The Effects of Probiotic Supplementation on Experimental Acute Pancreatitis: A Systematic Review and Meta-Analysis

Carlijn R. Hooijmans1,4, Rob B. M. de Vries1, Maroeska M. Rovers2,3, Hein G. Gooszen3, Merel Ritskes-Hoitinga1

1 Radboud University Nijmegen Medical Centre, SYRCLE at Central Animal Laboratory, Nijmegen, The Netherlands, 2 Radboud University Nijmegen Medical Centre, Department of Epidemiology, Biostatistics and HTA, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands, 3 Radboud University Nijmegen Medical Centre, Department of Operating Rooms, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands

Abstract

Background: In February 2008, the results of the PRObiotics in PAncreatitis TRIAl (PROPATRIA) were published. This study investigated the use of probiotics in patients suffering from severe acute pancreatitis. No differences between the groups were found for any of the primary endpoints. However, mortality in the probiotics group was significantly higher than in the placebo group. This result was unexpected in light of the results of the animal studies referred to in the trial protocol. We used the methods of systematic review and meta-analysis to take a closer look at the relation between the animal studies on probiotics and pancreatitis and the PROPATRIA-trial, focussing on indications for harmful effects and efficacy.

Methods and results: Both PubMed and Embase were searched for original articles concerning the effects of probiotics in experimental acute pancreatitis, yielding thirteen studies that met the inclusion criteria. Data on mortality, bacterial translocation and histological damage to the pancreas were extracted, as well as study quality indicators. Meta-analysis of the four animal studies published before PROPATRIA showed that probiotic supplementation did not diminish mortality, reduced the overall histopathological score of the pancreas and reduced bacterial translocation to pancreas and mesenteric lymph nodes. Comparable results were found when all relevant studies published so far were taken into account.

Conclusions: A more thorough analysis of all relevant animal studies carried out before (and after) the publication of the study protocol of the PROPATRIA trial could not have predicted the harmful effects of probiotics found in the PROPATRIA-trial. Moreover, meta-analysis of the preclinical animal studies did show evidence for efficacy. It may be suggested, however, that the most appropriate animal experiments in relation to the design of the human trial have not yet been conducted, which compromises a fair comparison between the results of the animal studies and the PROPATRIA trial.

Introduction

In February 2008, Besselink et al. published the results of a randomized clinical trial (RCT) on the use of probiotics in patients suffering from severe acute pancreatitis: the PRObiotics in PAncreatitis TRIAl (PROPATRIA) [1]. A total of 296 patients were enrolled in this study, with 152 in the experimental probiotic group and 144 in the placebo group. The study product, a food supplement called Ecologic 641 (10^10 bacteria) or placebo was administered twice daily and added to the continuously running fibre-enriched tube feeding for a maximum of 28 days. No differences between the groups were found for any of the primary endpoints (infected pancreatic necrosis, bacteraemia, pneumonia, urosepsis or infected ascites). Pathogens cultured from the 87 patients with an infectious complication showed no significant differences between the groups. However, mortality in the probiotics group was significantly higher than in the placebo group (16% vs. 6%, respectively).

This result was unexpected in light of the results of the animal studies referred to in the trial protocol (the English protocol [2] cites Mangiante et al. 2001 [3], the Dutch protocol [4] refers to Mangiante et al. 2001 [5] and Lutgendorff et al. 2006 [6]). Lack of correspondence between animal data and results from clinical trials is not uncommon. It has been suggested that in order to increase the potential value of animal studies as a preparation for clinical applications not only the methodological quality of the individual animal studies needs to be improved [7,8,9], but systematic reviews (SRs) should become the standard method for analysing preclinical studies in relation to one another. By means of such reviews (particularly if they include a meta-analysis), information relevant for judging the safety and efficacy of drugs/
treatments may be obtained that is not directly visible from the individual animal studies [10,11].

Therefore, in this paper, we used the methods of systematic review and meta-analysis to take a closer look at the relation between the animal studies on probiotics and pancreatitis and the PROPATRIA-trial. We focussed on two questions: (1) Could a more thorough analysis of the animal studies carried out before the start of the trial have revealed indications for the harmful effects of probiotics found in the PROPATRIA-trial? and (2) What would the result of such an analysis be regarding the overall efficacy of probiotics on the main outcome measures of the PROPATRIA-trial (mortality, histopathology of the pancreas, bacterial translocation to the pancreas or the mesenteric lymph nodes)? Moreover, given that after the start and the completion of the PROPATRIA-trial, more animal experiments on the subject were published, we tried to answer the same questions taking all animal experiments on probiotics and pancreatitis into account.

Materials and Methods

1. Search Strategy and Selection of the Papers

We searched PubMed and Embase for original articles concerning the effects of probiotics on experimental acute pancreatitis until August 5, 2011. The search strategy was composed of three elements: pancreatitis, probiotics, and animals (for complete search strategy see Table 1). It was developed in cooperation with experts/information specialists from the Medical Library of the Radboud University Nijmegen, the Netherlands. To detect all animal studies in both PubMed and Embase, search filters were used [12,13]. Furthermore, the reference lists of the selected relevant papers were screened by hand for potentially relevant new papers. No language restriction was used. If necessary, papers in languages other than English were translated by scientists (native speakers for that particular language) within the Radboud University Nijmegen Medical Centre. The selection of studies was performed on the basis of the title and abstract. In case of doubt, the entire publication was purchased and evaluated. Two investigators (C. Hooijmans and R. de Vries) independently screened all the abstracts for the inclusion criteria. Differences were resolved by a third investigator (M. Ritskes-Hoitinga). Studies were included if they studied the effects of probiotics on mortality, histopathology of the pancreas or bacterial translocation to the pancreas or mesenteric lymph nodes (MLN), in experimental acute pancreatitis. Papers were excluded if they fulfilled one of the following criteria: (1) Not an original paper (e.g. review or letter etc.); (2) Probiotic supplementation was combined with other (nutritional) components; (3) Double publication; in case a paper occurred more than one time in one of the databases, only the original manuscript was included. The inclusion criteria and methods of analysis were specified in advance and documented in a protocol.

