<th>Z-veto</th>
<th>Z-veto</th>
<th>Z-window</th>
</tr>
</thead>
<tbody>
<tr>
<td>signal jets</td>
<td>≥ 2</td>
<td>=0</td>
<td>=0, ≥ 2, ≥ 0</td>
</tr>
<tr>
<td>signal b-jets</td>
<td>≥ 1</td>
<td>=0</td>
<td>≥ 0, = 0, ≥ 0</td>
</tr>
<tr>
<td>E_{T}</td>
<td>> 100, 50, 40</td>
<td>70–100</td>
<td>> 100, 50, 40</td>
</tr>
<tr>
<td>other</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The quantities $m_{\text{CT}}(j,l)$, $m_{\text{CT}}(l,l)$ and $m_{\text{CT}}(j,l,jl)$ are bounded from above by analytical functions of the top quark and W boson masses. A top-tagged event must have at least two jets with $p_T > 30$ GeV, and the scalar sum of the p_T of at least one combination of two signal jets and the two signal leptons in the event must exceed 100 GeV. Furthermore, top-tagged events are required to possess m_{CT} values calculated from combinations of signal jets and leptons consistent with the expected bounds from $t\bar{t}$ events as described in Ref. [64]. Further top rejection is achieved using a veto on any events containing a signal jet tagged as a b-jet. Z backgrounds are reduced using the Z-veto, and sensitivity increased by searching at high-E_{miss}. The expected number of signal events in SR-2jets from $\tilde{\chi}_2^0 \tilde{\chi}_1^\pm \to (\ell^+\ell^-\tilde{\chi}_1^0) + (q\bar{q}\tilde{\chi}_1^0)$ for a pMSSM point with $M_1 = 100$ GeV, $M_2 = 120$ GeV, $\mu = 100$ GeV is 37.6±4.9(syst)±7.0(theory).

In the regions targeting fully-leptonic $\tilde{\chi}_2^0 \tilde{\chi}_1^\pm$ decays (SR-OSjvet and SR-SSjvet), a veto on events containing a signal jet reduces hadronic backgrounds, and high E_{miss} increases the sensitivity to SUSY decays. The final state leptons can be of either OS or SS. In the absence of significant expected Z background in the SS SR, no Z-veto is applied. The expected number of signal events in SR-SSjvet from fully-leptonic $\tilde{\chi}_2^0 \tilde{\chi}_1^\pm$ decays for a simplified model with $m_{\tilde{\chi}_2^0} = m_{\tilde{\chi}_1^\pm} = 200$ GeV and $m_{\tilde{\chi}_1^\pm} = 50$ GeV, is 12.4±1.4(syst)±0.7(theory).

6. Background Evaluation

6.1. Backgrounds in SR-mT2

In this letter, SR-mT2 is used to search for ℓ^\pm pair production and provides the best sensitivity to $\tilde{\chi}_1^\pm$ pair production. The main backgrounds in this region are: fully-leptonic $t\bar{t}$ and single top, $Z/\gamma^* +$jets and dibosons (WW, WZ and ZZ).

Fully-leptonic $t\bar{t}$ is comparable in size to the WW background in all flavour channels. $Z/\gamma^* +$jets, WZ and ZZ processes (collectively, $Z + X$) are a small proportion of events in the DF channel, but comparable in size to the
WW and \(t\bar{t} \) backgrounds in the SF channels. The remainder of the SM background is accounted for by fake lepton backgrounds. The methods used to evaluate these backgrounds in SR-\(m_{T2} \) are described in the following sections.

6.1.1. Top

The combined contribution from \(t\bar{t} \) and single top events in each channel (ee, e\(\mu \) or \(\mu\mu \)) is evaluated by normalising MC simulation to data in an appropriate CR. Events in the CR (Table 3) must contain at least two signal jets, one of which must be \(b \)-tagged, and pass the requirement that \(E_{T}^{\text{miss,rel}} \) must be greater than 40 GeV. The corresponding CR is dominated by top events. Events from non-top backgrounds is less than 4\%. The number of top events in the SR (\(N_{\text{top}}^{\text{SR}} \)) is estimated from the number of data events in the CR (\(N_{\text{top}}^{\text{CR}} \), after the subtraction of non-top backgrounds, using a transfer factor \(T \):

\[
N_{X}^{\text{SR}} = N_{X}^{\text{CR}} \times T \times S_{T}.
\]

The factor \(T \), the ratio of top events in the SR to those in the CR is derived using MC.

\[
T = \left(\frac{N_{X}^{\text{SR}}}{N_{X}^{\text{CR}}} \right)_{MC}.
\]

