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PART ONE: GENERAL DEFINITIONS AND BASIC PROPERTIES

T. Introduction

In recent years an extensive study has been made of magnetic groups
[ﬂ} . Bﬂ . These are n-dimensionel crystallographic groups in which time
inversion is considered next to and in combination with space transforma-
tions.

If one admits also discrete time translations one is led to the study
of n+l-dimensional crystallographic groups. The problem is to find a suit-
able space on which these groups act as transformation groups. Consider the
simplest possibility: a n+l-dimensional Euclidean vector space which is a
vector space with a positive definite metric. The group of inhomogeneous real
linear transformations leaving this metric invariant is the Euclidean group
E(n+1). A n+l-dimensional space group is a discrete subgroup of the Euclid-
ean group which contains as a maximal abelian subgroup a translation group
generating a n+l-dimensional lattice. As Ascher and Janner [3] have discussed,
such a space group Gn+1 may be obtained from an extension:

o + 7z 4 ¢ L ok o4 (¢) (1.1)

of a free abelian group Zn+1 by a finite group K celled point group. The ope-
ration of K on 2™ is given by a monomorphism ¢: K + GL(n+1,Z). In crystallo-
graphy it is customery to identify affine equivalent space groups. According
to Bieberbach [ﬁ] two space groups are affine equivalent if and only if they

are isomorphic.
However the Buclidean space does not take into account the difference

between time axis and space axes. The solution of the problem would be con-
sidering the n+l1-dimensional Minkowskian vector space which has an indefinite
metric of signature (n,1). The homogeneous real linear group leaving this
metric invariant is the Lorentz group, the inhomogeneous one is the Poincaré
group. A relativistic space-time group is a discrete subgroup of the Poin-

caré group with a maximal abelian subgroup of translations generating a n+1-



dimensional lattice. Relativistic space-time groups can also be obtained from
extensions (1.1), but the general conditions under which groups appearing in
extensions (1.1) may be interpreted as relativistic space-time groups are
under investigation, Because in Minkowskian space one has to distinguish
between spacelike, timelike and isotropic vectors, equivalence of two space-
time groups is a stronger equivalence relation than plain isomorphism as
groups. We call two such groups isomorphic if there exists an isomorphism
between them which maps translations on translations of the same kind. To
find all non-isomorphic relativistic space-time groups is, as far as we know,
an unsolved problem even in the lowest dimension (n = 1). This is a conse-
quence of the indefinite character of the metric.

In the non-relativistic limit the Minkowskian vector space is trans-
formed into the Galilean vector space with a singular metric. In this same
limit the Poincaré group becomes the inhomogeneous Galilean group. A Galilean
space-time group is a discrete subgroup of the inhomogeneous Galilean group
with a maximal abelian subgroup of translations generating a n+l-dimensiocnal
lattice. In Galilean space one distinguishes space type vectors (n+1th com-
ponent zero) and velocity type vectors (n+1th component different from zero).
Two Galilean space-time groups are called isomorphic if there is a group iso-
morphism between them which maps translation elements on translations of the
same kind,

Regarding the difficulties involved in the determination of relativis-
tic and Galilean space-time groups it is worthwhile to consider a last possi-
bility: the direct product of a n-dimensional Euclidean space (interpreted
as space) and a one-dimensional Euclidean space (representing the time). We
simply call it product space. Actually this is the type of vector space one
considers implicitly when speaking of magnetic groups. The group of inhomoge-
neous linear transformations leaving invariant the metric in both spaces is
called the inhomogeneous pseudo-Lorentz group. A generalized magnetic space-
time group (GM space-time group) is a discrete subgroup of the inhomogeneous
pseudo-Lorentz group JP(n+1) with a maximal abelian subgroup of translations
generating a n+l-dimensional lattice. In product space one may distinguish
three kinds of vectors: those lying in one of the two spaces and a mixed type
(with non-vanishing components in both spaces). Two GM space-time groups are
called isomorphic if there exists a group isomorphism between them mapping

translation elements of a given type on translation elements of the same type.



The present part presents a study of the properties and the classifica-
tion of the space-(time) groups in the three first named different spaces.
The classification of GM space-time groups is not further treated, but this
may be done quite analogously. Some preliminary results are published in
technical reports [5] .

Before starting the discussion of the various crystallographic groups a

brief survey of the corresponding continuous transformation groups is given.

2. Metric spaces and transformation groups

. . . +1 . .
Consider a n+l-dimensional real vector space Rn + Provided with a

positive definite metric this is a Euclidean space. (If an orthonormal basis
n+1
)

. n+1 1
€5€550005€ 14 18 chosen a vector x€ R has real components (X ,...,X

and its norm is given by the non-degenerate quadratic form

n+1 .
I=xfz2= = (x")2).

i=1
The non-singular linear transformations leaving this metric invariant form
the orthogonal group O(n+1). The inhomogeneous transformations leaving the
norm of the difference of any two vectors invariant form the group of solid
motions, the Euclidean group E(n+1). The uniquely determined maximal abelian
normal subgroup of E(n+1) is the n+1-dimensional translation group Tn+1.
E(n+1) is the semi-direct product

n+1

E(n+1) = T A 0(n+1)

vhere 0(n+1) acts on Tn+1 in the natural way. Denoting the elements of E(n+1)

1

+ . o . . . .
by (a, a), wvhere a€ T" ' and a € O(n+1), multiplication in E(n+1) is defined

by
(a, a) (b, B) = (a + ab, aB)

for all a, be Tn+1 and all a, B € O(n+1). By ab is meant ¢(a) b, where ¢

. +
is here the natural monomorphism O(n+1) - Aut(T" 1)



.o +1 . . .o . .
Providing R with an indefinite metric of signature (n,1) one has a n+1-

dimensional Minkowskian space.(Choosing an orthonormal basis L PEREEPL N in

such a way that

|2 =1 (i =1,...,n)

le ., l12=-
the norm of a vector with components xl,...,xn+1 is given by
n .
Ixl2= £ (12 - (x™1)2).

1=1

The orthogonal group of this metric is the homogeneous Lorentz group
0(n,1). The inhomogeneous Lorentz group or Poincaré group JL(n+1) is the
semi-direct product

n+1

JL(n+1) =T A 0(n,1)

1

+1 . .
where 0(n,1) operates on T ' in the natural way.

By choosing another orthogonal basis in Minkowskian space defined by

el = e, (i =1,...,n)
(2.1)

' — e
€1 = © iy (real positive c)

one obtains in the limit ¢ -+ « the n+l-dimensional Galilean space with a

singular metric. The corresponding limit of the Lorentz group is the Galilean
group G(n+1) which is obtained in the following way. By O+(n,1) ve denote

the one-component of 0(n,1) and by V:

- for odd n: the group generated by

- for even n: the group generated by



1 0 M 0 -1 0]
and with M
n

0 -1 0o 1 o 1,

Then 0(n,1) is generated by O+(n,1) and V.

+ .
Any » € 0 (n,1) may be written as:

0] . 0

Pn . cosh x 0 sinh ¥ Qn .

Ax) = 0 0 1, 0 0
0...0 1 sinh ¥ O cosh x 0...0 1

where Pn and Qn are n-dimensional orthogonal transformations.

After the basis transformation (2.1) and putting |v| = ¢ x one has:
. PnQn v
lim A'(EJ = = y(v)
cHm 0 1

vwhere v is a n-dimensional columnvector. y(v) is an element of G(n+1).
. . +
G(n+1) is generated by what we denote as lim O (n,1) and V.

Ccx

The inhomogeneous Galilean group is the semi-direct product

n+t

JG(n+t) =T A G(n+1)

. +1 .
where again G(n+1) acts on T" ' in the natural way.

We call product space the direct product of a n-dimensional and a one-

dimensional Euclidean space. The metric in the first space is given by:

(x*)2
1

o]
N
1]
[T e Rl =]

i

in the second one by

x2 = (xn+1)2

The linear transformations leaving invariant the metric in both spaces form



the homogeneous pseudo-Lorentz group O(n,1).

Proposition 1

0(n,1) = 0(n) x 0(1).

Proof: Choose an orthonormal basis with €yseces) in the first space and

e in the second one. Then an element T€ 0(n,1) is a matrix such that for

n+1 n+1

any X with components x!,...,x

n n+1

n ;
1 (xN)2 = g LT T'l xk %t
i=1 i=1 k,e=1 9% 9
and
n+1

T b4
K, 2=1 n+l1,k "n+1,2

From this follows
n
i Tjk le =8, (k, £ < n)

J=1

Tj,n+1 - Tn+1,k =0 (J, k < n)

2 -
Tn+1,n+1 1.

Therefore the matrix T has the form
T = (2.2)

where P is an orthogonal matrix.

Proposition 2

The pseudo-Lorentz group leaves invariant all quadratic forms



n .
a L (x7)2+ B(xn+1)2 (all real a and B)

This is a direct consequence of proposition 1.

In particular 0(n,1) leaves invariant the quadratic forms

(Xi)2 _ (xn+1)2 .

+ )
I (xP)2 and
= 1

1 i

N~y

The inhomogeneous pseudo~Lorentz group JP(n+1) is the semi-direct

product:

sp(n+1) = ™ A o(n,1) .

GL{n+1,R)
i1 i%

Oin+1) 0{n,1) 0(n,1) Gin+1)
n N N n
Eln+1) JLin+1) JP(n+1) JG(n+1)
! i7 \i? i it [

! | 1
[ I
i : ! :

I [ I I
: 1 I I
" : ! [ I
i ! ! 1 !

1 1 ' : :

; i1 I Rn+1 i il‘ i
euclidean minkowskian product galilean
space space space space

real
vector space

fig. 1



By choosing a basis in each of the spaces discussed one obtains iso-
morphic mappings onto Rn+1 considered as real vector space. These mappings
induce isomorphic mappings of the groups E(n+1), JL(n+1), JP(n+1) and JG(n+1)
into the real affine group GIL(n+1,R), which is the semi-direct.product of
Rn+1 by the real general linear group GL(n+1,R).

For the rest of the paper we suppose that a fixed orthonormal basis is
chosen, if not stated otherwise. As n+1th axis we take:

- in Minkowskian space the direction of the basis vector of norm -1;
- in Galilean space the direction obtained in its limit (2.1);

- in product space the one-dimensional Euclidean space.

The n+1th axis is sometimes called t-axis.