2. Study Characteristics and Data Extraction

From the studies included, the following data were extracted: animal species, strain, age or body weight of animals at the beginning of the study, gender, description of control group, method of AP induction, type and dose of probiotics, timing of probiotic supplementation relative to AP induction, duration of probiotic supplementation, route of administration, timing of data collection, number of animals in treatment and control group, number of animals excluded for statistical analysis, reason for excluding animals, outcome measures (Table 2). Bibliographic details such as author, journal, year of publication and original language were also registered. Four outcome measures were included in the meta-analysis: mortality, bacterial translocation to the pancreas and MLN and histopathology of the pancreas. In order to assess the pathology of the pancreas overall pathology scores were recorded. In case only specific pathology scores were presented (e.g. inflammation and parenchymal necrosis) an overall score with its variance was calculated by averaging all separate means by uniform weighing [14]. For all studies, number of events or mean, standard deviation (SD) or standard error (SE) and total number of animals per group were recorded. If data were only presented graphically, attempts were made to obtain data from the authors; if these data were not made available, data were measured using an universal on-screen digitizer where possible (Universal Desktop Ruler). With this software it is possible to measure distances, areas and perimeters of figures on a computer screen.

3. Assessment of Risk of Bias in Included Studies

We assessed the risk of bias of the included studies using the criteria/items described in Table S1. We based these criteria on the possible presence of selection bias (items 1, 2 and 3), performance bias (items 4 and 7), detection bias (items 5 and 8) and attrition bias (items 9 and 10) [15]. The criteria were independently assessed by two reviewers (C. Hooijmans and R. de Vries) by using collectively predefined judging criteria. The score “yes” indicates low risk of bias, the score “no” indicates high risk of bias, “?” indicates unknown risk of bias.

4. Data Synthesis and Statistical Analysis

For the outcome measure “histopathology of the pancreas”, the standardized mean difference (SMD) was calculated (the mean of the experimental group minus the mean of the control group divided by the pooled SD of the two groups), for all other outcome measures (i.e. bacterial translocation and mortality) the Odds Ratio was determined. If continuous data were presented, data were discussed and presented in the tables but not included in meta-analysis. Where outcomes were measured repeatedly on different time points, we used the time point at which the measured efficacy was greatest [16]. In one study, histopathological data was presented as median and percentiles, these data were converted to mean and SD [17]. In case histopathological data was not presented in an overall score, we calculated an overall score by uniformly weighing the separate means and SE’s of fibrosis, acinar cell loss etc.

Despite anticipated heterogeneity, the individual effect sizes (either OR or SMD) were pooled whenever possible (starting from two studies or more) to obtain an overall effect size and 95% confidence interval. We used the random effects model [18], which accounts for anticipated heterogeneity. Subgroup analyses were planned for the following study characteristics: year of publication (before or after the publication of the trial protocol of Besselink et al in 2004 [2]) and study design (comparable design to Besselink et al [2]). In order to explore possible causes for heterogeneity, subgroup analyses were planned for the following study characteristics: timing of probiotic supplementation (before or after induction of AP), type of probiotic supplement (multi strains vs single strain).

The subgroup analyses were only performed if the overall meta-analysis contained a minimum of 4 studies. Since there are relatively few studies in each subgroup, the estimates of the variances within a subgroup are not likely to be reliable. In addition, we expected the variance to be comparable within the 2 subgroups; therefore, we assumed a common among study variance across subgroups. Because of low power, no statistical tests were used to confirm differences between subgroups.
1. Description of the Included Studies

The search strategy described in Table 1 retrieved 38 papers in PubMed and 71 papers in Embase. Initially, 21 papers seemed to meet our selection criteria. After studying the full-text articles, 13 original studies remained [5,14,16,17,19,20,21,22,23,24,25,26,27] (Fig. 1).

The characteristics of these studies are shown in Table 2. Four of these studies needed to be translated since they were published before the study protocol of Besselink et al. were published before the study protocol of Besselink et al. The gender of the included animals was not mentioned. Seven different techniques were used to induce AP. Also the timing of probiotic supplementation varied greatly between the studies. Six papers mentioned supplementing probiotics after AP induction, 4 studies before AP induction and 3 studies started probiotics supplementation before AP induction and continued supplementation until a few days after AP induction. In four experiments the effects of probiotic supplementation on mortality in experimental acute pancreatitis were studied. Seven studies presented an overall histopathological score of the pancreas, of which six could be included in the meta-analysis. Eleven experiments (extracted from 8 papers) studied the effects of probiotics on bacterial translocation (BT) to the MLN.

Eight of the experiments could be included in the meta-analysis. Eight studies studied the effect of probiotics on BT to the pancreas, five of these studies could be included in the meta-analysis.