The factor \(S_{T} \) corrects for possible differences in jet-veto efficiency between data and MC simulation. Good agreement is observed in separate samples of \(t\bar{t} \) and \(Z/\gamma^{*} \to + \) jets events and so this factor is taken to be equal to 1.0, with an uncertainty of 6\%. The transfer factor is evaluated before the \(m_{T2} \) requirement is applied in the SR since this requirement is designed to eliminate all but the tail of the \(m_{T2} \) distribution for \(t\bar{t} \). The efficiency of this requirement is then evaluated using MC simulation for a looser selection (which is assumed not to change the \(m_{T2} \) shape) and used to obtain the final estimate in SR-\(m_{T2} \). The efficiency of the \(m_{T2} \) requirement is found to be \(\sim 2\% \) in each channel for top events with an uncertainty of \(\sim 50\% \). The uncertainty is largely dominated by MC statistical uncertainty, generator uncertainties and jet and lepton scales and resolutions.

The evaluated \(t\bar{t} \) components in each channel are consistent with pure MC estimates normalised to cross-sections to within 1\%. Data and MC simulation are also consistent at this level in the CR. Negligible contamination from the SUSY signal models generated, in the region of the expected reach, is predicted.

6.1.2. \(Z + X \)

The \(Z/\gamma^{*} \to + \) jets background in the SF channels is also estimated by normalising MC simulation to data in a suitable CR. This procedure is important in order to handle appropriately possible detector imperfections affecting \(E_{T}^{\text{miss}} \) measurement. This technique also estimates the \(ZW \) and \(ZZ \) components, providing a combined estimate of the total \(Z + X \) background in the SF channels.

In the DF channel the \(Z/\gamma^{*} \to + \) jets contribution is significantly smaller and arises mainly from \(Z/\gamma^{*} \to \tau\tau \) decays. This and the diboson components of the \(Z + X \) background in the DF channel are estimated using MC simulation.

The CR (Table 3) used to estimate the \(Z + X \) background in the SF channels is defined to be identical to the SR but with the \(Z \)-veto reversed. The normalisation is evaluated before the \(m_{T2} \) requirement, and the efficiency of the \(m_{T2} \) requirement is measured separately using MC simulation. The population of data events inside the CR not produced by \(Z + X \) processes is estimated using data \(e\mu \) events inside the \(Z \)-window, correcting for the differences between electron and muon reconstruction efficiencies. This subtraction removes less than 2\% of the events in the CR. This procedure also subtracts contributions from \(Z/\gamma^{*} \to \tau\tau \) jets which must be estimated using MC simulation. The MC \(m_{T2} \) requirement efficiency for \(Z + X \) events is taken to be 0.004 (0.003) for \(e^{+}e^{-} \) or conversions with \(\sim 50\% \) uncertainty.

The estimated \(Z + X \) background is consistent with statistics with the MC prediction. No significant signal contamination is expected for the SUSY model points considered in the region of sensitivity for the searches reported in this letter.

6.1.3. WW

The WW background is evaluated using MC normalised to cross-section and luminosity. The predictions from a variety of generators (see Section 4) were compared before application of the \(m_{T2} \) requirement (to maximise acceptance for comparison), in order to assess the theoretical uncertainty on this estimate. The \(m_{T2} \) distribution in data agrees well with that in MC simulation, and the \(E_{T}^{\text{miss,rel}} \) region under consideration (> 40 GeV) is close to the bulk of the WW sample.

6.1.4. Fake leptons

In this letter the term “fake leptons” refers to both misidentified jets and real leptons which arise from decays or conversions. The numbers of fake lepton events are estimated using the “matrix method” 65. First, fake leptons are identified as those satisfying a loose set of identification requirements corresponding to medium-level identification requirements and no isolation. The real efficiency \(r \) is calculated using data as the fraction of these loose leptons passing the signal lepton identification and isolation requirements in events with a lepton pair of mass lying within 5 GeV of the Z boson mass. The fake efficiency \(f \) is calculated separately for misidentified jets or decays and conversions. The combined fake efficiency for misidentified jets or decays is calculated using MC events with \(E_{T}^{\text{miss,rel}} \) between 40 and 100 GeV, and validated using low-\(E_{T}^{\text{miss,rel}} \) regions in data. This region of moderate \(E_{T}^{\text{miss,rel}} \) is expected to give a sample composition that is representative of the various SR. The fake efficiency for conversions is estimated in a data sample dominated by this process, with
two muons of invariant mass within 10 GeV of the Z-mass, \(E_{\text{miss}, \text{rel}}^{T} \) < 50 GeV and at least one loose electron with \(m_{T} \) < 40 GeV (the conversion candidate). The overall \(f \) used is then the weighted (according to the relative proportions of each component present in the SR) average of these two fake efficiencies. Then, in the SR the observed numbers of events in data with two loose leptons, two signal leptons, or one of each are counted. The number of events containing fake leptons in each SR is finally obtained by acting on these observed counts with a 4 × 4 matrix with terms containing \(f \) and \(r \) that relates real-real, real-fake, fake-real and fake-fake lepton event counts to tight-tight, tight-loose, loose-tight and loose-loose counts.