Once these bases are chosen the transformation groups may be identified
with their isomorphic images in GIL(n+1,R).

Proposition 3:

0(n,1) = 0(n+1)n 0(n,1) = 0(n+1) n G(n+1) = 0(n,1) N G(n+1)

The proof is a direct consequence of proposition 1 and the fact that the

elements of G(n+1) have the matrix form

< esed

(2.3)
0...0 t1

where R€ 0(n).
Because in each space the group of solid motions is the semi-direct
product of the translation group by the orthogonal group of the space one has:

Proposition L:

JP(n+1) = E(n+1) N JL(n+1)

E(n+1) N JG(n+1)

JL(n+1) N JG(n+1) .



3. Euclidean space groups

We give here a brief summary of those properties of Euclidean space
groups which form a fundament for the subsequent generalizations. At the
same time we introduce some new concepts. We refer to references Eﬂ s Dﬂ s

[5] for more details and for the proofs.

. . +1 . .
A n+l-dimensional space group Gt ! 1s a subgroup of the Fuclidean group

E(n+1) with gt def o+l 0+l 5 free abelian subgroup of rank n+1 which
generates over R the vector space pit (i.e. RU! < Tn+1). Let o be the

. . + . .
restriction to G" 1 of the epimorphism ¢': E(n+1) —»0(n+1) and put K = Im g.

. e eis +1 . .
Then 1t follows from the definition that yt ! 1s normal 1n Gn+1, that Gn+1/

vt 2k c O(n+1) and that K acts effectively on ™', Furthermore U™*! is

maximal abelian and of finite index in G" 1. A set of points equivalent by
. +1 . . . . . +
the operation of i 1 is called a n+l-dimensional lattice A (i.e. u" 1xo =A).

K is a point group leaving A invariant.

Each space group appears in an extension

0 — 5 g™,k g0t

A% 7///;fz

n+1

19k — 51 (¢) ") (3.1)

! by K with ¢: K » GL(n+1,Z) a monomorphism. The subgroup Un+1 is

or 2™
unique, so the monomorphism k = 1 o A is only variable in the isomorphism A.
Fixing A 1s equivalent to choosing a basis of A or correspondingly a set of
free generators of Un+1. The monomorphism ¢ gives a n+1-dimensional integral
faithful representation of K. The group ¢(K) is called an arithmetic point
group.

Consider next to the diagram (3.1) the commutative diagram

Zn+1 \)
n+1
xl > U (3.2)
S+ A7

1 : . -
) In diagrams we often use the following notation: a homomorphism is denoted by ——, a monomorphism by »—j ,
an epimorphism by —» , an isomorphism by)>—» .



- . . . +1 .
where A anu A are 1lsomorphisms, x an automorphism of 7" 1, i.e. X € GL(n+1,2).

. . + . .
A corresponds to another choice of basis u? 1. Then (3.2) induces a morphism

.T group extensions:

0 ——> 7 > G K 1 (o)
X (3.3)
0 — > Zn+1 K Gn+1 — 9 K — 51 (3)
such that
#(a) = x ¢(a) x! (V o € K)

This means that ¢ and ¢ are two Z-equivalent representations of K. The con-

dition of arithmetic equivalence for two point groups ¢(K) and ¢(K) is weaker:
3(K) = x ¢(K) x7! (3.4)

and arises from the consideration of isomorphic space groups.
According to ref. [j] , proposition 6, given two isomorphic space groups

Gn+1 and Cn+1, there exists a morphism of group extensions

1 1 g

0——>Zn+ ——E——>Gn+ —>K——>1

X ¥ ® (3.5)
0 —— > g0+ K , g+ g S & 51 (3)
such that
$(wa) = x ¢(a) x7} (V a € K)

with x € GL(n+1,Z). This means that isomorphic space groups determine the

same arithmetic class, i.e. a class of arithmetically equivalent point groups.

As shown in ref. [3] in the lower extension one may always choose ¢(K) = ¢(K).



We call ¢(K) an arithmetic point group. Then denoting by N the normalizer

of ¢(K) in GL(n+1,Z):

$(K)

def

and one has the morphism

n+1 n+1 g

0 —> 7 — X 50 —> K ——>1 (¢)
X ¥ wl
0— 78] S 9 Sk >1 (4)

Hence one obtains all non-isomorphic space groups by finding all non-

+ . . .
D+l by one representative of each arithmetic

equivalent extensions of Z
crystal class.

The first problem is to find the arithmetic crystal classes. An element
of a space group may be written as (a,a) with a € ™ and o 6 0(n+1), For a
given space group the elements a form the corresponding point group K. In
GL(n+1,R) the point groups of two affine equivalent space groups are conju-
gate by a non-singular matrix and therefore similar. But two similar point
groups are even conjugate by an orthogonal transformation [5, p.hT] . There-
fore similar point groups are conjugate subgroups of O(n+1), i.e. geometri-
cally equivalent. The equivalence class is called geometric crystal class.

For a given point group K one defined a subset LK of the set L of n+1-

dimensional lattices A as follows:
LK={A€L|KA=A}.

Because of (3.1) and (3.4) a pair (K,A) with A€ Ly defines and arithmetic

crystal class.

Proposition 5:

If the point groups K and K are geometrically equivalent, then for each

A€ L there isale Lg such that (K,A) and (R,K) determine the same
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arithmetic crystal class.

Proof:
K=TKT! for some T e 0(n+1)
K(TA) = TA, so TA € Lz -

On bases B(A) of A and TB(A) of TA both K and K correspond to the same group
of matrices ¢(K).
Consequence
To obtain one representative from each arithmetic crystal class it is suffi-
cient to consider one representative from each geometric class and to deter-
mine all arithmetic representations on bases of lattices left invariant by
this representative.

The maximal point group leaving a lattice invariant is its holohedry H.
A lattice A determines an arithmetic crystal class with ‘representative ¢(H),
but the converse is not true. The arithmetic crystal class of the holohedry

defines the Bravais class of A. Two lattices belong to the same Bravais class

if and only if their arithmetic holohedries are arithmetically equivalent.

In the same way the geometric class of the holohedry defines the system of A.
Two lattices belong to the. same system if and only if their holohedries are
geometrically equivalent.

For given point group K a point group K is called enveloping if for
every A € LK one has a group from the geometric class of K which leaves A in-
variant. The maximal enveloping group of K is called its system group Ko. The
reason of this terminology is that, for n < 3, each system group Ko is the
holohedry of at least one lattice from LK . So in these cases the system
groups and geometric holchedries are the Osame.

Example: 3-dimensional geometric groups, enveloping groups and system groups.

Notation:

A »> B: B is an enveloping group for A

: C is a system group.
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Point group System group System Point group System group System
1T — (tri- A 32 -~
clinic) 3<§ -—>/, (trigonal)
2 3m
3 o]
2/m (mono-
n — clinic)
_a 6mm -
222 6~ 622 — | 6/mmm (hexagonal)
T (ortho- ~S6/m
mm?2 — rhombic) ////7
8 — &/m2
L/m
— ~
b = 422 —> | 4/mmm (tetra- m3
™ b gonal) | 2355132 = (cubic)
™S I3p
L —Iom

The set LK is divided in two subsets: to the first subset belong those
o

lattices for which KO is the holohedry, to the second one those for which this

is not the case. In both subsets, Lé and L;I, an equivalence relation is
o o

defined:

. . I . . . ,

i) in Le two lattices A, and A, are equivalent if (KO, A1) and (KO, A2)

determine °the same arithmetic crystal class; these classes correspond to
Bravais classes.
ii) in Lil A1 and A2 are equivalent, if they belong to the same Bravais
class. ©

The different arithmetic crystal classes corresponding to K0 are found

. I .
as follows. From each class 1n L one chooses one representative A and con-

siders (Ko, A); among the classegoof LéI one considers only those for which
the holohedry ¢(H1) has not a subgroup Oarithmetically equivalent to the
holohedry ¢(H2) of another class. From each of these classes one chooses one
representative A and considers (H, A). The different arithmetic point groups
¢(Ko) are arithmetically equivalent to a subgroup of a group from the class
(H, A).

Example: The 3-dimensional system group Ko = 3m leaves invariant lattices of
the trigonal, hexagonal and cubic systems. 3m is holohedry for the rhombo-
hedral lattices of the trigonal system. If we denote the arithmetic classes

by the corresponding symmorphic space group symbol, this defines the arith-
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metic point group R 3m, which is an arithmetic holohedry. The arithmetic
holohedries of the primitive, body-centered and face-centered cubic lattices
have a subgroup arithmetically equivalent to R 3m. So the arithmetic point
groups corresponding to 3m and not arithmetically equivalent to R 3m are the
arithmetically non-equivalent subgroups of an arithmetic holohedry of a hexa-
gonal lattice. There are two of them, P 3m1 and P 31m. So all together there
are three arithmetic crystal classes corresponding to 3m.

Proposition 6:

If K is the system group of K, then each arithmetic group ¢(K) is arithmeti-
cally equivalent to a subgroup of ¢(K0).

Proof: ¢(K) is an integral faithful representation of K related to a basis

of a lattice A, such that KA = A. Then ‘also KOA = A. As KCE Ko, also

$(K) € (K.

Note that ¢(KO) may contain several arithmetic point groups ¢(K) which
are arithmetically non-equivalent. As a consequence of proposition 6 it is
sufficient to find the equivalence classes in LKo for each system group K0
in order to obtain all arithmetically non-equivalent ¢(Ko). Afterwards one
determines for each subgroup K C Ko arithmetically non-equivalent subgroups
$(K) of $(K ).

Finally one has to find all non-isomorphic extensions (3.1) for a given
arithmetic point group ¢(K). (For the theory of group extemsions see ref.

Eﬂ , [8] , Ei] and [Jd]). Suppose the point group K to be given by genera-

tors Byseeesd and defining relations

¢i(a1,...,av) =€ (i =1,..0,r)

. . +1 . + .
and suppose that r(a) is a representative of the coset of z” ! in G% 1 which

is mapped by o (3.1) on o € K. Then the words
K g = ¢i(r(a1),...,r(av)) (i =1,00e,r)

. +1 . .
belong to Zn+1 Bﬂ « In order to define a_group ke 1 in the extension these

g; have to be solutions of

r
£ h.g. =0 (3.6)
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where H = [:hl,...,hr ] are called the extension conditions for the group K
(6] , [10] . 1f {gi}i=1 r satisfy (3.6), the space group ™ s gener-
,...’