2. Risk of Bias and Quality of Reporting

To detect publication bias, funnel plots were created and explored. Meta-analysis was performed using Comprehensive Meta Analysis (CMA version2.0). Forest plots were used to display the mean overall effect sizes, together with effect sizes for subgroups.

In order to assess the robustness of our findings and in an attempt to further explain observed study heterogeneity, we performed a sensitivity analysis and we investigated the effect of possible interactions by species and quality. Because of the small number of experiments in these subgroups interactions, the results of this sensitivity analysis and interactions should be interpreted with caution.

Results

1. Description of the Included Studies

The search strategy described in Table 1 retrieved 38 papers in PubMed and 71 papers in Embase. Initially, 21 papers seemed to meet our selection criteria. After studying the full-text articles, 13 original studies remained [5,14,16,17,19,20,21,22,23,24,25,26,27] (Fig. 1).

The characteristics of these studies are shown in Table 2. Four of these studies needed to be translated since they were published in Chinese [21,22,24,27]. The study characteristics varied considerably between the included papers. Twelve experiments were performed with rats and one used dogs. Nine studies used only males, one study used females, and three papers did not mention the gender of the animals. Seven different techniques were used to induce AP. Also the timing of probiotic supplementation varied greatly between the studies. Six papers mentioned supplementing probiotics after AP induction, 4 studies before AP induction and 3 studies started probiotics supplementation before AP induction and continued supplementation until a few days after AP induction. In four experiments the effects of probiotic supplementation on mortality in experimental acute pancreatitis were studied. Seven studies presented an overall histopathological score of the pancreas, of which six could be included in the meta-analysis. Eleven experiments (extracted from 8 papers) studied the effects of probiotics on bacterial translocation (BT) to the MLN.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Language</th>
<th>Species/strain</th>
<th>Sex</th>
<th>AP induction</th>
<th>Type of prob.</th>
<th>Timing prob suppl.</th>
<th>Duration</th>
<th>Dose (per day)</th>
<th>Admin. route</th>
<th>Timing data coll.</th>
<th>Outcome measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akyol 2003</td>
<td>English</td>
<td>Rat/SD M</td>
<td>AP+ placebo 20/20</td>
<td>6 h after AP 42 hours</td>
<td>48 h after AP</td>
<td>25 mg oral</td>
<td>48 h after AP</td>
<td>12 A and 7 F</td>
<td>2, 24 and 48 h after AP</td>
<td>BT pancrease + MLN</td>
<td></td>
</tr>
<tr>
<td>Chen 2007</td>
<td>Chinese</td>
<td>Rat/SD M</td>
<td>AP</td>
<td>8/8</td>
<td>3% sodium taurocholate (id) S.boulardii</td>
<td>6 h after AP 42 hours</td>
<td>25 mg oral</td>
<td>48 h after AP</td>
<td>12 A and 7 F</td>
<td>2, 24 and 48 h after AP</td>
<td>BT pancrease + MLN</td>
</tr>
<tr>
<td>Deng 2000</td>
<td>Chinese</td>
<td>Dog/hybrid * AP</td>
<td>8/8</td>
<td>3% sodium taurocholate (id) L.lactis L.acidophilus S.lactis</td>
<td>4 days or 7 days/7 days</td>
<td>2 tablets/2 tablets</td>
<td>48 h after AP</td>
<td>12 A and 7 F</td>
<td>2, 24 and 48 h after AP</td>
<td>BT pancrease + MLN</td>
<td></td>
</tr>
<tr>
<td>Horst 2009</td>
<td>English</td>
<td>Rat/Wistar M</td>
<td>AP</td>
<td>10/10</td>
<td>5% sodium taurocholate (id) L.rhamnosus L.casei L.acidophilus B.longum</td>
<td>14 days before AP 14 days after AP</td>
<td>1.2 x 10^9 CFU</td>
<td>12 h after AP</td>
<td>12 A and 7 F</td>
<td>2, 24 and 48 h after AP</td>
<td>BT pancrease + MLN</td>
</tr>
<tr>
<td>Karen 2010</td>
<td>Chinese</td>
<td>Rat/SD M</td>
<td>AP</td>
<td>8/8</td>
<td>3% sodium taurocholate (id) L.rhamnosus L.casei L.acidophilus B.longum</td>
<td>5 days before AP 5 days until 6 h after AP</td>
<td>1.2 x 10^9 CFU</td>
<td>12 h after AP</td>
<td>12 A and 7 F</td>
<td>2, 24 and 48 h after AP</td>
<td>BT pancrease + MLN</td>
</tr>
<tr>
<td>Lutgendorff 2008</td>
<td>English</td>
<td>Rat/SD M</td>
<td>AP+ placebo 20/20</td>
<td>6 h after AP 42 hours</td>
<td>2, 24 and 48 h after AP</td>
<td>200 mg</td>
<td>12 h after AP</td>
<td>12 A and 7 F</td>
<td>2, 24 and 48 h after AP</td>
<td>BT pancrease + MLN</td>
<td></td>
</tr>
<tr>
<td>Manigante 2005</td>
<td>Italian</td>
<td>Rat/SD M</td>
<td>AP</td>
<td>10/10</td>
<td>3% sodium taurocholate (id) L.plantarum</td>
<td>20 days after AP 6 days after AP</td>
<td>1.0 x 10^9 CFU</td>
<td>12 h after AP</td>
<td>12 A and 7 F</td>
<td>2, 24 and 48 h after AP</td>
<td>BT pancrease + MLN</td>
</tr>
<tr>
<td>Qin 2006</td>
<td>Chinese</td>
<td>Rat/SD M</td>
<td>AP+ placebo 7/8</td>
<td>3% sodium taurocholate (id) S.thermophilus</td>
<td>6 h and 24 h 2 days</td>
<td>25 mg/kg</td>
<td>48 h after AP</td>
<td>12 A and 7 F</td>
<td>2, 24 and 48 h after AP</td>
<td>BT pancrease + MLN</td>
<td></td>
</tr>
<tr>
<td>Sahin 2007</td>
<td>English</td>
<td>Rat/SD M</td>
<td>AP+ placebo 10/10</td>
<td>6 h after AP 42 hours</td>
<td>12 h after AP</td>
<td>25 mg/kg</td>
<td>48 h after AP</td>
<td>12 A and 7 F</td>
<td>2, 24 and 48 h after AP</td>
<td>BT pancrease + MLN</td>
<td></td>
</tr>
<tr>
<td>Tarasenko 2000</td>
<td>Russian</td>
<td>Rat/German</td>
<td>AP+ placebo 3?/3?</td>
<td>6 h after AP 42 hours</td>
<td>12 h after AP</td>
<td>25 mg/kg</td>
<td>48 h after AP</td>
<td>12 A and 7 F</td>
<td>2, 24 and 48 h after AP</td>
<td>BT pancrease + MLN</td>
<td></td>
</tr>
<tr>
<td>Van Minnen 2008</td>
<td>English</td>
<td>Rat/SD M</td>
<td>AP+ placebo 22/22</td>
<td>6 h after AP 42 hours</td>
<td>12 h after AP</td>
<td>25 mg/kg</td>
<td>48 h after AP</td>
<td>12 A and 7 F</td>
<td>2, 24 and 48 h after AP</td>
<td>BT pancrease + MLN</td>
<td></td>
</tr>
<tr>
<td>Yang 2006</td>
<td>Chinese</td>
<td>Rat/SD M</td>
<td>AP</td>
<td>7/7</td>
<td>5% sodium taurocholate (id) L.plantarum</td>
<td>2 days after AP 5 days after AP</td>
<td>10 ml</td>
<td>161 CFU/ml</td>
<td>12 A and 7 F</td>
<td>2, 24 and 48 h after AP</td>
<td>BT pancrease + MLN</td>
</tr>
</tbody>
</table>