6.2. Backgrounds in SR-OS\(j \)veto, SR-SS\(j \)veto and SR-2jets

The same techniques are used to estimate the backgrounds in each remaining SR, with two exceptions which are detailed in this section. Table 3 details any changes to CR definitions used.

1. Due to the high \(E_{\text{miss}, \text{rel}}^{T} \) requirement (> 100 GeV) in SR-OS\(j \)veto, \(WW \) is estimated using MC normalised to data in a CR. The CR used for its estimate is defined using the same requirements as the SR but with slightly lower \(E_{\text{miss}, \text{rel}}^{T} \) (for orthogonality with the SR) and an additional \(b \)-jet veto to suppress \(t\bar{t} \) (Table 3). This CR is subject to a 24% contamination from top events, which is estimated and removed using MC simulation.

2. In SR-SS\(j \)veto, the leptons have the same charge, resulting in a generally different background composition, and the presence of an additional component: “charge-flip”. The background components in this region are: fake leptons (estimated using the described matrix method), dibosons (estimated using MC events) and charge-flip. This mis-identification of charge arises when an electron in an event undergoes hard bremsstrahlung with subsequent photon conversion. The probability of an electron undergoing hard bremsstrahlung with subsequent photon conversion is estimated using MC normalised to data using a likelihood technique [66], and in MC simulation. This probability, evaluated as a function of electron rapidity and \(p_{T} \), is applied to \(tt \rightarrow e^{\pm} e^{\mp}, Z + \text{jets} \) and diboson MC events to evaluate the number of \(e^{\pm} e^{\pm} \) and \(e^{\pm} \mu^{\pm} \) events resulting from the charge-flip mechanism. The probability of misidentifying the charge of a muon is negligible. The possible double counting of charge-flip events in the matrix method for SR-SS\(j \)veto is not significant.

7. Systematic Uncertainties

In this analysis systematic uncertainties arise in the estimates of the background in the signal regions, as well as on the estimate of the SUSY signal itself. The primary sources of systematic uncertainty are the jet energy scale (JES) [52] calibration, the jet energy resolution (JER) [65], choice of MC generator and lepton efficiencies and momentum measurements. Additional statistical uncertainties arise from limited numbers of MC and data events in the CR and SR, and a 3.9% luminosity uncertainty [68, 64] for normalising MC events to cross-sections.

The JES has been determined from a combination of test beam, simulation and in-situ measurements from 2011 \(pp \) collision data. Uncertainties on the lepton identification, momentum/energy scale and resolution are estimated from samples of \(Z \rightarrow l^{+}l^{-}, J/\psi \rightarrow l^{+}l^{-} \) and \(W^{\pm} \rightarrow l^{\pm} \nu \) decays [71, 71]. The uncertainties on the \(b \)-tagging efficiency are derived from data samples containing muons associated to jets [59] using the method described in Ref. [72]. Included are uncertainties in the mis-tag rate from charm [73] and light flavour tagging [74].

Theory and MC modelling uncertainties are evaluated for \(tt \) using the prescriptions described in Ref. [75] (choice of generator, and ISR/FSR). For dibosons they are evaluated by varying the choice of generator. Theoretical uncertainties on the \(Z/\gamma^{*} + \text{jets} \) background from varying the PDF and renormalisation scales are also included.

When evaluating the fake lepton component in each region the dominant uncertainties arise from the dependency of the efficiencies on \(E_{\text{miss}, \text{rel}}^{T} \), differences between efficiencies obtained using OS and SS events and uncertainties in the relative normalisations of the different components. An additional uncertainty is applied based on differences observed in the fake efficiencies measured from data to validate the MC efficiencies if different validation regions are chosen.

The relative sizes of these sources of systematic uncertainty are detailed in Table 4. In SR-\(\text{RT} \), the jet and lepton energy scales and resolutions are the most significant uncertainties. In SR-OS\(j \)veto and SR-2jets, where \(tt \) and \(WW \) are the most significant SM backgrounds (accounting for approximately 80–85% of the SM contribution), the uncertainties in the MC modelling dominate. In SR-SS\(j \)veto, because of the significant fake component, the error on the fake estimate from the sources described becomes the only significant source of uncertainty.

