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Purpose Hypospadias is a common congenital malformation of the male external genitalia. 

Association studies for single nucleotide polymorphisms (SNPs) in genes encoding steroid-5-alpha-

reductase (SRD5A2), estrogen receptors 1 (ESR1) and 2 (ESR2), and activating transcription factor 3 

(ATF3) have been equivocal. The aim of this study was to examine whether non-replication of 

findings for four SNPs in these genes could be due to interaction with environmental exposures.  

Materials and Methods We genotyped 712 Dutch hypospadias case-parent triads for the four SNPs, 

used questionnaire information to determine exposures, and performed association tests using the log-

linear approach. We studied gene-environment interactions for the four SNPs with exposure to 

estrogens, cytokines or cigarette smoke, multiple pregnancy, being born small for gestational age, and 

maternal hypertension or preeclampsia, high BMI, or primiparity. In addition, the presence of maternal 

genetic and parent-of-origin effects was tested. 

Results Gene-environment interactions were identified for rs523349 in SRD5A2 with estrogen 

exposure and maternal hypertension or preeclampsia, as well as for rs11119982 in ATF3 with 

exposure to cytokines. Both SNPs only seemed to influence hypospadias risk in exposed cases. For 

rs6932902 in ESR1, only maternally derived alleles appeared to increase hypospadias risk in offspring.  

Conclusions This study shows that interactions between genetic and environmental factors may help 

to explain non-replication in genetic studies of hypospadias.  
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Hypospadias is a congenital hypoplasia of the penis, resulting from developmental arrest of urethral 

fusion. This leads to displacement of the urethral opening along the ventral side of the penis. 

Hypospadias is one of the most common birth defects among boys, affecting 0.3-0.7% of newborn 

boys in Europe1. It shows familial clustering and segregation analyses suggest that the majority of 

cases have a multifactorial etiology2, involving both genes and environmental factors.  

Some environmental factors have consistently been associated with hypospadias. Hypospadias 

occurs more often in children born small for gestational age (SGA), and in first, intracytoplasmic 

sperm injection (ICSI)-induced, or multiple pregnancies. In addition, maternal hypertension, 

preeclampsia, high body mass index (BMI), pre-existing diabetes, and use of anti-epileptic drugs 

increase hypospadias risk, as does maternal intra-uterine exposure to diethylstilbestrol (DES)1.  

Genetic associations with hypospadias have also been reported, mainly for single nucleotide 

polymorphisms (SNPs) in endocrine-related genes, such as those encoding estrogen receptors 1 

(ESR1)3 and 2 (ESR2)4, activating transcription factor 3 (ATF3)5, and steroid-5-alpha-reductase 

(SRD5A2)6.7. ATF3 is an estrogen-responsive gene showing upregulation in hypospadias8, while 

SRD5A2 encodes an enzyme that converts circulating testosterone in the genital tubercle to the more 

potent androgen dihydrotestosterone.  

The numbers of samples analyzed in these genetic studies were relatively small, and most 

associations could not be replicated in a much larger study by our group9.  

This lack of consistency might reflect differences in environmental exposures between 

populations9. Several reviews have called for studies simultaneously examining genes and 

environment in relation to hypospadias1,10, but so far, such studies have rarely been performed. 

Therefore, we set out to examine whether the lack of replication could be due to gene-environment 

interactions between the four SNPs described above and risk factors for hypospadias.  

In addition to gene-environment interactions, other (epi)genetic mechanisms may be involved 

in the etiology of hypospadias. Maternal genotype may affect the intra-uterine environment, thus 

modulating hypospadias risk, and gene imprinting may cause the copy derived from one parent to be 
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more fully expressed than the copy derived from the other parent11. Therefore, we also examined the 

maternal genotype and imprinting effects.  
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Cases and parents 

AGORA (Aetiologic research into Genetic and Occupational/environmental Risk factors for 

Anomalies in children) is a large data- and biobank at the Radboud University Nijmegen Medical 

Centre in the Netherlands, in which questionnaire data and DNA samples are collected from patients 

with congenital malformations or childhood cancer and their parents. For the current study, DNA was 

available from 796 hypospadias cases born between 1980 and 2008 and 1,422 parents. Medical 

records of all cases were reviewed to identify syndromic hypospadias cases, collect clinical 

characteristics, and obtain information about anatomical location of the urethral opening. The regional 

Committee on Research Involving Human Subjects approved the study protocol and all parents and 

children over 11 years of age gave written informed consent.  