Note: * = not mentioned, # = study consists out of multiple experiments, § = study contains 4 experiments, D = in statistical analysis different numbers of animals used, SD = Sprague Dawley, M = male, F = female, id. = intraductally, iv = intravenously, AP = acute pancreatitis, MLN = mesenteric lymph nodes, HP = histopathology, BT = bacterial translocation.
mortality due to probiotic supplementation in experimental AP. Meta-analysis also showed no effect (Fig. 3; OR 0.54 [0.24, 1.22]; n = 3). Heterogeneity was low (Q = 0.62, p = 0.73; I² = 0%), and all included studies used rats.

The study of Yang et al 2006 [27], which could not be included in meta-analysis, also showed no significant reduction in mortality due to probiotic supplementation in experimental AP.

4.2. Histopathology of the pancreas. Six out of 7 papers investigating the effect of probiotic supplementation in experimental AP on histopathological abnormalities in the pancreas could be included in meta-analysis. Four of these papers showed a significant reduction of the total histopathological score due to probiotic supplementation compared to controls. Overall analysis also showed that probiotic supplementation reduced/improved the overall histopathological score of the pancreas (Fig. 4; SMD −1.35 [−2.43, −0.26]; n = 6; p = 0.015). Heterogeneity was high (Q = 34.53, p<0.01; I² = 85%), although all studies were performed in one species (rats).
Before the publication of the study protocol, solely the study of Akyol [20] had been published (Fig. 4b). This specific paper showed lower histopathological scores in the probiotic group as compared to controls (p = 0.037). The results of the study of Akyol were in accordance with the results of the overall analysis [20].

Subgroup analysis also revealed that in studies supplementing probiotics after AP induction a significant decrease in the histopathological score was present, whereas in studies supplementing probiotics before AP no significant decrease was observed (Fig. 4; after; SMD $-1.89 \pm -3.02, 2.00$; n = 4; p < 0.01before; SMD $-0.31 \pm -2.11, 1.50$; n = 2; p = 0.74).

Subgroup analyses on the study characteristic “type of probiotic supplement” showed that single strain supplementation reduced the overall histopathological score of the pancreas, whereas multistrain supplementation did not (Fig. 4b). Subgroup analysis did not reduce heterogeneity.

4.3. Bacterial translocation to the pancreas. The effect of probiotic supplementation on bacterial translocation (BT) to the pancreas was studied in eight papers. Five of these studies presented their data as a binary outcome (presence or absence of bacterial translocation) and three others presented their data as a continuous variable (amount of colony forming units/g). Only binary outcomes were included in the meta-analysis.

The five experiments that could be included in the meta-analysis showed that the odds of BT to the pancreas is less likely to occur in the probiotic group as compared to the control treated groups (OR 0.24 [0.06, 0.99]; n = 5; p = 0.049). Heterogeneity was moderate (Q = 8.57, p = 0.073; I2 = 53%). Three studies using continuous variables for BT to the pancreas also showed significant reductions in the number of bacteria translocated to the pancreas in the probiotic group (Fig. 5c).