In the SUSY mass planes, the theoretical uncertainty on each of the signal cross-sections is included. These arise from considering the cross-section envelope defined using the 68% CL ranges of the CTEQ6.6 and MSTW 2008 NLO PDF sets, and independent variations of the factorisation and renormalisation scales (see Section 3). Further uncertainties on the numbers of predicted signal events arise from the various experimental uncertainties.

8. Results and Interpretation

Fig. 1 illustrates the level of agreement in each SR, prior to the application of the final requirement on \(E_{\text{miss}, \text{rel}}^{T} \) and
Table 4: Systematic uncertainties (%) on the total background estimated in each SR for all flavours combined. The total statistical uncertainty includes limited MC event numbers in the CR and SR. Jet systematic uncertainties include: JES, JER and E_{T}^{miss} cluster and pile-up uncertainties. Lepton systematic uncertainties include: all lepton scales and resolutions, reconstruction and trigger efficiencies. MC modelling uncertainties include choice of generator, ISR/FSR and modelling of the Z/γ^{*}+jets line-shape.

<table>
<thead>
<tr>
<th>SR-</th>
<th>m_{T2}</th>
<th>OSjveto</th>
<th>SSjveto</th>
<th>2jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total statistical</td>
<td>9</td>
<td>4</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Total systematic</td>
<td>19</td>
<td>19</td>
<td>35</td>
<td>49</td>
</tr>
<tr>
<td>Jet uncertainties</td>
<td>9</td>
<td>8</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Lepton uncertainties</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>b-tagging efficiency</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>MC modelling</td>
<td>7</td>
<td>17</td>
<td>4</td>
<td>45</td>
</tr>
<tr>
<td>Fake leptons</td>
<td>5</td>
<td>5</td>
<td>35</td>
<td>4</td>
</tr>
</tbody>
</table>

m_{T2}, between the data and the SM prediction. For each SR two illustrative model points are also presented.

Table 5 compares the observations in data in each flavour channel and in each SR with the evaluated background contributions. Good agreement is observed across all channels and in each SR. The absence of evidence for SUSY weak production allows limits to be set on the visible cross-section for non-SM physics in each SR, $\sigma_{vis} = \sigma \times \varepsilon \times A$, for which this analysis has acceptance A and efficiency ε. These are calculated using the modified frequentist CL$_{s}$ prescription [70] by comparing the number of observed events in data with the SM expectation using the profile likelihood ratio as test statistic. All systematic uncertainties and their correlations are taken into account via nuisance parameters.

The direct slepton pair production 95% CL exclusion region is shown in Fig. 2(a) in the neutralino–slepton mass plane, using the results of SR-m_{T2} in the SF channel. Shown are the 95% CL$_{s}$ expected (dashed black) and observed limits (solid red) obtained by including all uncertainties except the theoretical signal cross-section uncertainty. The solid yellow band indicates the impact of the experimental uncertainties on the expected limits whereas the dashed red lines around the observed limit show the changes in the observed limit as the nominal signal cross-sections are scaled up and down by the 1σ theoretical uncertainties. A common value for left-handed electron and left-handed smuon mass between 85 and 195 GeV is excluded when the lightest neutralino has a mass of 20 GeV. The sensitivity decreases as the value of $m_{\tilde{\tau}} - m_{\chi_{1}^{0}}$ decreases and gives rise to end-points in the m_{T2} distribution at lower mass, nearer to the end-points of the SM backgrounds. For a 60 GeV neutralino only sleptons with masses between 135 and 180 GeV are excluded.

The direct $\tilde{\chi}_{1}^{\pm}$ pair production limits are set for the simplified model, in the scenario of wino-like charginos decaying into the lightest neutralino via an intermediate on-shell charged slepton. The best expected limits are obtained by using for each signal point the SR that provides the best expected p-value. The resulting limit for $\tilde{\chi}_{1}^{\pm}$ production is illustrated in Fig. 2(b). Chargino masses between 110 and 340 GeV are excluded at 95% CL for a 10 GeV neutralino. The best sensitivity is provided by SR-m_{T2}. Previous gaugino searches at the Tevatron and the LHC [29, 32] focused on $\tilde{\chi}_{1}^{\pm} \chi_{1}^{0}$ associated production. The present result provides a new mass limit on $\tilde{\chi}_{1}^{\pm}$ independently of the mass of the χ_{1}^{0}.