 

Environmental risk factor data 

Questionnaires were sent to the parents of all patients, containing a variety of questions on health and 

lifestyle just before and during pregnancy, which were used to define environmental risk factors. 

Although exogenous exposure to estrogens is not a known risk factor for hypospadias1, we included it 

in the gene-environment interaction analyses, because SRD5A2, ESR1, and ESR2 are involved in 

endocrine processes and ATF3 is an estrogen-responsive gene. Exogenous exposure to estrogens was 

defined as continued use of oral contraceptives during early pregnancy or consumption of soy or 

linseed products, which contain high amounts of phytoestrogens12, at least once a week in the first 14 

weeks after conception. Women with a hormonal coil implanted who became pregnant were excluded 

because of weak estrogen exposure. Women exposed to pesticides at work were also excluded because 

pesticides can have either estrogenic or anti-estrogenic effects.  

In addition, we studied interactions with factors associated with hypospadias occurrence: SGA 

(defined as birth weight<10th percentile for that gestational age, using Dutch reference curves13), 

mothers with hypertension or preeclampsia, high BMI (defined as BMI>25 kg/m2), primiparity, and 

multiple pregnancy.  
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In most tissues, ATF3 mRNA can be induced by various stress signals, such as cytokines and 

chemicals from cigarette smoke14,15. Therefore, we also included these exposures in the gene-

environment interaction analyses for ATF3. Because the placental barrier may be permeable to 

cytokines16,17 and chemicals from cigarette smoke18, we categorized cases whose mothers smoked at 

least one cigarette per day during some time in the first 14 weeks after conception as exposed to 

cigarette smoke, and cases whose mothers reported the presence of an infection and/or inflammation in 

this period as exposed to cytokines.  
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Genotyping 

Blood was collected in EDTA containing tubes (n=1,405) or saliva using Oragene containers (n=687; 

DNA Genotek Inc., Ottawa, Canada). DNA extraction and genotyping was performed as described 

previously9.  

 

Statistical analyses 

We used the case-parent triad design. The most frequent homozygous genotypes in parents served as 

reference genotypes in the log-linear approach19 that was applied to assess genetic associations. Log-

linear models were fitted without assumption of Hardy-Weinberg equilibrium (HWE). Information on 

families with one missing parental genotype was included in the analyses using the expectation-

maximization algorithm20. Likelihood ratio tests (LRT), comparing full models including both mater-

nal and offspring genotypes to reduced models including either maternal or offspring genotype only, 

were computed to determine the relevance of maternal and offspring genotypes for hypospadias risk. 

We also conducted these analyses separately for the groups of anterior, middle, and posterior 

hypospadias cases, because different risk factors may be responsible for the different phenotypes21,22. 

Although the case-parent triad design is robust to population-stratification when testing genetic 

effects, effects of environmental exposures cannot be estimated. 

Parent-of-origin analyses were conducted in two steps. As an initial screening, we used the 

transmission asymmetry test (TAT)19. This approach provides insights into the data, but is invalid 
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when maternal effects exist. Therefore, the parent-of-origin LRT (PO-LRT), was used to confirm the 

results23.  
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 Interactions between environmental exposures and offspring genotypes were tested using  log-

linear models with the LRT comparing a full model including gene-environment interactions to a 

reduced model including only the offspring genotypic effect24. We used a dominant interaction 

parameter, assuming that the environmental factor affects carriers with one or two copies of the variant 

allele similarly. We did not correct the critical P-value for multiple testing, as we only tested a limited 

number of well-founded  hypotheses. If the LRT indicated the presence of an interaction (PLRT<0.05), 

relative risks (RR) and 95% confidence intervals (95% CI) were calculated separately for the different 

strata of the exposure variable using the variance calculated with the LEM program, which takes into 

account missing genotypes25. All other analyses were performed using the SAS System for Windows, 

release 8.02 (SAS Institute, Cary, North Carolina). 
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Of the 796 available hypospadias cases, 38 patients were excluded due to lack of parental DNA. To 

ensure independence, we excluded the youngest brother from 22 sib-pairs, while from three twin-pairs, 

one brother was excluded at random. We excluded 19 patients because of syndromic hypospadias, 

chromosome abnormalities, or a known cause of hypospadias. Finally, two triads were excluded 

because of Mendelian errors. The final data set consisted of 712 cases. For 668 cases, DNA of both 

parents was available, while for 44 cases, we only had DNA from one parent. Environmental data 

were missing for 70 families. The majority of cases were of European Caucasian descent (91%), and 

the remaining were of non-European (5%) or unknown descent (4%). Almost 60% of cases had an 

anterior hypospadias, while 20% and 13% had middle and posterior urethral openings, respectively. 