Before the publication of the trial protocol by Besselink et al. 2004 [2], four studies concerning probiotic supplementation in experimental AP were published. Meta-analysis, which could include 3 of these studies, revealed that at that time the overall effect on BT to the pancreas was already significant (OR 0.12.

Figure 2. Risk of bias, averaged per item. yes = low risk of bias, no = high risk of bias, ? = unclear risk of bias, n.a. = not applicable. doi:10.1371/journal.pone.0048811.g002

Figure 3. Effects of probiotic supplementation on mortality in experimental acute pancreatitis. Forest plot of the data of three included studies. The forest plot displays the OR, 95% confidence interval and relative weight of the individual studies. The diamond indicates the global estimate and its 95% confidence interval. doi:10.1371/journal.pone.0048811.g003
Two of these studies were really indicative for the planned trial, because those studies supplemented probiotics after induction of AP. Subgroup analysis of these 2 studies showed that there was at that time already a significantly reduced risk of BT to the pancreas in probiotic treated animals with AP (OR 0.08 [0.01, 0.95]; n = 2; p = 0.046).

Comparison of the effects of probiotic supplementation before or after inducing experimental AP on the risk of BT to the pancreas revealed that supplementation of probiotics before inducing AP has no significant effect (OR 0.63 [0.10, 3.76]; n = 2; p = 0.61) in contrast to supplementation of probiotics after inducing AP (OR 0.09 [0.03, 0.57]; n = 3; p = 0.01).

Subgroup analysis on the timing of probiotic supplementation did not reduce heterogeneity substantially, and remained moderate. Subgroup analyses on the study characteristic “type of probiotic supplement” showed also here that single strain supplementation might reduce the risk of BT to the pancreas in probiotic treated animals with AP, whereas with multistrain supplementation no such an effect could be observed (Fig. 5b). Heterogeneity levels clearly decreased in the subgroup single strain (Q = 3.33, p = 0.56; I² = 0.0%).

4.4. Bacterial translocation to the mesenteric lymph nodes (MLN). The effect of probiotic supplementation on bacterial translocation (BT) to the MLN was studied in nine papers. Five of these studies (including 8 experiments) presented their data as a binary outcome and three others presented their data as a continuous variable (amount of colony forming units/g). Only binary outcomes were included in the meta-analysis.

Overall analysis revealed that probiotics reduced the risk of BT to the MLN (Fig. 6a; OR 0.25 [0.11, 0.58]; n = 8; p < 0.01). Heterogeneity was low (Q = 4.23, p = 0.753; I² = 0.0%).

Before the publication of the study protocol of Besselink et al. [2] three studies investigated this outcome measure as well (of which 2 could be included in meta-analysis). However, only one study had a comparable design (i.e. probiotic supplementation after AP induction). This study showed no significant reduction of the risk of BT to the MLN due to probiotic supplementation (OR 0.09 [0.01, 2.16]; p = 0.14).

Subgroup analysis (Fig. 6b) on the effects of the timing of probiotic supplementation relative to AP induction could only be performed with 4 studies, because the other 4 experiments did not describe the timing of supplementation. This analysis showed that both probiotic supplementation before and after AP induction could be beneficial (Fig. 6b). The results of the studies presenting continuous data (except for van Minnen et al [26] and Tarasenko

Table 1: Histopathology: pancreas

<table>
<thead>
<tr>
<th>Study name</th>
<th>Std diff in means</th>
<th>Standard error</th>
<th>Variance</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>Z-Value</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akyol 2003</td>
<td>-0.939</td>
<td>0.451</td>
<td>0.203</td>
<td>-1.823</td>
<td>-0.055</td>
<td>-2.082</td>
<td>0.037</td>
</tr>
<tr>
<td>Horst 2009</td>
<td>0.863</td>
<td>0.480</td>
<td>0.231</td>
<td>-0.079</td>
<td>1.804</td>
<td>1.796</td>
<td>0.072</td>
</tr>
<tr>
<td>Karen 2010</td>
<td>-2.741</td>
<td>0.623</td>
<td>0.388</td>
<td>-3.961</td>
<td>-1.520</td>
<td>-4.401</td>
<td>0.000</td>
</tr>
<tr>
<td>Lutgendorff 2008</td>
<td>-1.465</td>
<td>0.460</td>
<td>0.211</td>
<td>-2.366</td>
<td>-0.564</td>
<td>-3.186</td>
<td>0.001</td>
</tr>
<tr>
<td>Mutuoglu 2006</td>
<td>-0.891</td>
<td>0.469</td>
<td>0.220</td>
<td>-1.810</td>
<td>0.028</td>
<td>-1.900</td>
<td>0.057</td>
</tr>
<tr>
<td>Sahin 2007</td>
<td>-3.246</td>
<td>0.681</td>
<td>0.463</td>
<td>-4.580</td>
<td>-1.911</td>
<td>-4.768</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>-1.346</td>
<td>0.552</td>
<td>0.305</td>
<td>-2.428</td>
<td>-0.264</td>
<td>-2.439</td>
<td>0.015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Histopathology pancreas</th>
<th>SMD</th>
<th>LL</th>
<th>UL</th>
<th>n</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>-1.346</td>
<td>-2.428</td>
<td>-0.264</td>
<td>6</td>
<td>0.015</td>
</tr>
<tr>
<td>Before 2004</td>
<td>-0.939</td>
<td>-1.823</td>
<td>-0.055</td>
<td>1</td>
<td>0.037</td>
</tr>
<tr>
<td>After 2004</td>
<td>-1.447</td>
<td>-2.807</td>
<td>-0.086</td>
<td>5</td>
<td>0.037</td>
</tr>
<tr>
<td>Design comparable to RCT</td>
<td>-0.939</td>
<td>-1.823</td>
<td>-0.055</td>
<td>1</td>
<td>0.037</td>
</tr>
<tr>
<td>Before AP</td>
<td>-0.308</td>
<td>-2.116</td>
<td>1.501</td>
<td>2</td>
<td>0.739</td>
</tr>
<tr>
<td>After AP</td>
<td>-1.890</td>
<td>-3.203</td>
<td>-0.577</td>
<td>4</td>
<td>0.005</td>
</tr>
<tr>
<td>Single strain</td>
<td>-2.240</td>
<td>-3.686</td>
<td>-0.794</td>
<td>3</td>
<td>0.002</td>
</tr>
<tr>
<td>Multistrain</td>
<td>-0.503</td>
<td>-1.893</td>
<td>0.888</td>
<td>3</td>
<td>0.479</td>
</tr>
</tbody>
</table>