The signal regions are combined in Fig. 3 to derive exclusion limits in the pMSSM $\mu - M_{2}$ plane for $\tan\beta = 6$, by selecting for each signal point the SR which provides the best expected p-value. Figs. 3(a)–(c) show respectively the exclusion limits for $M_{1} = 100, 140, 250$ GeV. The present result significantly extends previous limits in the pMSSM $\mu - M_{2}$ plane. The model independent limits in Table 5 provide additional constraints on other gaugino production channels discussed previously in this letter. In particular, SR-2jets provides sensitivity to models where one gaugino produced in association with χ_{1}^{0} decays hadronically. The best sensitivity to models where final states containing ≥ 3 leptons dominate would come from a statistical combination of the results set in SR-2jets, SR-OSjveto and SR-SSjveto, and results of searches for three or more leptons [32].

9. Summary

This letter has presented a dedicated search for $\tilde{\chi}_{1}^{\pm}$ and $\tilde{\chi}_{1}^{\pm}$ pair production in final states with two leptons and E_{T}^{miss}. In scenarios where sleptons decay directly into the lightest neutralino and a charged lepton, left-handed slepton masses between 85 and 195 GeV for a 20 GeV neutralino are excluded at 95% confidence. In the scenario of chargino pair production, with wino-like charginos decaying into the lightest neutralino via an intermediate on-shell charged slepton, chargino masses between 110 and 340 GeV are excluded at 95% CL for a neutralino of 10 GeV. New limits in the pMSSM $\mu - M_{2}$ plane are provided for $\tan\beta = 6$. Signal regions targeting several gaugino production and decay modes into two-lepton final states have also been used to set limits on the visible cross-section.

10. Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and
Figure 1: The $E_{\text{miss,rel.}}^\text{T}$ distributions prior to the final requirement on $E_{\text{miss,rel.}}^\text{T}$ for (a) SR-OSjveto, (b) SR-2jets and (c) SR-SSjveto, and (d) m_{T2} in SR-m$_{T2}$, prior to the application of the m_{T2} requirement. In (d) only the SF channels are shown. The hatched bands indicate the experimental uncertainties on the background expectations. All components are from MC except for that labelled “Fake leptons”. The contribution labelled “Diboson” accounts for WW, WZ and ZZ processes. The bottom panels show the ratio of the data to the expected background (points) and the systematic uncertainty on the background (shaded area). In each figure two signal points are illustrated. In (d) two models of direct slepton pair production are illustrated, with $(\tilde{\ell}, \tilde{\chi}_{1}^{\pm})$ masses of (130,20) and (190,100) GeV. In (a) the two points illustrated are for $(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0})$ production in the simplified model with $(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0})$ masses of (175,25) and (525,425) GeV. In (c) the simplified model points illustrated have $(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0})$ masses of (200,50) and (112.5,12.5) GeV. In (b) two pMSSM model points with masses (M_{1}, M_{2}, μ) of (100,120,100) and (140,160,300) GeV are illustrated.
<table>
<thead>
<tr>
<th>Source of events</th>
<th>e^+e^-</th>
<th>$e^+\mu^-$</th>
<th>$\mu^+\mu^-$</th>
<th>all</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z+X</td>
<td>3.2 ± 1.1 ± 1.7</td>
<td>0.3 ± 0.1 ± 0.2</td>
<td>3.0 ± 1.3 ± 1.7</td>
<td>7.1 ± 1.7 ± 2.1</td>
<td>6.8 ± 1.7 ± 2.1</td>
</tr>
<tr>
<td>WW</td>
<td>2.3 ± 0.3 ± 0.4</td>
<td>4.8 ± 0.4 ± 0.7</td>
<td>3.5 ± 0.3 ± 0.5</td>
<td>10.6 ± 0.6 ± 1.5</td>
<td>5.8 ± 0.4 ± 0.9</td>
</tr>
<tr>
<td>$t\bar{t}$, single top</td>
<td>2.6 ± 1.2 ± 1.3</td>
<td>6.2 ± 1.6 ± 2.9</td>
<td>4.1 ± 1.3 ± 1.6</td>
<td>12.9 ± 2.4 ± 4.6</td>
<td>6.8 ± 1.8 ± 2.3</td>
</tr>
<tr>
<td>Fake leptons</td>
<td>1.0 ± 0.6 ± 0.6</td>
<td>1.1 ± 0.6 ± 0.8</td>
<td>-0.02 ± 0.01 ± 0.05</td>
<td>2.2 ± 0.9 ± 1.4</td>
<td>1.0 ± 0.6 ± 0.6</td>
</tr>
<tr>
<td>Total</td>
<td>9.2 ± 1.8 ± 2.5</td>
<td>12.4 ± 1.7 ± 3.1</td>
<td>11.2 ± 1.9 ± 3.0</td>
<td>32.8 ± 3.2 ± 6.3</td>
<td>20.4 ± 2.6 ± 3.9</td>
</tr>
<tr>
<td>Data</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>24</td>
<td>15</td>
</tr>
<tr>
<td>$\sigma_{\text{vis}}^{\text{obs(exp)}}$ (fb)</td>
<td>1.5 (1.8)</td>
<td>1.6 (2.0)</td>
<td>1.6 (1.9)</td>
<td>2.5 (3.3)</td>
<td>1.9 (2.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of events</th>
<th>e^+e^-</th>
<th>$e^+\mu^-$</th>
<th>$\mu^+\mu^-$</th>
<th>all</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z+X</td>
<td>4.5 ± 1.2 ± 1.2</td>
<td>3.0 ± 0.9 ± 0.5</td>
<td>4.7 ± 1.1 ± 1.2</td>
<td>12.2 ± 1.8 ± 1.8</td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td>8.8 ± 1.8 ± 4.4</td>
<td>20.9 ± 2.6 ± 6.2</td>
<td>13.3 ± 1.9 ± 3.5</td>
<td>43.0 ± 3.7 ± 12.2</td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}$, single top</td>
<td>21.1 ± 2.3 ± 4.2</td>
<td>47.7 ± 3.4 ± 20.5</td>
<td>27.5 ± 2.5 ± 9.0</td>
<td>96.2 ± 4.8 ± 29.5</td>
<td></td>
</tr>
<tr>
<td>Fake leptons</td>
<td>2.9 ± 1.2 ± 1.2</td>
<td>6.9 ± 1.8 ± 2.6</td>
<td>0.4 ± 0.6 ± 0.3</td>
<td>10.3 ± 2.2 ± 4.1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>37.2 ± 3.3 ± 6.4</td>
<td>78.5 ± 4.7 ± 20.9</td>
<td>45.9 ± 3.4 ± 9.4</td>
<td>161.7 ± 6.7 ± 30.8</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>33</td>
<td>66</td>
<td>40</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>$\sigma_{\text{vis}}^{\text{obs(exp)}}$ (fb)</td>
<td>3.3 (3.8)</td>
<td>6.8 (7.8)</td>
<td>4.0 (4.6)</td>
<td>9.8 (11.9)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of events</th>
<th>e^+e^-</th>
<th>$e^+\mu^-$</th>
<th>$\mu^+\mu^-$</th>
<th>all</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge flip</td>
<td>0.49 ± 0.03 ± 0.17</td>
<td>0.34 ± 0.02 ± 0.11</td>
<td>0.47 ± 0.16 ± 0.26</td>
<td>0.83 ± 0.04 ± 0.18</td>
<td></td>
</tr>
<tr>
<td>Dibosons</td>
<td>0.62 ± 0.13 ± 0.18</td>
<td>1.93 ± 0.23 ± 0.36</td>
<td>0.6 ± 0.3</td>
<td>5.0 ± 0.3 ± 0.54</td>
<td></td>
</tr>
<tr>
<td>Fake leptons</td>
<td>3.2 ± 0.9 ± 1.7</td>
<td>2.9 ± 0.9 ± 1.9</td>
<td>0.6 ± 0.6 ± 0.3</td>
<td>6.6 ± 1.4 ± 3.8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4.3 ± 0.9 ± 1.7</td>
<td>5.1 ± 1.0 ± 1.9</td>
<td>1.5 ± 0.6 ± 0.4</td>
<td>11.0 ± 1.5 ± 3.9</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>$\sigma_{\text{vis}}^{\text{obs(exp)}}$ (fb)</td>
<td>0.7 (1.1)</td>
<td>1.6 (1.6)</td>
<td>1.3 (0.9)</td>
<td>1.9 (2.1)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of events</th>
<th>e^+e^-</th>
<th>$e^+\mu^-$</th>
<th>$\mu^+\mu^-$</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z+X</td>
<td>3.8 ± 1.3 ± 2.7</td>
<td>—</td>
<td>5.8 ± 1.6 ± 3.9</td>
<td>9.6 ± 2.0 ± 5.1</td>
</tr>
<tr>
<td>WW</td>
<td>6.4 ± 0.5 ± 4.3</td>
<td>—</td>
<td>8.4 ± 0.6 ± 5.7</td>
<td>14.8 ± 0.7 ± 9.9</td>
</tr>
<tr>
<td>$t\bar{t}$, single top</td>
<td>14.8 ± 1.9 ± 9.2</td>
<td>—</td>
<td>22.1 ± 2.1 ± 20.7</td>
<td>36.9 ± 2.9 ± 29.6</td>
</tr>
<tr>
<td>Fake leptons</td>
<td>2.5 ± 1.2 ± 1.5</td>
<td>—</td>
<td>1.7 ± 1.3 ± 0.8</td>
<td>4.2 ± 1.8 ± 2.3</td>
</tr>
<tr>
<td>Total</td>
<td>27.5 ± 2.0 ± 10.6</td>
<td>—</td>
<td>37.9 ± 3.0 ± 21.0</td>
<td>65.5 ± 4.0 ± 31.8</td>
</tr>
<tr>
<td>Data</td>
<td>39</td>
<td>—</td>
<td>39</td>
<td>78</td>
</tr>
<tr>
<td>$\sigma_{\text{vis}}^{\text{obs(exp)}}$ (fb)</td>
<td>6.9 (5.3)</td>
<td>—</td>
<td>7.7 (7.6)</td>
<td>13.6 (12.5)</td>
</tr>
</tbody>
</table>