Table 1 shows the distribution of the environmental risk factors studied. Exogenous exposure to 

estrogens, multiple pregnancies and fetal exposure to cytokines were relatively rare (<10%), whereas 

the other factors were more common. 

Genotyping of the SNPs was completed with a success rate of more than 98.5%. All genotype 

frequencies in parents were in HWE (P≥0.28). Genetic association results showed that offspring 

genotype of the variant in ESR1 was associated with hypospadias, as reported earlier in a partly 

overlapping sample9, whereas results for the variant in ATF3 were suggestive of an association. 

Maternal genotypes were not associated with hypospadias in offspring (Table 2). Repeating the 

analyses separately for subgroups of anterior, middle, and posterior hypospadias cases showed 

comparable results.  

The results of the gene-environment interaction analyses pointed towards interactions between 

offspring genotype of rs523349 in SRD5A2 and exogenous estrogen exposure and maternal 

hypertension or preeclampsia (Table 3). Offspring carrying the variant allele seemed to be at increased 

risk of hypospadias when estrogen exposure occurred and at decreased risk when the mother had 

hypertension or preeclampsia. Furthermore, an interaction was observed between rs11119982 in ATF3 

and exposure to cytokines, with an increased risk of hypospadias for offspring carrying the variant 

allele only when the mother reported an infection and/or inflammation (Figure 1). Due to small 

numbers of cases with certain exposures, we also considered a reduced model assuming HWE, which 
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handles small sample size situations better. The risk estimates from this model showed the same 

direction of gene by exposure interaction for the SNP in SRD5A2 and exogenous estrogen exposure, 

albeit less strongly (Figure 2). For the other interactions, similar results were obtained as in the full 

model. 
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The results of the parent-of-origin effects analyses are shown in Table 4. For rs6932902 in 

ESR1, the estimated PO-LRT relative risk for an imprinting effect was 1.61 (95% CI=1.02-2.53), 

indicating that a maternally derived copy seemed to be associated with a greater risk of hypospadias 

than a paternally derived copy. The TAT showed that only the maternally derived copy increased the 

risk of hypospadias (RR=1.8, 95% CI=1.3-2.7).   
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This study is a follow-up to our earlier association study of genetic variants in SRD5A2, ESR1, ESR2, 

and ATF3 and hypospadias risk in which 620 cases were included. For the current study, we excluded 

37 cases because DNA of both parents was not available or a brother was present in the dataset, and 

included 129 cases not included in the earlier study because of non-Caucasian or unknown ethnicity or 

because they were collected after 2007. We included gene-environment interactions as well as 

maternal and parent-of-origin effects in an attempt to reconcile our findings with those of others.  

The estimated interaction between offspring genotype of the SNP in SRD5A2 and exogenous 

estrogen exposure during early pregnancy suggests that offspring carrying the variant have a more 

than eight fold increased risk of hypospadias only in case of exogenous estrogen exposure in the full 

log-linear model, and an almost three times increased risk in the reduced model. The interaction 

between this variant in SRD5A2 and exogenous estrogen exposure seems biologically plausible, as it  

causes a valine to leucine substitution (V89L)  resulting in an approximately 30% decrease in enzyme 

activity26 and thus in less dihydrotestosterone. Additional estrogen exposure might cause an androgen-

estrogen imbalance in carriers of this variant, resulting in hypospadias. The gene-environment 

interaction observed could help to explain differences in findings for this SNP between our study and 

studies from Sweden and China6,7,9. The latter two observed associations with the malformation, not 

taking environmental parameters into account, while we did not. However, phytoestrogen exposure is 

known to be higher in Chinese and Swedish populations compared to the Dutch. Chinese people 

consume more soy products, while in Nordic countries more rye bread and berries are consumed. 