Figure 4. Effects of probiotic supplementation on histopathological damage to the pancreas in experimental acute pancreatitis. (a) Forest plot and (b) subgroup analysis of the data of six included studies. The forest plot displays the SMD, 95% confidence interval and relative weight of the individual studies. The diamond indicates the global estimate and its 95% confidence interval. doi:10.1371/journal.pone.0048811.g004
et al [16], after 2 h) are in accordance with the results of the meta-analysis (Fig. 6c).

Subgroup analyses on the study characteristic “type of probiotic supplement” showed that both single strain supplementation and multistrain supplementation seem to reduce BT to the MLN (Fig. 6b). The effect appears to be larger in the single strain group as compared to the multistrain group (single: OR 0.15 [0.05, 0.53]; n = 2; p < 0.01, multi: 0.371 [0.12, 1.11]; n = 6; p = 0.08).

<table>
<thead>
<tr>
<th>Study name</th>
<th>Odds ratio</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>Z-Value</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akyol, 2003</td>
<td>0.065</td>
<td>0.003</td>
<td>1.361</td>
<td>-1.761</td>
<td>0.078</td>
</tr>
<tr>
<td>Deng 2000</td>
<td>0.086</td>
<td>0.007</td>
<td>1.084</td>
<td>-1.898</td>
<td>0.058</td>
</tr>
<tr>
<td>Horst 2009</td>
<td>2.917</td>
<td>0.442</td>
<td>19.234</td>
<td>1.112</td>
<td>0.266</td>
</tr>
<tr>
<td>Mangiante 2001</td>
<td>0.176</td>
<td>0.039</td>
<td>0.797</td>
<td>-2.254</td>
<td>0.024</td>
</tr>
<tr>
<td>Muftuoglu 2006</td>
<td>0.111</td>
<td>0.010</td>
<td>1.236</td>
<td>-1.787</td>
<td>0.074</td>
</tr>
<tr>
<td></td>
<td>0.237</td>
<td>0.057</td>
<td>0.991</td>
<td>-1.972</td>
<td>0.049</td>
</tr>
</tbody>
</table>

5. Sensitivity Analysis and Interactions

To assess the robustness of our findings and in an attempt to further explain the observed study heterogeneity, we performed a sensitivity analysis and we investigated the effect of possible interactions by species and quality.

In the analysis of outcome measures BT to the pancreas and MLN also a dog study was included. Analyzing the outcome measures without this dog study resulted in different results for the outcome measure BT to pancreas. The odds of BT to the pancreas

Figure 5. Effects of probiotic supplementation on bacterial translocation to the pancreas in experimental acute pancreatitis. (a) Forest plot and (b) subgroup analysis of the data of five included studies. The forest plot displays the OR, 95% confidence interval and relative weight of the individual studies. The diamond indicates the global estimate and its 95% confidence interval. (c) effect sizes and 95% confidence interval of three studies presenting continuous data which were not included in meta-analysis in order to reduce heterogeneity. doi:10.1371/journal.pone.0048811.g005
was no longer less likely to occur in the probiotic group as compared to the control groups (OR 0.29 [0.05, 1.57]; n = 4; p = 0.15). Heterogeneity remained moderate (Q = 7.67, p = 0.05; I² = 60%).

Sensitivity analysis revealed that excluding the studies with an overall quality score lower than 60% (Table 2) solely altered the results of BT to the pancreas. The excluded study for this outcome measure was again the dog study and therefore the sensitivity analysis showed the same results as mentioned above.

Discussion

The results of this SR and meta analysis show that a more thorough analysis of all relevant animal studies carried out before...
the start of the PROPATRIA trial [1], would not have revealed
indications for harmful effects of probiotics. A combination of the
results of all four animal studies published before the trial did not
show an adverse effect on the main outcome measure (i.e., mortality).
Moreover, it did show a positive effect on other outcome measures, namely improved histopathology of the
pancreas and reduced bacterial translocation to the pancreas
and to the MLNs. These overall conclusions do not change when
all animal studies on probiotics and pancreatitis published so far—
including the ones performed after the PROPATRIA trial—are
taken into account.