+ .
ated by the free generators k a,,...,k a of « Z" 1, the representatives
1 n

+1
r(al),...,r(av) and the relations

K a; +K a; = x a; +koa; (1,5 = 1,000,n+1)
¢i(r(a1),...,r(av) =K g (i =1,0.,r) (3.7)
r(a) + « a - r{a) = caa = « ¢(a)a (a € Zn+1, a € K)

+1 . - -
In the same way Gn ! 1s generated by K 8],¢4.,k &

n+1
an isomorphism ¢: Gn+1 > §n+1 exists such that § r(a) = k c(a) + r(a) (VaekK)

+1
™

and ;(al),...,;(av). If

, the extensions are equivalent. The equivalence
1 n+1 s)
]

Bﬂ which is isomorphic to the second cohomology group Hi(K,Zn+1). Two groups

=n+ . . . . . .
Gn+1 and G" ! appearing in equivalent extensions (3.5) are isomorphic. llow-

for certain c € Cé(K,Z

. + .
classes of (K, ¢)-extensions of Z"  form an abelian group Ext (K, 2

ever also two groups belonging to non-equivalent extensions may be isomorphic.
In this case they may be obtained from non-equivalent extensions with the

same ¢(K). According to [i] , proposition 7, two groups in extensions with
the same ¢(XK) are isomorphic if and only if it is possible to find represen-
tatives of their equivalence classes with factor systems m and m respectively,
an automorphism w of K and an element x of the normalizer N ) of ¢(K) in

GL(n+1, Z) such that

(K

m(wa, wB) = X m(a,B) (Va, BE K)

+
x ¢{a)a = ¢(wa)y a (Vee K, Vae Z® h,
Here we state another equivalent criterion applicable in the case the groups
are given by generators and defining relations as in (3.7).
If w is an automorphism of K choose for maj a fixed word

was = wj(al,...,av) (3 = 1,000,v)

Define
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- def
K fi(él,...,ér) = ¢i(w1(;(a1),..7,;(av)),...,wv(;(al),...,;(av))

where
K8 = ¢.(Fla1),..e,Tla)) (i=1,.0.,r)

Furthermore elements ﬂi(aj) (i = 1,0e0,r; j = 1,...,v) of the integral group

ring ZK are defined by

1 v
Proposition T:
n+1 =n+1 . .. . .
G and G are isomorphic if and only if there are a) an automorphism w
of K, b) an element x € N¢(K) and c) elements c(a) € 2" such that
_ v
fi(gi""’gr) + ji1 ni(waj).c(aj) =X g (i = 1,.0.,r) (3.9)

Proof:

. . . . . . L. +
a) If in (3.5) Yy 1s an isomorphism, x 1s the restriction of ¥ to Zn ! and w
is the induced automorphism one has Eﬂ :

¢(wa) = x ¢(a) x ! (VaeK)

Therefore y € N

¢(K)°
Y operating on the relation ¢i(r(a1),...,r(av)) =« g gives
v
¢i(;(wa1),...,;(mav)) + K j§1 ni(waj).c(aj) =K X g; (i =1,.0.,7).

Choose for every wa € K a fixed word wq(al,...,av).

Then F(uwa) = % alwa) + w_(F(ay),...,F(a ) for some alwa) € 2°*7. One may

choose a(wa) 0 for this choice of words, because this only gives an equiv-
alent group. (Of course for another choice of words w&(al,...,av) in general

al(wa) # 0; it is well known that only in split extensions one can have repre-
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sentatives r(a) in such a way that r(aB) = r(a) + r(B) for all a, B € K).
Doing this one obtains relation (3.8).

b) On the other hand, if w and x are given in such a way that (3.8) is

. . . + =n+ -+ =
correct, one may define an isomorphism Y: G" 1 - G" 1, where G 1 and Gn+1
appear in equivalent extensions, by

- - - n+1

vick a + r(a)) =k x a + k cla) + r(wa) (Vae 2 s
Va e K,
+
cla) & 2™)

=N+ . .
! and G° ! are lsomorphilc.

+
Then Gn
So from a set of non-equivalent extensions for a given ¢(K) one can

determine the non-isomorphic ones using proposition T.

L. Relativistic crystallographic groups

P 3 +1 . .
A relativistic space-time groupﬁGn ! 1s a subgroup of the inhomogeneous

+ +
n+1 dgf Gn 1 n

Lorentz group JL(n+1) which contains a translation subgroup U

Tn+1 which is free abelian of rank n+1 and which over R generates Tn+1. This
. . . . + .

group Un+1 is maximal abelian-and normal in G 1. Analogously to the Euclid-

n+1/ n+1

ean case the relativistic point group K £ G U is a subgroup of 0(n,1)

. . . n+1 . .
leaving A invariant and G appears 1n an extension

0—>Zn+1—>Gn+1——>K — 1 ()

of a free abelian group Zn+1 of rank n+1 by the point group K, ¢ being a mono-
morphism K = GL(n+1, Z). One of the most important differences from the Euclid-
ean case is the fact that in general K is not finite. In the present paper
however we are concerned with space-time groups for which the image in
GIL(n+1, R) coincides with the image of a Euclidean space group. Therefore
the point éroups considered here are always finite.

In Minkowskian space timelike, spacelike and isotropic translations
occur (having negative, positive and zero norm respectively). For that reason
we need a stronger equivalence relation than plain group isomorphism in order

to decide if two relativistic space-time groups may be identified or not.
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. . +1 =n+1 . . s
Hence we define: two space-time groups G" and G" are 1somorphic 1if there

+1 =n+ S
L gt 1 such that for the restriction Xg = ¥ n+1

9)

is a group isomorphism Y: G

one has
sign || Xt |2 = sign || t |2 (v t e u™) (4.1)

Here the sign of the norm of an isotropic vector is zero by definition.

+ ) . .
o+l (If not stated otherwise in this

Consider a space-time group G
section we mean by space-time group always a relativistic space-time group),
and the commutative diagram

K
0 — > gt —2 K —— 1 (¢)

+1 Gn+1
A 4/7; (4.2)
Un+1

.. .. . +1 . + . .
Here 1 1s the injection of the normal subgroup u" ! into " 1. A 1s an 1so-
. 8 . +1
morphism which determines a set of generators of v, 1f ey = (1,0,...,0),
)

€2 = (0,1,004,0),000,€ = (0,...,0,1), then a basis B = (aj, a5,...,8

n+1 n+1

of the lattice A is defined by Aei = a.. For the monomorphism « one has
Kk =1 0o A . The reason why we consider i and A next to k is the fact that
space-time groups are not uniquely determined by their abstract group struc-

ture. To the basis B corresponds a metric tensor g = g(B) with elements

Bij = 85-8; (1,3 = 1,000,n41).
. . . .. . +1 .
The scalar product 1s given by the indefinite metric of u® ! induced by that
. . + . . . .
of Tn+1. A dascrete translation group u” ! (or the lattice A obtained in Min-
kowskian space by operating with Un+1 on the origin) is defined by its metric
tensor up to a homogeneous Lorentz transformation. As K is a group of homo-

geneous Lorentz transformations leaving invariant the metric tensor one has
t
g(B) = ¢ (a) g(B) ¢(a) (any o € K)

vhere g(B) and ¢(a) refer to the same lattice basis B.
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Now consider two extensions in which the same space-time group Gn+1
occurs:
n+1 < n+1
0 Z > G —» K ——> 1 ®)
k;\* 1/52
X Un+1
e
+ X‘ +1
0 2" >——y " > K > 1 (3)
K

The elements Ei = Xei (i = 1,2,...,n+1) form another basis B of A. The mono-

morphism ¢: K+ GL(n+1, Z) is given by
$(a) = x ¢(a) x7! (VaeK)

The metric tensor corresponding to the basis B = (aj, 32""’En+1) is given by:

g(B) = xtg(ﬁ) X .

So a space-time group defines a class of peirs (B, ¢(K)) with the following

equivalence relation: two pairs (B, ¢(K)) and (B, ¢(K)) are equivalent if:

$(a) = x ¢(a) x! (Vaek)
and (x € GL(n+1, Z) (4.3)

g(B) = x"g(B) x

+1

. . - . =n+l .
Now consider two 1somorphlc space-time groups G" and G- ! in the com-

mutative diagram

0 — 7™ ™! » K 51 (6)
Y /‘ ‘r \(
A n+1 1
U
X
X Ol ] w (L.L)
ﬁn+1
¥ f INY ¥
0 — gzt S gt > K >1 ()
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then Y is an isomorphism such that the restriction x_ to Un+1satisfies rela-
+ +1 v = ,=n+
n 1/Un v g/o" 1~

tion (4.1). i and I are the natural injections, so K = G = K.

For the arithmetic point groups one has the relation

$(wa) = x o(a) x7! (Va €K)
Now consider another basis B' of A determined by an isomorphism A' = Xyx:
Zn+1 > Un+1. Then we may insert a third exact row in (L.4) as follows
n+1 K n+1
0 —7Z — G —»K —1 (¢)
-&}\& , i 1
Un+ 7 w
Xo N J
0 — g2 & sk 1 (¢') (k.5)
A\s H%
X _ A0"
f -
jbn+1 ' =n+1 -
0 — 2z ——>F » K —> 1 (¢)
K

The arithmetic point groups are related by
#(wa) = x ¢'(wa) X = x ¢(a) x7?

So ¢"(wa) = ¢(a) .

1 =n+1

. . . + . .
Hence the 1somorphilic space-time groups ¢ and G mey be obtained in (X, ¢)

extensions with the same ¢.
If the metric tensor for the basis B of A is g and that for B' of A is g'

(4.1) requires

n+1 .. n+1 ..

L plpJ g. . 20 if and only if by plpJ g . 20 (L.6)
.o 1] < . s 1y <
l"]_1 19«]_1

(any p* € 2).

Suppose Bl # 0 for all 1 € k € n+1. This hypothesis is not restrictive be-

cause one can always find a basis without isotropic vectors. Then the images
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= +
in Un+1 also have non-zero norm. One may suppose pn 1 # 0. By a change of

variables

n+1
P

(4.6) becomes

] n def n i j n i >

flg'seeesq) = . ?_1 aa'g;; + ,E1 T Bi(n+1) * B(n+1)(n+1) T O
sJ= 1=
if and only if:

n def n i J- n i >

' 1 = ! ! ! b
labeena) = adtey 8 () * Bl (ner) < °

,3= =

for all rational qi.
Because the quadratic forms f and f'are zero for the same values of the ratio-
nal variables they only differ by a real factor k. As the regions of the vari-
ables, where the forms are positive, are the same, this k is positive.