These food products contain large amounts of isoflavonoids and lignans, respectively, whereas in a 

typical Western diet, both lignans and isoflavonoids are almost completely lacking27.  

The SNP in SRD5A2 seemed to decrease hypospadias risk in case of maternal hypertension or 

preeclampsia, which may result from placental insufficiency. The latter may also lead to decreased 

provision of human chorionic gonadotropin (hCG) to the foetus. As hCG stimulates foetal testicular 

steroidogenesis before the foetus’s own pituitary-gonadal axis is established, and the SNP in SRD5A2 

may result in even less DHT being formed, we would expect the SNP to increase hypospadias risk in 

case of maternal hypertension or preeclampsia. 
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The SNP in ATF3 seemed to be associated with an increased hypospadias risk only when the 

mother reported an infection and/or inflammation during pregnancy. ATF3 shows strong upregulation 

in hypospadias patients8 and is upregulated in response to cytokines14. While the rs11119982 variant 

has not been functionally characterized, a working hypothesis could be that the variant underlying the 

association with hypospadias causes an increased expression of ATF3 in response to cytokines. 

However, this finding does not reconcile our results with those reported earlier, describing a decreased 

hypospadias risk in the presence of the variant5.  
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The parent-of-origin analyses indicated that only a maternally derived copy of the variant in 

ESR1 seems to be associated with an increased hypospadias risk. This suggests that the maternally 

derived allele of ESR1 is more fully expressed than the paternally derived allele. Although ESR1 is not 

one of the currently known imprinted genes (www.geneimprint.com), the experimental identification 

of imprinted genes is challenging, because monoallelic expression of imprinted genes may occur only 

in particular tissues, at particular stages of development, or in one of the isoforms28. Therefore, it is 

unlikely that all human imprinted genes are already known. However, the observed parent-of-origin 

effect could also have arisen from an effect of maternal-fetal genotype interaction. Unfortunately, we 

do not have enough statistical power to disentangle these two possible effects. 

We have to acknowledge some limitations. For all factors studied, we relied on information 

from questionnaires which may result in misclassification due to recall problems, especially since the 

average time between birth and filling out the questionnaires was 10.2 years, ranging from 0 to 27 

years. However, most factors studied are relatively easy to remember. Also, this misclassification 

probably does not depend on genotype and  would have resulted in attenuation of the results only, 

which may have obscured some effects. Misclassification due to measurement error could also account 

for not finding gene-environment interactions for well-known factors such as SGA or primiparity, 

which may be proxies for underlying causes that are difficult to measure, such as placental 

insufficiency. To our knowledge, we investigated the largest sample of hypospadias cases thus far 

reported in genetic studies, while the power of our study was further increased by including 

information on families with one missing parental genotype using the expectation-maximization 
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algorithm. Nevertheless, numbers of cases having a specific genotype and being exposed to a 

particular environmental risk factor were still small, resulting in large confidence intervals for the 

effect estimates. Our definition of exogenous estrogen exposure, for example, assured a selective 

group of women experiencing high levels of exposure, but resulted in low numbers of exposed 

women. This indicates that very large samples are needed to study gene-estrogen-exposure 

interactions. In addition, the gene-environment interaction test assumes that the SNP under study is a 

disease-causing mutation. If a marker in linkage disequilibrium with the causative mutation is studied 

instead, the test is susceptible to exposure-related population-stratification29. 
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Conclusions 269 
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We showed that parent-of-origin effects and gene-environment interactions contribute to the etiology 

of hypospadias, and that environmental factors can explain genetic non-replication between studies. 

Our results warrant further research directed at elucidating combined effects of genetic and 

environmental factors for this frequently occurring urological birth defect. 
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Tables 
 
Table 1.  Distribution of environmental risk factors for hypospadias patients. 
 