The PROPATRIA-trial in humans showed higher mortality in
the group treated with probiotics [1]. This result was unexpected
in light of the results of the animal studies referred to in the trial
protocol by Bessinkel et al. [2,4]. The protocol referred (indirectly)
to one animal study published before the start of the trial (namely
Mangiante et al. 2001 [5]), which showed some evidence for
reduced bacterial translocation to the pancreas and MLN, but did not
study the effect of probiotics during AP on mortality. We were
able to identify three other animal studies that had already been
published at the time (Deng et al. 2000 [22], Tarasenko et al.
2000 [16], Akyl et al. 2003 [20]). Of these three, only one study
(Akyl et al. 2003 [20]) reported data on mortality and this study
showed a non-significant reduction of mortality. Because mortality
was not intended to be a primary outcome measure in most of the
animal studies, the experiments may have been underpowered to
be able to detect a possible significant difference in mortality
between probiotic treated and control groups. Even though
not provide data on mortality, the former emphasized that B.
subtilis did not aggravate the course of experimental AP and the
latter stressed that, as a proof of the safety of the probiotic
prophylaxis, they never found L. plantarum in blood samples, also
not in samples from animals with BT. In other words, although
only very few animal experiments had been carried out and data
on mortality available were not fully reliable, there were at the
start of the PROPATRIA trial no indications from animal
experiments that probiotics might have a harmful effect. None
of these four studies, however, supplemented the probiotic
Ecologic 641, which was used in the trial.

Also inclusion of more recent animal studies does not provide
evidence for an increase in mortality due to probiotic supplemen-
tation. Nevertheless, we found one study that reported a tendency
towards adverse effects of probiotics: Horst et al. (2009) [23]
showed a higher histopathological score and an increase in
bacterial translocation to the pancreas after probiotic supplemen-
tation. Both effects were not statistically significant, however,
and did not alter the direction of the overall effect in the meta-analysis.
The most striking differences between the study of Horst et al. [23]
and the other studies are the duration of probiotic supplemen-
tation before AP induction (14 days in the Horst study; on average
4–5 days in the other studies) and timing of the outcome
assessment (12 hours after AP induction in Horst et al.; on
average 4 days after AP induction in all other studies). However,
although the results of the study of Horst et al. were closer to the
clinical truth, the above mentioned differences do not offer an
obvious explanation for this.

With regard to the efficacy of probiotics in AP, the combined
analysis of the four animal studies executed before the start of the
trial showed that probiotic supplementation did not affect
mortality, but led to an improved histopathological score for the
pancreas and reduced bacterial translocation to pancreas and
MLNs. These results remained largely the same when only the
studies were taken into account that used probiotic supplemen-
tation after induction of AP (so with a design comparable to the
PROPATRIA-trial). In addition, including also the more recent
studies does not alter these results. In summary, the animal studies
on probiotics and AP showed improvement in two important
clinically relevant outcome measures, namely pancreatic histopa-
thology and reduced bacterial translocation, and had no effect on
the main outcome measure, mortality.

Most of the studies were originally not designed to measure an
effect of probiotics on mortality and might for this reason be
underpowered. Moreover, the timing of the determination of
mortality should be taken into account. In humans, acute
pancreatitis typically follows a biphasic course: the early phase
is associated with systemic inflammatory response syndrome (SIRS),
(multiple) organ damage and early mortality (<1 week), the late
phase is characterized by infectious complications following
bacterial translocation of intestinal bacteria and late mortality
(>3 weeks). Given that only the late mortality is mediated by
infection/bacterial translocation, an effect of probiotics on early
mortality is not to be expected. If acute pancreatitis in laboratory
animals follows a similar course, and there are indications that this
is the case [26], then the focus should be on an effect on late
mortality. A closer look at 3 out of 4 experiments reporting also a
late mortality reveals that only the study of Van Minnen et al. [26]
detected a significant reduction, whereas the others did not find
any differences in late mortality. In other words, also on closer
inspection, no overall positive or negative effects of probiotic
supplementation on late mortality were found.

In light of the results presented above—no indications for
harmful effects and quite strong evidence for efficacy—and given
the regulatory requirements for food supplements (to which
probiotics belong), it was defensible and understandable that the
PROPATRIA-trial was started. However, there are some meth-
odological issues which may hamper the interpretation of the
experimental animal data and subsequently the translation to the
clinical setting.