So the equivalent space-time groups Gn+1 and §n+1 determine together with

the isomorphisms A and X two pairs (B, ¢(K)) and (B, ¢(K)) respectively such
that

g(B) = k x'g(B) X

x ¢(K) x7! X € GL(n+1, 2), k > 0 (4.7)

¢(K)

Any two pairs which satisfy the relations (L4.7) are called equivalent. The

equivalence class is called the relativistic arithmetic crystal class

{B, ¢(K)} .

. . . . n+1 n+1
From the discussion above and the fact that isomorphisms A: Z - U and
- —n+ . . . .
5. gt L gntl determine the same arithmetic crystal class according to (L4.3)
one has:

Proposition 8:

A space-time group determines a relativistic arithmetic crystal class. Iso-
morphic space-time groups determine the same relativistic arithmetic crystal
class.

To find the arithmetic crystal classes one introduces the concept of geometric
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crystal class. Two point groups are called relativistic geometrically equiv-

alent if they are conjugate subgroups of 0(n,1).

Proposition 9:

If K and K are relativistic geometrically equivalent point groups, for each
space-time group with point group K one has an isomorphic space-time group
with point group K.

Proof: Suppose K = T K T~! for some T € 0(n,1). The space-time group gt
occurs in a (K, ¢)-extension, where ¢(K) is K with respect to a basis B. Then
there is an isomorphic (K, ¢)-extension for ¢(K) given by K with respect to

B = TB. (Note that ¢(K) = ¢(K)). Because a Lorentz transformation leaves in-

. . . + +1 =n+ =n+
variant the metric tensor, the translation groups ut 1c: G" and gt ! c " !
have the same metric tensor with respect to bases B and B respectively. Hence

+ =n+1 e s .
G" 1 and G are relativistic equivalent.

Proposition 10:

It is sufficient to consider the relativistic arithmetic crystal classes for
one representative of each relativistic geometric class in order to obtain

all relativistic arithmetic crystal classes.

Two lattices A and N generated by the translation subgroups Un+1 c Gn+1

=n+1 =n+1 . . . .
and Un C Gn of two 1somorphic space-time groups have bases with respect

to which the metric tensors differ only by a positive real factor.

This means that both lattices have the same holohedry ¢{(H) with respect to
these bases. Therefore the concept of Bravais class does not play the same
important role here as it does in the Euclidean case.

Two lattices A and & belong to the same relativistic Bravais class if
+1

there exists an isomorphism between the generating translation groups u"
and ﬁn+1 that maps elements of Un+1 on elements of the same kind in Gn+1.
(Of course both are isomorphic to Zn+1). From the foregoing discussion it
follows that A and R belong to the same relativistic Bravais class if there
are bases B of A and B of A such that for the corresponding metric tensors

one has
g(B) = k g(B) k >0 .

Hence a Bravais class may be denoted by a g(B) or by a class {B, ¢(H)!}

because B determines the holohedry ¢(H). Each arithmetic crystal class
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{B, ¢(K)} belongs to a Bravais class {B, ¢(H)} and one has ¢(K) c ¢(H).

In the same way as in the Euclidean case one defines a relativistic

system. Two lattices belong to the same relativistic system if their geometric
holohedries are geometrically equivalent.

Finally one has to find all non-isomorphic space-time groups obtained
from a (K, ¢)-extension and with basis B for one representative of each arith-
metic crystal class {B, ¢(K)} . '

Consider two isomorphic space-time groups Gn+1 and §n+1. They can always be

made to appear in the following commutative diagram

n+1

0o —> >————->G —> K — 1 (¢, B)
Y *\\x& \ v
1{//}
X
X °L ] w (4.8)
-n+1
¥ ka; ¥
0o —> z‘“1+1 SNy - K > 1 (¢, B)

where kg(B) = g(B).
From g(B) = kxtg(ﬁ) x one has x € ¢(H).
Furthermore because ¢(wa) = x ¢(a) x~! one also has x € N

n ¢(H).

¢ L]
Therefore x € N¢

Proposition 11:

. + = . . .
If two space-time groups c" ! and Gn+1 appear in equivalent extensions (L4.8)
they are isomorphic.
Proof: If the upper and lower rows in (4.8) are equivalent one may choose the

isomorphism § in such a way that x is the identity mapping. This means

g(B) = kg(B)
so 6™ and G are isomorphic.
As a consequence of propositions 7 and 11 one may formulate the follow-
ing criterion to distinguish the non-isomorphic space-time groups appearing
n (4L.8). (We use here the same notation as in section 3).
Proposition 12:

+1 =n+1 . . . . .
G~ and G° are 1isomorphlc space-time groups 1f and only if there are auto-
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morphisms w € Aut K and x € N¢(K) n ¢(H) and elements c(al),...,c(av) e 78

such that relation (3.8) is satisfied, i.e.:

fi(él’o e ,ér) +

. 1
J

n ™ <

1 ni(waj) c(aj) =y g. (i=1,...,r)

1 =n+ . .
and G~ ! have isomorphic

.l . +
Proof: As a consequence of proposition T: if c"
ab.oract structure, one has x ¢ N

On the other hand if x € N

) Besides, as seen above, x ¢ ¢(H).

o(K ;

(k) " ¢(H) the groups "t

in the proof of proposition T are not only isomorphic as abstract groups, but

and Gn+1 considered

even as relativistic space-time groups (Groups obtained from equivalent ex-

tensions are isomorphic).

5. Galilean crystallographic groups

. . +1 . .
A Galilean space-time group G" Visa subgroup of JG(n+1) with a trans-

. + . . .
lation subgroup Un+1 = Gn+1fﬁ i ! which 1s free abelian of rank n+1 and

1

. + . . .
which over R generates ™7, A Galilean point group K is a subgroup of G(n+1)

which leaves a n+1-dimensional lattice invariant. As we are only concerned
with Galilean space-time groups for which the image in GIL(n+1, R) coincides
with the image of a Euclidean space group, these Galilean space-time groups
are affine conjugate if and only if they have isomorphic group structure.
However, in Galilean space one candistinguish two types of vectors: space-
type (xn+1 = 0) and velocity-type (xn+1 # 0). Therefore we call two Galilean
space-time groups isomorphic if there is a group isomorphism between them
such that all translation elements of one group are mapped on translation

elements of the same type of the other one.
Denoting by A the lattice generated by Un+1 from a given origin and by

n+1

B? the hyperplane x = 0, we define

def

Proposition 13:

A is a f-aimensional lattice for certain £ (0 < & < n). This is denoted by

Al L
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Proof:
i) X, is discrete, A being a lattice;

ii) ifr, ro e AE, then n1r1-+n2rze_AE for any nj, n; ¢ Z; consequently Al
is a module over Z;

iii) AR is generated by at most n basis vectors (which can be chosen as basis

vectors of A).
It is always possible to choose a basis 81500058 of A in such a way

are basis vectors of AE « This 1s called a standard basis of

tha.t al’uoo,al
. . + . . .
A . If, for one choice of a standard basis, Gn ! determines the arithmetic

point group ¢(K), then for another choice one has

#(a) = x ¢(a) x7! (¥ aeK) (5.1)
where
X, X
1 2
X = (5.2)
0 X

and x € GL(n+1, Z), X, € GL(g, 2Z), X, € GL(n+1-2, Z).
So a Galilean space-time group determines on a standard basis the dimension
2 of BP N A and a ¢(K) up to conjugation by an element x (5.2).

Two pairs [$(K), Z] ana [¢(K), 2] are equivalent if

i) =1

ii) an element x € GL(n+1, Z) of the form (5.2) exists, such that (5.1)

is valid.

A Galilean arithmetic crystal class is an equivalence class of pairs
[6(x), 2] .

Then two isomorphic Galilean space-time groups determine the same Gali-
lean arithmetic crystal class. On the other hand, if [$(K), 2] and [§(K), 7]

are in the same Galilean arithmetic crystal class, for each Galilean space-

. +1 . . . . . = .
time group c" ! in a (K, ¢)-extension, there is an isomorphic one ¢*' in a

(K, ¢)-extension.
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Two point groups are in the same Galilean geometric crystal class if

they are conjugate subgroups of G{n+1). Again (cf. proposition 10) to obtain
all Galilean arithmetic crystal classes it is sufficient to consider one re-
presentative K of each geometric crystal class. For, suppose K = T K T"! for
some T € G({n+1) and let KA = X, then K T & = TA df . 1r B is a standard

basis of K, and dim (BP’n A) = 2, then B

dim (B? n A) = 2, because G(n+1).§? = 5?.

T B is a standard basis of A and

A lattice A determines an arithmetic holohedry, i.e. the Galilean arith-

metic crystal class of the pair [@(H), i], when H is the maximal point group

leaving A invariant. Two lattices belong to the same Galilean Bravais class

if and only if they determine the same arithmetic holohedry.

Definition: a split lattice is a n+l1-dimensional lattice for which a

. . . + .
standard basis may be chosen with £ = n and with a along the x" 1-a.x1s.

n+1
Proposition 14:

In each Galilean Bravais class for which £ = dim (5? n A) = n there is a
split lattice.

Proof: As £ = n one has for A a standard basis with Blseer,8 € R? and

8 .4 = (rn+1, tn+1)' Define
1 -v
n
y(v) =
o..'o 1
1 n Tn+1
where T 4 1S the column vector with components L SUREETERS 3P and v = /tn+1'

def

Then & = vy(v)A is a split lattice, because A admits the standard basis:

a; =a;e R (i =1,...,n)

A and | being obtained from each other by a homogeneous Galilean transforma-
tion, they belong to the same Galilean Bravais class.

We have restricted ourselves here to space-time groups with a finite
point group. However in the general case one may state the following propo-

sitions.