Table 5: Evaluated SM backgrounds in each SR separated by flavour ($e\mu$, $e\mu$, $\mu\mu$) and combined in an “all” channel. In SR-\textit{mT}_2 the evaluated background components in the SF channel are quoted separately as the $e\mu$ channel is not appropriate for a direct slepton search. The second quoted error is the total systematic uncertainty whereas the first is the statistical uncertainty arising from limited numbers of MC events. The effect of limited data events in the CR is included in the systematic uncertainty. In all OS SR and channels the component $Z+X$ includes the contributions from Z/γ^*+jets, WZ and ZZ events. All statistical uncertainties are added in quadrature whereas the systematic uncertainties are obtained after taking full account of all correlations between sources, backgrounds and channels. Quoted also are the observed (expected) 95% confidence limits on the visible cross-section for non-SM events in each SR, $\sigma_{\text{vis}}^{\text{obs(exp)}}$.

10
Figure 2: 95% CL exclusion limits for $\bar{\ell}^{\pm}$ pair production in the $m_{\bar{\chi}} - m_{\chi_0}$ mass plane of (a) the direct slepton pMSSM and (b) $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^0$ pair production in the simplified model. The dashed and solid lines show the 95% CL expected and observed limits, respectively, including all uncertainties except for the theoretical signal cross-section uncertainty (PDF and scale). The solid band around the expected limit shows the ±1σ result where all uncertainties, except those on the signal cross-sections, are considered. The ±1σ lines around the observed limit represent the results obtained when moving the nominal signal cross-section up or down by the ±1σ theoretical uncertainty. Illustrated also in (a) is the LEP limit [28] on the mass of the right-handed smuon, $\tilde{\mu}_R$. The LEP limit is a conservative limit on slepton pair production: if right-handed slepton masses are excluded, left-handed sleptons of equivalent masses are automatically excluded.
Figure 3: 95% CL exclusion limits in the μ–M_2 mass plane of the pMSSM for (a) $M_1 = 100$ GeV, (b) $M_1 = 140$ GeV and (c) $M_1 = 250$ GeV. The dashed and solid lines show the 95% CL expected and observed limits, respectively, including all uncertainties except for the theoretical signal cross-section uncertainty (PDF and scale). The solid band around the expected limit shows the $\pm 1\sigma$ result where all uncertainties, except those on the signal cross-sections, are considered. The $\pm 1\sigma$ lines around the observed limit represent the results obtained when moving the nominal signal cross-section up or down by the $\pm 1\sigma$ theoretical uncertainty.