First of all, there were substantial differences in the design of the
trial and the design of the animal experiments: a) all animal studies
conducted before the start of the trial used other probiotic
products than the one used in the trial, and in most cases single
strain probiotics were tested in animals whereas PROPATRIA
used multistrain probiotics Ecologic 641. After the start of the trial,
some animal studies using Ecologic 641 have been published.
However, none of these studies used both administration of
probiotics after induction of AP and outcome measures compa-
rable to the ones used in the PROPATRIA-trial. b) In the trial
probiotics were administered in the jejunum whereas most
animal studies it was administered in the stomach, c) in 50% of the
animal studies probiotic supplementation started before inducing
AP, whereas in the PROPATRIA trial probiotics was supple-
menced to patients already suffering from severe AP. The exact
physiological and translational significance of these differences
is currently unclear and needs further study. Nevertheless, it is
remarkable that an animal study with a study design similar to the
human trial has not yet been conducted (i.e., an animal
experiment studying the effect of Ecologic 641 supplemented in
the jejunum after induction of AP on mortality and translocation/
infection). In case such an experiment had been performed and
the result had demonstrated an increased risk of mortality, we
believe it would not have been responsible to start a clinical trial
before conducting more similar experiments with a comparable
design. In case this hypothetical experiment had shown no change
or a diminished risk on mortality, a decision to go ahead would
have been justified, also because a clinical trial with positive results
of the use of probiotics in humans had been published already.
Second, the heterogeneity among the various animal studies is quite considerable. We tried to explain this heterogeneity through subgroup analyses (supplementation of probiotics before or after induction of AP, use of probiotics containing a single or multiple strains of bacteria), but in most cases these subgroup analyses did not substantially reduce the heterogeneity. Despite these limitations, the combined analysis still produced extra and useful information that could not directly be derived from the individual studies. Subgroup analyses showed for example that single strain probiotic supplementation might be more effective in reducing the overall histopathological score of the pancreas and the risk of bacterial translocation, as compared to multistrain supplementation. In future animal studies and clinical trials it seems worthwhile to investigate the possible difference in efficacy between multistrain and single strain probiotic mixtures.

Third, at the time that the PROPATRIA trial started only a few experimental animal studies had been published (n = 4) with relatively few animals per study. As a consequence, the power of the meta analysis, and thereby the reliability of the conclusions (the overall effect sizes), is relatively low. This limitation applies even more strongly to the subgroup analyses. For that reason, particularly the conclusions of the subgroup analyses should be treated as indications that elicit further investigation, rather than as hard conclusions.

Fourth, poor reporting of crucial pieces of information in the original manuscripts is of serious concern, and is also addressed by others [7,8,9,28,29]. This seriously hampers drawing reliable conclusions from animal studies. The risk of bias assessment and the table describing the characteristics of the included studies have clearly shown that crucial pieces of information (such as the timing of probiotic supplementation relative to the induction of AP, the number of animals per group included in the statistical analyses and the reasons for excluding animals) are often not well reported. Furthermore, only half of the studies reported that they blinded the outcome assessment and only one study provided sufficient details to judge the adequacy of the method of randomization. If the other studies did not actually blind the outcome assessment and if the methods of randomization used in the other studies were inadequate, there is a substantial risk that the effects of probiotics have been overestimated (see also [11]). If the actual effects of probiotics are indeed smaller than reported, it remains to be seen whether these effects are still statistically significant.

All in all, this SR has demonstrated that combining the results of all relevant animal studies published before and after the trial does not show an adverse effect of probiotic supplementation on the main outcome measure mortality, and shows a positive effect on the other outcome measures (reduced histopathology of the pancreas and BT to the pancreas and MLNs). In addition, subgroup analyses revealed that single strain probiotic supplementation might be more effective in reducing the overall histopathological score of the pancreas and the risk of bacterial translocation, as compared to multistrain supplementation. Therefore, we conclude that a more thorough analysis of all relevant animal studies (published both before and after the study protocol of the PROPATRIA trial) could not have predicted the harmful effects of probiotics supplementation as found in the PROPATRIA-trial.

However, it has also become clear that no animal study followed the experimental design of the human PROPATRIA trial as closely as possible, i.e., studying the effect on mortality and infection of supplementation in the jejunum of Ecologic 6-11 after induction of AP, which compromises a fair comparison between the results of the animal studies and the PROPATRIA trial. Moreover, a substantial portion of the animal studies had methodological shortcomings: insufficient power, potentially inadequate methods of randomisation and absence of blinding. In other words, the animal experiments were not executed and evaluated in such a way that the chances of a successful translation to the clinic were maximal. Yet, it is vital, both to justify the suffering of laboratory animals and to prevent harm in human patients, that the animal experiments conducted prior to clinical application are carried out in such a way that they yield the most and most reliable information. To prevent misunderstanding, there might be other factors that may explain (part of) the extrapolation problems. For example, there might be immunological differences between humans and other animal species as well as differences in the type of pancreatitis. These differences may further interfere with extrapolation of outcome data from animals to humans. It is too early, however, to conclude that animal experiments either can or cannot reliably inform regarding the potential outcome of human studies. Before drawing such a conclusion, it is important to first optimize the execution of preclinical animal experiments (through a design as close as possible to the intended clinical application, clear and clinically relevant primary outcome measures, proper power calculation, etc.). Accordingly, we strongly recommend a broad and explicit debate about the standards of animal experiments preceding clinical application.

Supporting Information

Table S1 Risk of bias of individual studies. yes = low risk of bias, no = high risk of bias, ? = unclear risk of bias, n.a. = not applicable, * = assessment of the outcome measure histopathology of the pancreas was blinded, other relevant outcome measures were not blinded. Risk of bias in the analysis because animals were replaced. # = solely animals with severe AP are included in the analysis (risk of underestimating the effect of probiotics).

Acknowledgments

We would like to thank the authors who were willing to provide us with additional data.

Prof. Goosen was the supervisor of the PROPATRIA trial and is also an author of this systematic review.

Author Contributions

Conceived and designed the experiments: CRH. Performed the experiments: CRH RBMdV. Analyzed the data: CRH RBMdV MMR. Contributed reagents/materials/analysis tools: HGG. Wrote the paper: CRH RBMdV HGG MR-H. Field specialists: HGG MR-H.

References

PLOS ONE | www.plosone.org 11 November 2012 | Volume 7 | Issue 11 | e48811