Proposition 15:

The holochedry of a Galilean lattice A with £ = n contains a free abelian sub-

group of rank n.
Proof: Because of proposition 1L one may consider a split lattice in the same

Bravais class. Denote the Galilean geometric holohedry by H and suppose
y(v) = € H (5.3)

Then in EP one has: R Al = AQ. So, denoting the Euclidean holohedry of Al by

+
h, one has R€ h. In the hyperplane x" 1. tn+1 one has

v(v) La g+l =a 0+,

as these are exactly the points in this hyperplane which is left invariant

c Al . So H has the following ele=-

by a Galilean transformation. Hence v‘tn+1

ments

i) (R o) (VR € h)

, if a; = [:ri, ti:l is a basis vector (i=1,...,n)

iii) 1, 0
0 -1
The elements ii) are of infinite order and generate a free abelian group of

rank n.

Proposition 16:

The holohedry H of a Galilean lattice A with £ < n has only elements of

finite order.
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Proof: Let a),...,a n+1 with a; [:r , L. :] and T, e R (i =1,...,n) be a
standard basis of A. Over Z the vectors al,...,a generate . = An R?, over

R they generate the vector space R . Choose an orthonormal basis such that

€1,+94,€, generate R and €lseeese generate R_, whereas e is along the

L n+1
xn+1-axis. With respect to this basis an element of the holohedry H has the
form
P u
‘Y=
0 €

where P € 0(n), such that P A\ = AE’ u is & n-dimensional column vector and

'}
€ = 1. Suppose € = +1. Consider the hyperplane t = ts (i = ¢+1,...,n+1). In

this hyperplane y operates as an element (P, ut. ) of E(n) and (P, ut. ) leaves

invariant the point sets r. + Al and r. + Rl. Elther r. € R or r. ﬁ R

i) If r. e RY define Vs in the orthoplement Rﬁ ¥ or RY in R_ in such a way
that v, + rY = r12+ R*. Then (P, ut, ) leaves invariant the set r. 4+, in the
hyperplane A\ +R . Soue R and Pv1 = Vi

ii) 1f rl € R , one has u € R® and v, = 0.

So in RL the vectors v are left invariant by P. These vectors

g1 "2V n4
span a d-dimensional space and 4 = n-%, because, if d < n-f the basis vectors

8] yeee,y8 would generate a space of dimension ¢ 2 + d + 1 < n+1. Therefore

n+1
P leaves Rﬁfl pointwise fixed. So y has the form,

PE 0] ul
Yy = 0 nn_l 0
0 0 1

where Pl)\E = LA, and u, a &-dimensional column vector. P,, being an element

2 L L
of a f-dimensional Euclidean point group, is of finite order m. Hence
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m . .
. 8 . .
Y leaves 1invariant 841 + Al o tl+1 Ve, € Al In the same way t2+2 v, € AQ
Suppose Vo # 0. Then 1:,1_'_1/t,“_2 = p/q is a rational number (p, q € Z) and
o] t“_1 - P t2+2 =0, 1.e.
€ R N A=A
Qo P80 &2 et

By hypothesis this not being the case, w, = 0 and therefore y is of finite

order. Because the elements with e = +1 iorm a subgroup of index 1 or 2 in
the holohedry the proposition has been shown.

To obtain the Galilean arithmetic crystal classes, one takes one repre-
sentative K of each Galilean geometric class and determines the lattices left
invariant by K. One takes one representative [¢(H), &] of each arithmetic
crystal class of the holohedries of these lattices. (We remark that if a
lattice occurs with £ = m, there exist also lattices with & = m+1,...,n).

The non-equivalent pairs [@(K), i] with K € H are representatives of the Gali-
lean arithmetic crystal classes.

Now still remains the problem of finding all non-isomorphic Galilean

space-time groups for a given [@(K), @] . Consider the morphism of group ex-

tensions:
+1 K +1 o
0 — 20 5™ Kk —31 (¢, 2)
X ¥ w (5.4)
e o
0 — g™ got! » K 51 (6, 2)

A i
Zn+1 Un+1 Gn+1
K =10 X
X X, ¥ Kk =310 (5.5)
X 1
Zn+1 ﬁn+1 Gn+1

If both extensions (5.4) are equivalent, X can be chosen to be the identity.

=n+ . . . .
So Gn+1 and G" ! are isomorphic as abstract group and the first £ basis vec-
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. +1 . ) -
tors of A corresponding to u” are mapped on the first 2 basis vectors of A

. —n+1 +1 =n+ . . .
corresponding to """, so 6" and gt 1 are 1somorphic as Galilean group.

Proposition 17:

. . + - . . .
The Galilean space-time groups Gn ! and Gn+1 are 1isomorphic 1f and only if

there are automorphisms x € N and w € Aut K (5.4) such that x is of the

¢ (K)

form (5.2) and relation (3.8) is satisfied:

A"
fi(él""’ér) + j§1 ﬂi(ma.).c(aj) =X g (i = 1,00.,r)
Proof: If Gn+1 and §n+1 are isomorphic, there are automorphisms x and w ,
because of proposition 7. Moreover the elements of BF N A are mapped on ele-
ments of BF n K. This means that ¥ is of the form (5.2).

On the other hand, if x and w exist with the required properties, then
Gn+1 and 5n+1 are isomorphic as abstract groups and every element of Un+1 is
mapped by ¢y on an element of the same type of ﬁn+1 and vice versa.

So both Galilean space-time groups are isomorphic.

6. Conclusion

In this part crystallographic groups in Euclidean, Minkowskian, Galilean
and so-called product space haven been defined and equivalence relations be-
tween them stated. In Euclidean space two space groups are isomorphic if they
are isomorphic as groups, but because of the existence of various kinds of
elements in the other vector spaces, the isomorphism then is more complicated.

In each of the n+l-dimensional spaces mentioned a space-(time) group may
be obtained from an extension of a free abelian group of rank n+1 by a point
group K with a monomorphism ¢: K + GL(n+1, Z). In Euclidean space every ex-
tension of this type with K finite gives rise to a Euclidean space group
[3, p.SSf] . A comparable proposition is not known for the other spaces, as
there infinite point groups may occur. (If K is a finite crystallographic
point group, imbedding theorems corresponding to proposition 5 of ref. Eﬂ
may be formulated in quite the same way).

For these reasons only those crystallographic groups are considered here
for which the injection in the inhomogeneous linear group coincides with the

injection of a generalized magnetic group. For Euclidean space this means that
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space groups are considered for which the point groups are n+l-reducible over
R. Relativistic and Galilean space-time groups are considered only as far as
they have finite point groups, i.e. in which no Lorentz or Galilean transfor-
mations of finite order occur.

Already for these simpler groups the classification is rather rich. The
number of Euclidean and Galilean Bravais classes is finite, but the number
of relativistic Bravais classes is infinite with the power of the continuum.
In product space the number is enumerably infinite.

The space-time groups, considered here, being isomorphic as groups to a
Fuclidean space group, the abstract isomorphism classes of these space-time
groups may be determined from all non-isomorphic extensicns (1.1) where K

corresponds (according to fig. 1) to a generalized magnetic point group.



PART TWO: CENTRAL EXTENSIONS

1. Introduction

A n-dimensional Euclidean space group G may be obtained from an extension

0 > 7 > G > K > 1 (¢) (1.1)

of a free abelian group of rank n by a finite group K with a monomorphism
¢: K » GL(n,2) [1] [2] .

To get the non-isomorphic space groups in n dimensions one has to deter-
mine all non-equivalent extensions for one representative of each arithmetic
crystal class and to identify the isomorphic extensions. In this part a pro-
cedure is given to determine the equivalence and isomorphism classes of ex-
tensions for a given arithmetic point group ¢(K). Inequivalent extensions of
an arbitrary abelian group A by K, with ¢: K > Aut(A), are in one-to-one
correspondence with the elements of the cohomology group Hi(K,A). If one uses
a method indicated by M. Hall [3, p.230] for evaluating Hi(K,A), one has to
know the so called extension conditions. These are discussed in section 2 and
are explicitly given in the appendix for the isomorphism classes of the so
called four-dimensicnal generalized magnetic point groups, the four-dimen-
sional crystallographic point groups which are (3+1)-reducible over R [L] .

The same problem becomes much simpler if one considers inequivalent ex-

tensions of 2" instead of an arbitrary abelian group. In section 3 a method

2
¢

bear a close resemblance to those of a paper by Zassenhaus Bﬂ who worked out

for the determination of H (K,Zn) is given. The final formulas turn out to

an algorithm for the determination of space groups by their non-primitive
translations. The reason for this analogy can be found in an isomorphism be-
tween H;(K,Zn) and Hi(K,Rn/Zn) [2] . A short discussion of this aspect is
given in section k4.

Because a space group may be given by generators and defining relations,
by a factor system or by a system of non-primitive translations, it is worth-

while to consider the relations between these representations. This is done
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in section 5.

Once the non~equivalent extensions are known the isomorphism classes
have to be determined. To do this dealing with generators and defining re-
lations, as found according to the method of section 3, is in general not
easy. A more systematic approach is possible by determining first inequiva-
lent systems of non-primitive translations.

For a specific three-dimensional arithmetic point group the various
techniques are illustrated by an example.

Using our method all non-equivalent four-dimensional generalized magnet-
ic space-time groups have been determined. The results are available in the
form of a technical report [6] .

We consider here a group K which is finitely generated and presented.

We use a multiplicative notation for K and an additive one for G and z%. of
course this does not imply that G is abelian. K is generated by O ETEEPLM
with defining relations ¢i(al’°'°’av) =¢ (i=1,...,r). Here € is the unit

element of K.
K=<G1,--.,Gv ;¢i(0.1,...,0.v) ,i=1,...,r> (1'2)

We suppose K finite and we denote the order of the group by k.

2. The determination of Hi(K,A)

For an abelian group A an extension

K g
0 — A > G > K > 1 (¢) (2.1)

is defined by one of its factor systems m € Zi(K,A) (group of 2-cocycles).
We suppose of course that (¢,m) forms a system of mappings obeying A9 and Atl

of ref. [1] .
Equivalent extensions have cohomologous factor systems and conversely.

If r(a) is a representative of the coset of «x A in G which is mapped on

o e K by o one has

¢i(r(a1),...,r(av)) =k g € KA (2.2)
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If other representatives are chosen
r'(a) = k c(a) + r(a)

with c € Ci(K,A) (group of 1-cochains), there are elements ni(aj) of the

group ring ZK fulfilling

o~

¢i(r'(a1),---,r'(av)) =« wi(aj) C(aj) + ¢i(r(a1),--.,r(av)) (2.3)

J=1
According to Hall [7] , [8] elements g; define an extension if and only if

for all {h.}._ , with h. € ZK, for which
1 1=1,u004,r 1

r

.E hiﬂi(aj) =0 (any j = 1,.04,V) (2.4)
1=1

also
r
I h.g =0 (2.5)
i=1

The solutions H = [:hl,...,hr ] of (2.4) form a left ZK-module and are
called extension conditions for the group K. In general this module is not
free. To know the extension conditions one has to construct a set of genera-
tors of the module, which can be obtained as follows.