University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu;
(d) School of Physics, Shandong University, Shandong, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
38 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States of America
41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham NC, United States of America
46 INFN Laboratori Nazionali di Frascati, Frascati, Italy
47 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
48 Section de Physique, Université de Genève, Geneva, Switzerland
49 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
50 (a) E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
51 (a) II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
52 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
53 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
54 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
55 Department of Physics, Hampton University, Hampton VA, United States of America
56 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
57 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
58 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
59 Department of Physics, Indiana University, Bloomington IN, United States of America
60 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
61 University of Iowa, Iowa City IA, United States of America
62 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
63 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
64 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
65 Graduate School of Science, Kobe University, Kobe, Japan
66 Faculty of Science, Kyoto University, Kyoto, Japan
67 Kyoto University of Education, Kyoto, Japan
68 Department of Physics, Kyushu University, Fukuoka, Japan
69 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
70 Physics Department, Lancaster University, Lancaster, United Kingdom
71 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
72 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
73 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
74 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
75 Department of Physics and Astronomy, University College London, London, United Kingdom
76 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
77 Fysiska institutionen, Lunds universitet, Lund, Sweden
78 Departamento de Física Teórica C-15, Universidad Autonoma de Madrid, Madrid, Spain
79 Institut für Physik, Universität Mainz, Mainz, Germany
80 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
81 23
83 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
84 Department of Physics, University of Massachusetts, Amherst MA, United States of America
85 Department of Physics, McGill University, Montreal QC, Canada
86 School of Physics, University of Melbourne, Victoria, Australia
87 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
88 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
89 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
90 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
92 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
93 Group of Particle Physics, University of Montreal, Montreal QC, Canada
94 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
95 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
96 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
97 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
99 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
100 Nagasaki Institute of Applied Science, Nagasaki, Japan
101 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
102 (a) INFN Sezione di Napoli; (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
103 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
104 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
105 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
106 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
107 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
108 Department of Physics, New York University, New York NY, United States of America
109 Ohio State University, Columbus OH, United States of America
110 Faculty of Science, Okayama University, Okayama, Japan
111 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
112 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
113 Palacký University, RCPTM, Olomouc, Czech Republic
114 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
115 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
116 Graduate School of Science, Osaka University, Osaka, Japan
117 Department of Physics, University of Oslo, Oslo, Norway
118 Department of Physics, Oxford University, Oxford, United Kingdom
119 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
120 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
121 Petersburg Nuclear Physics Institute, Gatchina, Russia
122 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
123 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
124 (a) Laboratorio de Instrumentación e Física Experimental de Partículas - LIP, Lisboa, Portugal; (b) Departamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
125 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
126 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
127 Czech Technical University in Prague, Praha, Czech Republic
128 State Research Center Institute for High Energy Physics, Protvino, Russia
129 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
130 Physics Department, University of Regina, Regina SK, Canada
131 Ritsumeikan University, Kusatsu, Shiga, Japan
132 (a) INFN Sezione di Roma I; (b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
133 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
135 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat; (c) Faculté des Sciences
Semlalia, Université Cadi Ayyad, LPHEA-Marrakech;\(^{(d)}\) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda;\(^{(c)}\) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America

Department of Physics, University of Washington, Seattle WA, United States of America

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Fachbereich Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby BC, Canada

SLAC National Accelerator Laboratory, Stanford CA, United States of America

Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava;\(^{(b)}\) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

Department of Physics, University of Johannesburg, Johannesburg;\(^{(b)}\) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

Department of Physics, Stockholm University;\(^{(b)}\) The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto ON, Canada

Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tufts University, Medford MA, United States of America

Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

INFN Gruppo Collegato di Udine;\(^{(b)}\) ICTP, Trieste;\(^{(c)}\) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

Department of Physics, University of Illinois, Urbana IL, United States of America

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Department of Physics, University of Warwick, Coventry, United Kingdom

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison WI, United States of America

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven CT, United States of America

Yerevan Physics Institute, Yerevan, Armenia

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

\(^{(a)}\) Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal

\(^{(b)}\) Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics, California State University, Fresno CA, United States of America
f Also at Novosibirsk State University, Novosibirsk, Russia
g Also at Fermilab, Batavia IL, United States of America
h Also at Department of Physics, University of Coimbra, Coimbra, Portugal
i Also at Department of Physics, UASLP, San Luis Potosi, Mexico
j Also at Università di Napoli Parthenope, Napoli, Italy
k Also at Institute of Particle Physics (IPP), Canada
l Also at Department of Physics, Middle East Technical University, Ankara, Turkey
m Also at Louisiana Tech University, Ruston LA, United States of America
n Also at Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
o Also at Department of Physics and Astronomy, University College London, London, United Kingdom
p Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
q Also at Department of Physics, University of Cape Town, Cape Town, South Africa
r Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
s Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
t Also at Manhattan College, New York NY, United States of America
u Also at School of Physics, Shandong University, Shandong, China
v Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
w Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
x Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
y Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy
z Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique), Gif-sur-Yvette, France
aa Also at Section de Physique, Université de Genève, Geneva, Switzerland
ab Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal
ac Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
ad Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
ae Also at California Institute of Technology, Pasadena CA, United States of America
af Also at Institute of Physics, Jagiellonian University, Krakow, Poland
ag Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
ah Also at Nevis Laboratory, Columbia University, Irvington NY, United States of America
ai Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
aj Also at Department of Physics, Oxford University, Oxford, United Kingdom
ak Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
al Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
am Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa

* Deceased