Exposure 
 

 

       yes 
    n      (%)  
 

 

       no 
    n      (%)  
 

 

   unknowna 
    n      (%) 

 

Exogenous exposure to estrogens    29     (4%) 
 

580   (81%) 
 

103   (14%) 

 

 Use of oral contraceptives during pregnancy       8      (1%)  626    (88%) 
  

   78    (11%) 
 

 Consumption of soy products during pregnancy    16      (2%)   620    (87%) 
  

   76    (11%) 
 

 Consumption of linseed products during pregnancy      7      (1%)  626    (88%) 
 

   79    (11%) 
 

Known hypospadias risk factors   
 

 

 Small for gestational age 125   (18%) 505   (71%)   82   (12%) 
 

 Hypertension or preeclampsia 107   (15%) 533   (75%)   72   (10%) 
 

 BMI > 25 kg/m2 140   (20%) 468   (66%) 104   (15%) 
 

 First pregnancy 361   (51%) 277   (39%)   74   (10%) 
 

 Multiple pregnancy   49     (7%) 590   (83%)   73   (10%) 
 

Fetal exposure to cytokines   67     (9%) 499   (70%) 146   (21%) 
 

 From a severe cold    15       (2%)  574    (81%)  123    (17%) 
 

 From other viral, bacterial or fungal infections    28       (4%)  563    (79%)  121    (17%) 
 

 From chronic inflammatory diseases    29       (4%)  605    (85%)    78    (11%) 
 

Fetal exposure to cigarette smoke 117   (16%) 505   (71%)   90   (13%) 
 
Percentages do not add up to 100% due to rounding and overlapping categories; n, number; afor 70 
patients, environmental data were completely missing because parents did not fill out the 
questionnaires. 
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Table 2.  Genetic association results for offspring and maternal genotypes of single nucleotide polymorphisms in SRD5A2, ESR1, ESR2  
and ATF3 with hypospadias. 

 
  

 

Offspring genotype 
 

  

Maternal genotype 
 

Single nucleotide 
polymorphism 
 

Geno-   
 type 
 

      

   Cases 
    n      (%) 
 

RR 
95% CI 
 

P-
value  
 

 

 
PLRT

a 
 

      

   Mothers 
    n      (%)  
 

RR 
 

95% CI 
 

 P- 
value 
 

 

 
PLRT

b 
 

rs523349 in SRD5A2 
 

  CC 
  CG 
  GG 

 

333   (48%) 
298   (43%) 
  70   (10%) 

ref 
1.1 
1.0 

 

0.9, 1.3 
0.7, 1.5 

 

 
0.60 
0.83 

 

0.87  
 

326   (47%) 
313   (45%) 
  57     (8%) 

ref 
1.0 
0.9 

 

 
0.8, 1.3 
0.6, 1.3 

 

 
0.69 
0.46 

 

0.64 
 
 

 

rs6932902 in ESR1 
 

  GG 
  AG 
  AA 

513   (72%) 
177   (25%) 
  18     (3%) 

ref 
1.5 
2.0 

 
1.2, 2.0 
1.1, 3.8 

 
1×10-3 

0.03 

 

3×10-3  523   (75%)  
159   (23%) 
  16     (2%) 

ref 
1.1 
1.7 

 
0.8, 1.4 
0.7, 3.7 

 
0.61 
0.21 

 

0.42 
 
 

 

rs2987983 in ESR2 
 

  AA 
  AG 
  GG 

345   (49%) 
293   (42%) 
  67   (10%) 

ref 
0.8 
0.8 

 
0.7, 1.0 
0.5, 1.1 

 
0.06 
0.12 

 

0.13  328   (47%) 
297   (43%) 
  72   (10%) 

ref 
1.0 
1.0 

 
0.8, 1.3 
0.7, 1.4 

 
0.97 
0.86 

 

0.98 
 
 

 

rs11119982 in ATF3 
 

  CC 
  CT 
  TT 

163   (23%) 
354   (50%) 
188   (27%) 

ref 
1.2 
1.4 

1.0, 1.6 
1.0, 1.9 

 
0.07 
0.02 

 

0.07  180   (26%) 
332   (48%) 
187   (27%) 

ref 
0.9 
1.1 

 
0.7, 1.1 
0.8, 1.6 

 
0.23 
0.37 

 

0.09 
 
 

 
Percentages do not add up to 100% due to rounding; CI, confidence interval; LRT, likelihood ratio test; n, number; RR, relative risk; aP-value of the 
likelihood ratio test comparing a full model including maternal and offspring genotypes to a reduced model including only maternal genotypes; bP-value of 
the likelihood ratio test comparing a full model including maternal and offspring genotypes to a reduced model including only offspring genotypes. 
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Table 3.  Results of the tests for gene-environment interactions for single nucleotide 
polymorphisms in SRD5A2, ESR1, ESR2 and ATF3. 
 