Because hi € ZK and ni(aj) € ZK one has

hi = aSK mi(a) a , mi(a) € Z (2.6)
and
m.(a.) = I n.(a.; B) B, n.(a.; B) € Z (2.7)
1750 geg 109 i)

Notice that the coefficients mi(a) have to be determined, whereas the ni(aj; B)
are already known by means of (2.3).

Substitution of (2.6) and (2.7) in (2.4) gives
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r

0= I I m.{(a) a m.(a.)
i=1 aeK td
r

= I I m.(a) n.(a.; B) aB
i=1 a,Bek ' o
If we define
r -
C.(e) = £ I m(B) n.(a.; B la)e Z (2.8)
J i=1 BeK o

relation (2.4) may be written as

I C(a) a=0
oeK

Hence
Cj(a) =0 (v ae Ky any j = 1,.404,V) (2.9)

(2.8) and (2.9) correspond to a set of kv linear homogeneous equations with
integral coefficients for the kr unknown integers mi(a). A set of generators
for the solutions of (2.9) gives a set of generators for the ZK-module of
solutions of (2.l4).

For the isomorphism classes of four-dimensional generalized magnetic
point groups (and therefore also for 1-, 2- and 3-dimensional crystallographic
point groups) the coefficients ni(aj) appearing in (2.4) are zero-divisors.
This property facilitates the work of finding the solutions. One can proceed in
a way demonstrated here for the group Cn x Cyr &

This is the group (1.2):
K=C_ xC Z<a, B a, 82, aga"lp > .

The corresponding words in the group G are

¢;(r(a)) = nr(a)

¢2(r(3)) 2r(B8)

¢3(r(a), r(B)) = r(a) + r(B) - r(a) + r(8) .
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One easily obtains:

¢1(ke(a) + r(a)) = «N c(a) + nr(a)  with N_ =1+ o+t ™

¢, (xe(B) + r(B)) = kNoc(8) + 2r(g) with N, = 1+ 8

¢3(kc(a) + r(a), kc(B) + r(B)) = KDBC(G) + mzch(s) + ¢3(r(a), r(8))
with DB =1 -8 and ZaB =ag+ 8B

This gives for the elements ni(aj):

m(a) =N m(B) =0
ma(a) =0 ny(B) = N
m3(a) = DB m3(B) = ZaB

The equations (2.4) become

hy Na + hj DB =0
(2.10)

h, N, +h3 2 =0

B aB

The elements Na, DB’ NB and ZaBare zero~-divisors of ZK.

Multiplication on the right by Da and D, respectively gives

B

hy D, D = O

B

hj3 ZGB DB =0,

. . +
The left annulator of DB Da and of ZaB DB is the ideal {uNa vNB|u,v € ZK} .

Substitution of this in (2.10) gives:

hy N+ (uNOI + vNB) Dg = 0 (ny + uDB) N, =0

or

+ (uN + vNB) Zyg = O (hy + vZaB) Ny = - uN,Z

hy N 8 a aB = a B

B
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Hence for the general element H = [ h;, hy, hj ] one has

H = «Hy + AH, + pH3 + vHy with Ky Ay Hy Vv € ZK and

Hy = [pa, 0, 0]

H, = [0, Dgs 0] (2.11)
Hy = [;DB, -N_» N;]

H, = [0, ~Zyg» Né]

{#H,;, Hp, H3, Hy} is a minimal set of generators of the ZK-module. However it
is not a basis, because its elements are not linearly independent.

In fact for arbitrary o, 1 € ZK:

D, H} + oN

6 Hy + tD_ H3 = 0 .

8
None of these coefficients has an inverse in ZK, whence the module is not
free.

The method illustrated above has been used to calculate the extension
conditions for all abstract generalized magnetic point groups in four dimen-
sions. The results are given in the appendix.

If we put Hj = [:hf, hg, hg ] the possible extensions of A by K = Cn x Co
are given by the solutions of

by .
P hi g; = 0 3= Tyeaa,ly g e A (2.12)
1=1
Extensions associated to {gi}i=1,..., and {gi}i=1,...,r are equivalent if
end only if one has
_ v
. = - - - + - . G L] L]
g; -E nl(aJ) c(aJ) g; for c(aJ) A (2.13)
J=1
We recall that equivalent extensions give rise to isomorphic groups (G z G).
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Further on we also indicate how to solve equations (2.12) and (2.13)

but only in the special case of A Z 0,

3. Extensions of 72

In the special case that A in (2.1) is a free abelian group of rank n,
the theorem of Hall enables us to calculate the non-equivalent extensions
without an explicit knowledge of the extension conditions.

If K = < ajyeeesa 3 ¢i(a1,...,av) ,1=1,...,r >, the group G is gen-

erated by
Blyeeesd free generators of 71

r(al),...,r(av), representatives of the cosets corresponding to aj,...,a
AY)
and defined by the relations

a. +a,. =a, +a, (i, j = 1,00.,n)

r(a) + a; - r(a) = aa. (i=1,eee,n a €K) (3.1)

¢i(r(a1),...,r(av)) = 8; (1 = 1,000,r)

(We have here identified 2" with its isomorphic image « z" and written aa
for ¢(a)a).

The elements g, are determined by equation (2.5). Because ni(a.) and h,
are elements of the integral group ring ZK, they are linear operators on Zn,
and so they can be represented by n x n-matrices with integral entries. From
all matrices h. we form a matrix h = (h; hy ... hr)'

Putting p = nr, h is a n x p matrix.

From all matrices ni(aj) wve form

3

1(a )

wl(al) cessee v

(3.2)

nr(al) ceevene T (av)
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Putting q = ny, m is a p x g matrix.

Furthermore we form the column vectors

g1

$ = e zP and (3.3)
6
0(91)

C = e z% (3.1)
c(av)

We call ¢ a relation vector.

Using these definitions the equations (2.4) and (2.5) may be written respec-

tively as:

hil=0 (3.5)

ho=0 (3.6)

An extension equivalent to one given by ¢i(r(a1),...,r(av)) = g is
determined by

¢i(r'(a1),...,r'(av)) = ¢i(c(a1) + r(al),...,c(av) + r(av)) =

v n
= ji1 ﬂi(aj) c(aj) + 8 (c(aj) € Z,1i=1,...,r)

So vectors ¢ and ¢' determine equivalent extensions if there is a C € 729 such

that:
' =1 C + & . (3.7)

So the non-equivalent extensions are determined by the solutions of (3.6)
modulo HZq.

Consider now the natural imbedding i: Z -+ R. Define
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p=1RYc RP .

D is a s-dimensional real vector space generated by the column vectors:

M1 H1q
n 1
o)l rq

so that s is also the rank of I.
If we consider the row vectors (h;; ... h1p)"°"(hn1""’hnp)’ condition

(3.5) implies: these n vectors are in the orthogonal complement (in the usual
Euclidean metric) of D in RP. So D is orthogonal to each (h

""’hip)' Hence
each ¢ € D fulfils condition (3.6).

i1

On the other hand each solution of (3.6) is in the orthogonal complement
of thf space generated by (hll""’h1p)""’(hn1""’hnp)’ i.e. in the clo-
sure D = D.

So each point in D n 7P determines an extension. Conversely each exten-
sion is represented by a point of D n z®?.

If ¢; and ¢ € D n Zp, also ¢; + ¢, € D n zP. as explaeined in section 5
an element ¢ determines a factor system m only up to 8c with ¢ € Ci(K,Zn)
such that c(a;) = ... = c(av) = 0.

Define
gi(K,Zn) = {éclc € Cé(K,Zn) with c(a;) = c(av) = 0} (3.8)
If ¢ and ¢, determine factor sets m; and m, respectively (modulo B2(k,z")),

then ¢; + ¢, determines an extension with factor set (m; + my) (mod ﬁi(K,Zn)).

Hence
G NARS Zi(K,Zn)/ﬁi(K,Zn) (3.9)

Because of (3.7) all extensions equivalent to the split extension are

obtained from

nzd = Bé(x,zn)/ﬁi(x,z“) . (3.10)
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Therefore all non-equivalent extensions are given by
D nzP (mod mz%) = Z;(K,Zn)/Bi(K,Zn)

From this follows

Proposition 1:

. . n .
The non-equivalent (K, ¢)-extensions of Z are in one-to-one-correspondence

with the points of
(1RY) n 2P (mod mz?) = Hi(K,Zn) . (3.11)

Corollary 1: For finite K the second cohomology group Hi(K,Zn) is a finite
abelian group.
Proof: The elements of 1z¢ form a s-dimensional lattice in a Euclidean space
of the same dimension. Therefore the volume of the unit cell is finite. In
such a finite volume there is only a finite number of the discrete points
D n zP.

The number of these points being the order of HZ(K,Zn), this group is
finite. It is clear that it is abelian. So Hi(K,Zn) is characterized by a
finite number of torsion numbers.

This is a well-known result and has been proved already in another way.

To determine the elements of the group (3.11) one applies automorphisms

P € GL(p,Z) and Q € GL(q,Z) in such a way that

' =PMNQ = (3.12)

This can be achieved, because according to the theorem of elementary divisors
[9, p.101] it is even possible to bring N' in the form (3.12) with positive
ay |ds| ... |ds. If d; > 0 (i = 1,...,s) the elements of

(n* rY) n zP (mod m' z%)
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are given by vectors in zP, Suppose v' is such a vector then its possible

components are

0 if m(i,i) = 0 or 1
(v)' =

0,1,00.,1"(1,i)=-1 otherwise
Then the corresponding element v of (3.11) is given by
v=p1y

So HZ(K,Zn) is isomorphic to the abelian group generated by the vectors

¢

= p~1 s = .
e; =P e (i = 1,000,583 d; > 1) (3.13)

(where €s is the element of ZP with ith component 1 and all other components

zero) and defined by relations
d. e. =0 (any i for which di > 1),

From this it follows that the group structure of Hi(K,Zn) is given by the

torsion numbers di > 1.