Single nucleotide 
polymorphism 
 

 Environmental risk factor 
 

 

PLRT
a

 
 

 

rs523349 in SRD5A2 
 

Exogenous exposure to estrogens 
Small for gestational age 
Hypertension or preeclampsia 
BMI > 25 kg/m2 

First pregnancy 
Multiple pregnancy 

 

7×10-3* 
0.92 
0.04* 

0.17 
0.42 
0.44 

 

rs6932902 in ESR1 
 

Exogenous exposure to estrogens 
Small for gestational age 
Hypertension or preeclampsia 
BMI > 25 kg/m2 

First pregnancy 
Multiple pregnancy 

 

0.45 
0.11 
0.06 
0.89 
0.10 
0.72 

 

rs2987983 in ESR2 
 

Exogenous exposure to estrogens 
Small for gestational age 
Hypertension or preeclampsia 
BMI > 25 kg/m2 

First pregnancy 
Multiple pregnancy 

 

0.42 
0.92 
0.86 
0.28 
0.27 
0.11 

 

rs11119982 in ATF3 
 

Exogenous exposure to estrogens 
Small for gestational age 
Hypertension or preeclampsia 
BMI > 25 kg/m2 

First pregnancy 
Multiple pregnancy  
Fetal exposure to cytokines 
Fetal exposure to cigarette smoke 

 

0.78 
0.11 
0.21 

0.82 
0.40 
0.17 
0.02* 

0.60 
 
LRT, likelihood ratio test; aP-value of the likelihood ratio test comparing a full model including gene-
environment interactions to a reduced model including only offspring genotypes; *indication of gene-
environment interaction. 
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Table 4.  Results of the parent-of-origin analyses. 
 

  
 

Transmission asymmetry test (TAT) 
    

PO-LRT 
 

  
 

Mothers 
  

Fathers 
 

     

Single nucleotide 
polymorphism 
 

Minor 
allelea 

 

T 
 

NT 
 

RR 
 

95% CI 
 

P-
value  
  

T 
 

NT 
 

RR 
 

95% CI 
 

P- 
value 
 

PTAT 
 

 
RR 
 

P- 
value 
 

 

rs523349 in SRD5A2 
 

G 
 

81 
 

80 
 

1.0 
 

0.7, 1.4  
 

0.94  
 

66 
 

81 
 

0.8 
 

0.6, 1.1 
 

0.22 
 

0.34 
  

1.18 
 

0.27 
 

rs6932902 in ESR1 
 

A 
 

79 
 

43 
 

1.8 
 

1.3, 2.7 
 

1×10-3  
 

58 
 

53 
 

1.1 
 

0.8, 1.6 
 

0.64 
 

0.05 
  

1.61 
 

0.07 

 

rs2987983 in ESR2 
 

G 
 

59 
 

95 
 

0.6 
 

0.5, 0.9 
 

4×10-3  
 

64 
 

82 
 

0.8 
 

0.6, 1.1 
 

0.14 
 

0.33 
  

0.76 
 

0.27 
 

rs11119982 in ATF3 
 

T 
 

83 
 

71 
 

1.2 
 

0.9, 1.6 
 

0.33  
 

111 
 

70 
 

1.6 
 

1.2, 2.1 
 

3×10-3 
 

0.17 
  

0.79 
 

0.25 
 
CI, confidence interval; NT, minor allele not transmitted; PO-LRT, parent-of-origin likelihood ratio test; RR, relative risk; T, minor allele transmitted; TAT, 
transmission asymmetry test; athe least frequent allele in the parents. 
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Figures 
 
Figure 1. Relative risks of hypospadias with 95% confidence intervals for genotypes of (a) rs523349 in 
SRD5A2 within strata of exogenous estrogen exposure (b) rs523349 in SRD5A2 within strata of 
maternal hypertension or preeclampsia and (c) rs11119982 in ATF3 within strata of fetal exposure to 
cytokines. 
 
A 

 
 
B 
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C 

 
 
 
Figure 2. Relative risks of hypospadias with 95% confidence intervals for genotypes of rs523349 in 
SRD5A2 within strata of exogenous estrogen exposure using a reduced model assuming Hardy 
Weinberg equilibrium. 
 

 
 