4. The connection between the cohomology groups H;(K,Zn) and Hi(K,Rn/Zn)

To see the relation of our formula (3.11) with the Zassenhaus formulas
Bﬂ one considers the connection between a factor system and the corresponding
system of non-primitive translations. This aspect is extensively discussed in
ref. Gﬂ . We 1limit ourselves here to some general remarks.

Consider the following morphism of group extensions

K ag
0 —> 2" — >0 —>K —>1 (¢)

|

K g
0 —> R —25>M —%5 Kk — 51 (¢)

(k1)
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where ¢: K > GL(n,R) is the linear continuation of ¢: K » GL(n,Z) and i is
the natural imbedding z% » R, If K is finite, the lower extension splits
because R" is divisible and torsion free. We choose M to have a trivial fac—
tor system m, e We denote the representatives of the cosets of KORn in M by

ro(a). Then the monomorphism p is given by
. n
HKa=«x_1a, (vae?zZ)
wr(a) =k ula) +r (o) , (u(a) € R")

u is a 1-cochain: u e C!(k,R"), which may be defined in the following way.

¢

The exact sequence (with i as above)

1 1r
0 —> 7 > R > g%/z2! — 0 (4.2)

induces the following commutative diagram with exact rows and columns

0 0 0

I T l

0o —> cg(K,zn) cg(K,Rn) —> ¢k, RY/z") —— 0

’ ¢
8 5 s
i Z i* l R n I} R/Z
0o — Cé(K,Zn) — Cé(K,Rn) - Ci(K,Rn/Zn) — 0
5 5 8
i z l R %
* *

0o —> ci(K,Zn) — > C2(K,R") —> c2(K,R"/2") ——> 0

! l |

Ifme ZZ(K,Zn) is a factor system, i* me Zi(K,Rn) = B2(K,R"), because

Hi(K,Rn) = 0. Then there exists an element u € Ci(K,Rn) with

Spu =i, m (4.3)

u forms a system of non-primitive translations. One can show that § m. u=0,

R/Z *
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.0 . .
Then u modulo 1Z" 1s a crossed homomorphism:

u(aB) = u(a) + ou(B) (mod iz") Wa, B € K) (L.4)

u is only determined modulo Zé(K,Rn). If v e Zi(K,Rn) B1(K,R") there is an

¢
element f € C:(K,Rn) with 8of = v and GR(u + V) = Spu = i, m. For an equiva-
lent factor system m' = m + Gzc, with ¢ € Ci(K,Zn), one has
c o .
i m' =6 (W+i c)

because i, § ¢ = & C.
* z

i
R ™»
So if m and m' are cohomologous one has for corresponding systems of non-

primitive translations: i* m= GRu and i* m' = SRu' the relation
u' = u + GRf + i* e . (k.5)

This is the equivalence relation between systems of non-primitive translations,
called "Starke Aequivalenz' by Zassenhaus.

Consider now T, U and T u' for u and u' as in (4.5). T, u€ Zi(K,Rn/Zn)

R/Z"* L GRu =7, 1, n= 0. Furthermore T, [0aps coboundaries on
coboundaries. Te U and T u' belong to the same cohomology class because:

because § u =

_ _ 1 n,, n
[n.u'—__]_ [n.u-&-'rr* GRf:l— [w*ujeH(b(K,R /27) (4.6)
= 1 n,,n
In fact m, §.f GR/Z“* f and belongs therefore to B¢(K,R /Z7).
Conversely if [n‘ u ] = I:w* u' | one has the relation (4.5) between u and
u'. So E@] = [ﬁ{] € HZ(K,Zn). This one-to-one correspondence between the ele-

ments of Hi(K,Rn/Zn) and H;(K,Zn) is an isomorphism. As one sees from the long

exact sequence

i* ﬂ* 6* i*
-» H(K,Z2") — H}(X,R") — H}(X,R"/Z") — H2(k,2") — H2(K,R") -
$ T ¢ ) )
0 0
(4.7)

6* is in our case an isomorphism (the connecting isomorphism). One verifies

that u and m as above are related according to:



L5

6* [n*'u] = Eﬂ . (4.0)

If K= < ap,eeesa 3 ¢i(a1,...,av) s, 1=1,i00,r > (1.2), a system u of non-
primitive translations is defined already by u(al),...,u(av) using relation
(L.4). In this case, as Zassenhaus has shown [5] , u is uniquely determined,

(modulo z%), if and only if one has

[ e IR

ni(aj) u(aj) =0 (mod iz™) (i = 1,.0.,r) (4.9)

Jj=1

If we introduce the vector

u= | * er?, (4.10)

then (4.9) may be written in matrix formulation:
1U 0 (mod ZP) (h,11)

The solutions of this congruence may be determined in the same way as done
for (3.11).

5. Relation between the vectors U and ¢, the factor system m and the system

of non-primitive translations u

We consider the groups G appearing in (4.1) for fixed lower extension
(thus also fixed ¢(K)).
Then G is determined if one knows the factor system m, or the relation vector
¢, or the system of non-primitive translations u, or even the non-primitive
translations vector U. We now discuss the mutual relations between these var-
ious ways of presenting a given group G.

Case 1: A factor system m is given.

This means that writing the elements of G as:



Lo

(a, a) = ¢ a + r(a) (v a e2”) (Vo ek)
the product of any two elements is given by:
(a, @) + (b, B) = (a + ab + m(a, B), aB) (5.1)

i) Find ¢:

Using (5.1) one easily calculates the uniquely determined elements

K g = Qi(r(al),...,r(av)) (i =1,2,0e.,r) (5.2)
and the corresponding relation vector ¢ .
ii) Find u:
We have already seen, that for given m there exists a system u of non-primi-
tive translations, such that i* m = GRu. This means:

i m(a, B) = ula) + au(g) - u(aB), Va, BEK (5.3)

From this it follows that, with k = |K| and s = I u(B):

ReK
i £ m(e, B8) = ku(a) + (¢ = 1) s.
BeK
Because R is divisible and torsion free
1 . . ] n
u(a) =—1i & m(a, B) + (1 =a) f with f==€eR (5.4)
k k
ReK
Now:
wi(a) =3 it mla, 8) (5.5)
ReK

-

also gives a system of non-primitive translations corresponding to m (in fact
i* m = GRu', because u' = u + GRf). Relation (5.5) represents therefore a so-
lution of the problem. From (5.4) and (5.5) one sees that the factor system m
determines a systeﬁ of non-primitive translations u only modulo a principal

crossed homomorphism (i.e. an element of Bi(K,Rn)).
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iii) Find U:
The vector U trivially follows from the knowledge of the system of non-prim-
itive translations u.

Case 2: The relation vector ¢ is given.

This means that one knows the elements 8: through (3.3).
i) Find m:
According to [3, p.22f] if the elements g; are known, then elements

Yi(a, B) € ZK can be found such that
r
m(a’ B) = L Yi(as 8) gi s (5-6)
where of course « m{a, B8) = r(a) + r(B) - r(aB).
For the determination of the yi(a, B), the words (r(a) + r(B8) - r(aB))
have to be expressed as a sum of conjugates of the words ¢i(r(al),...,r(av)).

Present each a € K (a # al,...,av) by a fixed word wa(al,...,av) and choose

as representative r(a) the corresponding word in the r(aj) (5 = 1,000,v)
r(a) = wa(r(al),---,r(av)) (5.7)

For a generator aj (j = 1,...,v) one has trivially

wa'j (r(al),...,r(av)) = r(aj) (5.8)
Then
Def
x m(a, B) = Vot Vg T Ve = Yo (r(al),.-‘,r(av)), (v a, B € K)
Because

wa,B (al,...,av) = €

one has

wa,B (al,...,av) =1 a. a, &. (al,...,av) ozl ...«

Hence
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s (5.9)

n MR

m(a, B) =L a, «.o 0. g. =
s Jdl

v.(a, B) g.

1 i
and this gives a solution of the problem.
Although yi(a, B) is not unique, m(a, B) is uniquely determined by the partic-
ular choice (5.7).
Any other choice in the representatives r(K) may be considered as follows.

We suppose
r‘(aj) =k E(aj) + r(aj) J = Veeeeyv (5.10)

Then from ¢i(r(a1),...,r(av)) = ¢i(r'(a1) ces r'(av)) = g; (i = 1,00.,r)

and using (3.7) follows the relation:
nc = 0 (5.11)
According to proposition 3 demonstrated below, (5.11) implies that there is

a uniquely determined 1-cocycle ¢ € Zé(K,Zn) with c(aj) = E(aj) (J = 15000,v)e

Defining

Eé(K,zn) {c e C1(K,Z™) |e(ay) = clap) = «uv = c(a ) = 0}

¢
the l-cochain ¢ in (5.10) may be written as

E=C1+C2
with ¢, € Zé(K,Zn) and o, e Ei(K,zn).
So the change in the factor system corresponding to the change in represen-
tatives (5.10) is

- - . - Y n
m'=m+8Cc=m+8C with §ce Bé(K,Z ) (5.12)

This shows that ¢ determines m only modulo gi(K,Zn).

Proposition 2:

Given a word w = w(al,...,av) in the generators of K and elements nw(aj)

(j = 1,04.4,V) of the group ring ZK defined by
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n~™c<

v(w(al,...,av)) =

i nw(aj) V(aj) (5.13)

for any crossed homomorphism v € Zé(K,Zn). Then one has:

w(c(ay) + r(al),...,c(av) +r(a)) =

v nw(aj) c(aj) +

! (5.14)

+ w(r(al),...,r(av))

Il ¢

J

for any c(aj) € Zn,(j = 1,0004V)
The converse is also true.
Proof: The proof is trivial for words of length one. If the proposition is

1

b4
true for w, one easily verifies it for words of the form aj w. The result

follows by induction.
Corollary 2: For T (aj) as in proposition 2 and ni(aj) as defined by (2.3)

1
one has:

L (aj) = ni(aj) (i = 1,.00,7) (5.15)

¢
1 (3 = Taeeesv)

Proposition 3:

)

Consider the elements ni(aj) as above. Then the solutions {E(al),-'°’5(“v

E(aj) € 2%, j=1,...,v} of the system of equations

I~ <

m.(a.) cla.) =0 (i = 1,004,r) (5.16)
PR J

d
are in one-to-one correspondence with the l-cocycles ¢ € Zi(K,Zn); in partic-

ular one has:
c(aj) = E(aj) (J = 1y000,yV) (5.17)

Proof: See [5, p.123-125] + Actually in this paper of Zassenhaus the proof
is given for R"/z" instead of for Zn, but this is not relevant.

Let us remark that propositions 2 and 3 are also valid if one considers an
abelian group A instead of the free abelian group z". So the shown relations
between m and {gi} are also valid in the case of an arbitrary abelian group

A and only depend on the upper extension.
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ii) Find U:
According to diagram (4.1) and considering M presented as semidirect product

of R® by K (i.e. with trivial factor system mo), one has:

ig. =1 ¢j(r(a1),...,r(av)) = ¢j(u(a1) + ro(al),...,u(uv) + ro(av)) =

\Y

k§1 wj(ak) u(ak) (3 = 1,000,r) (5.18)

This because Qj(ro(al),...,ro(av)) = 0. Hence in terms of (3.2), (3.3) and

(4.10), relation (5.18) can be written as:
$=1U (5.19)

Consider now ' = P 1 Q as in (3.12) with P € GL(p,Z) and Q € GL(q,Z) and

define:

Ut =Qlu, ®' =P ¢ (5.20)
Then one obtains from (5.19)

nm u' = ¢ (5.21)

This implies that ¢' is of the form

— -

P! =

0 -

for some given g{,...,gé e 2 (5.22)

O (R =2 (4

QO s e

Then
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. . .
U with arbitrary xS_H,...,xq € R (5.23)

and one gets U from (5.20).

The arbitrariness of U for given ¢ simply expresses the arbitrariness
in the imbedding u of (4.1) and corresponds to different choices of the origin
(2] -

In fact the Rq vector

KO e O

S+1 defines by means of V = QV'

M s

q

a solution of the system of equations

Nt <

=z ni(aj) v(aj) =0 (i =1,0.0,7)
J
According to proposition 3 (for A = R") we may identify the v(a.) with the

corresponding values of a l-cocycle v € Z$(K,Rn) = Bé(K,Rn).

Hence one can always define an equivalent system of non-primitive transla-

tions such that

g{/dl

g ~ U" = g'/ds (5.2L)

00 om

o
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for some gi,...,g; € Z and 0 < gi < di'
iii) Find u:
We may suppose that we already know u{a;) ... u(av) (i.e. a vector U). By
means of relation (4.lL) we are then able to extend this set to a system u of
non-primitive translations.
Chnose for any o € K (a # al,...,av) a fixed word wa(al,...,av) and express

u(a) = u(wa(al,...,av))

in u(al),...,u(av). It follows that u is unique up to an element ¢ € EI(K,Zn).

¢
Explicitly one has (using (5.13)):

v
u(a) = i m (aj) u(aj) + c(a) , (0 # aj5eeesa) (5.25)

Case 3: A system of non-primitive translations u is given.

In this case U is of course also given. The factor system can be uniquely

found according to (4.3) by means of:

i m(a, B) = u(a) + au(B) - u(ap) (5.26)

One then obtains ¢ following case 1 (i).

Case L: A non-primitive vector U is given.

We have already discussed (case 2 (iii)) how u can be obtained from U; using
(5.26) one gets the factor system m. The vector ¢ is uniquely determined by
(5.19).

Conclusion

The four different ways to define a group G appearing in a diagram (4.1) have

relations which can be summarized by the following diagram:

mod Bi(K,Rn)

$ — > U
3 unique 2
mod ﬁi(K,Zn) unique unique mod Eé(x,zn)
oo unique $
m € 5 u

mod B;(K,Rn)
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Let us finally remark that for ' = P II Q given as in (3.12), the torsion
numbers of Hé(K,Zn) and of Hi(K,Rn/Zn) then being d;, d2,+..,d_, one can al-

ways fix a given group G of (4.1) in such a way that the corresponding m, ¢,

u and U are as follows:

21 21/dy
- 2 2 /d
¢ =P Ll ¢! with ¢' = 3 U= QU' with U' = _ (5.27)
0 0
0 0
and
2, mod 4, 21/4,
: [m] e Hi(K,Zn); : <[, ul e Hi(K,Rn/Zn) (5.28)
% mod d /4
S S S S

n
for some {11,...,25 e 2| 0g 4. =

2 n
i © di} . That H¢(K,Z )
(5.28) manifest.

Hé(K,Rn/Zn) is in

6. Isomorphism

i)  General concepts.
If two space groups G and G are isomorphic they may be obtained from exten-
sions with the same ¢(K) D] . So one can construct the following morphism

of group extensions

> K > 1 (¢)

G
X ¥ [ w (6.1)
G

> K > 1 (o)

If ¥ is an isomorphism, so are x = wlZn and w. Without loss of generality
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one may suppose for ¢ [j, p.BTQ] that
yr(a) = r(wa) (6.2)
From r(a) + x a - r(a) = « ¢{(a) a follows « ¢(wa) x & = r(wa) + kxa - r(wa) =

kx ¢(a) a.
So

$(wa) = x ¢(a) x ! (6.3)

Hence, if N is the normalizer of ¢(K) in GL(n,Z), then x e N.

In this way an homomorphic image of N in Aut(K) is defined:
£ : N » Aut(K)
by
EX = w (x € N, w as fixed by (6.3)).
One has
Ker £ = centralizer Z of ¢(K) in GL(n,Z).
Both Z and N are finitely generated [5, p.13Q] and of course Z 4 N
Z =< XlseeosXy 2 (6.4)
N =< X1seeesXyseresX, > (6.5)

ii) If G and G (6.1) are given by their relation vectors ¢ and ¥ respectively,

one has according to (6.2)

<I>i(r(m_1 aj)yees,r(u ! av)) = xky 1 éi (6.6)

We choose for each a € K a fixed word wa(al,...,av) and we introduce new coset

. Y
representatives r(a) = « c¢(a) + r(a) such that



1) ¥(a.) = r(ai) (i = 1,00e,v) (6.7)
2)  r(a) = wa(?#(al),...,%(av)), (V o € K) (6.8)

From (6.6) follows the relation

Y - n - - -
$.(r(w ! a;),eee,rlw ! av)) = kx ! g; *«x

1 ni(w-l uj).C(m_1 aj) (6.9)

nmc<

J
where ni(w-l aj) is defined in a way analogous to (2.3).
Because

=1

€ = ¢i(m_1 Q] goeeyld av) =Ma, ... a. ¢.(a1,...,av) aEl cee aEi (6.10)

from (6.8) it follows that

K 1 ¢i(¥(m-1 al),.‘.,;(w—l av)) 8.. k1 ¢j(;(a1),...,¥(av)) =

1J

N
-sj ’ (6.11)

[e=]

e
< <
— —

[
<

[h

for certain elements eij of ZK (compare with (5.9)).

Hence

v v

" - -
.= L 6..g.- L 7m.(w!a.). clu?! a,
g z g L i J) ( J)

011 s s 91r

0 (direct product) (6.12)

o
"

bad
x
"

>
X

9r1 es s e err

vhich is a p x p matrix.
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Then:
30 = Yo. (6.13)

Proposition b:

. . »
An element x € N induces an autcriorphism A of the group Hi(K,Zn).
Proof':

a) Suppose G appears in a split extension: & ~ 0

1

®mI
It
[ e B =4

m; (o) E(aj), for ¢ € c;(x,zn), (i = 1,000,r)

J=1

By (6.2) one obtains
- - v -
Qi(r(m ap)yeeoyr(wla))=x ¢ m(o ! a.)x
By choosing other representatives r(a) = xx~! c(a) + r(a) one has
o (F(o™ a1),eee,T(w ™l @) = 0 (6.1k)
Hence

¢i(¥(al),...,¥(av)) 0,
and (6.15)
\
¢ v o0

If ¥ splits, so does ¢ and vice versa.
b) If for given ¢(K) all non-equivalent vectors {¢} are known, an element
x € N gives for every ¢ a ® of an isomorphic group by (6.13). By construction
T is equivalent to one of the non-equivalent vectors {¢} .
If ¢ ~ ¢2 , then 31 ~ ;2 because of a). Thus x induces a permutation of the
equivalence classes, which corresponds to an automorphism A¥ of Hi(K,Zn).

In this way one may construct the orbits of x relative to Hi(K,Zn). As
2(k,2") are determined

¢

by the orbits of the generators )(1,...,)(u . The equivalence classes corre-

N is finitely generated, the orbits of N relative to H

sponding to one orbit of N form an isomorphism class.
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For the practical calculation the following proposition is useful.

Proposition 5:

An element of ¢(K) ¢ N induces the identity automorphism of Hi(K,Zn).
Proof: Suppose p € ¢(K). Then from (6.2) one has

K p g = ¢i(;(wa1),...,;(wav))
= ¢i(E cla;) + T(p) + rla)) = r(p)yees,x C(av) + r(p) +
+ ;(av) - r(p))
- v - -— - -—
=« 321 oﬂi(aj) oL, C(aj) +2.(x(p) + rlay) = Tlp)yeen,Tlp) +
+ r(a ) - (o))
- v - - . -
=kp L ﬂi(a.) p ! cla.) + r(p) +0.(rlay)yees,rla ) - ¥(p) .
j:] J J 1 \V)
Hence
v
g = 521 ni(aj) p 1 c(aj) + éi for some ¢ € Ci(K,Zn) (6.16)

Then & and ¢ are equivalent.

v . = .
iii) If u and u are systems of non-primitive translations of G and G appearing

in (6.1) one has (2] , [5]
ua) = xy u(wla) + (1 =a) £ (mod 2z7) (v a € K) (6.17)

Then u defined by

ula) = x u(w™! a) (v a e K) (6.18)

is an equivalent system of non-primitive translations for G.

The mapping u(a) ——» u(a) = x u(w ! o) induces an automorphism \¥ oo Hi(K,Rn/Zn)

1

determined by x € N. For a fixed choice w a, = mi(al,...,av) one may deter-

mine elements Qij of ZK such that
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v
wewt a.) = £ Q.. u(aj) (mod 2™) (1 =1,000,v) (6.19)

using u(aB) = u(a) + au(B) (mod Z").

Define the q x q matrix

11 eveea Q

1Tv
X =yx x . (direct product) (6.20)
Q e ® e s Q
vi vV

Then in matrix form (6.18) becomes

T=xu (mod 2%) (6.21)
so that going over to an equivalent vector ﬁ one has

url=xU (6.22)
Define

X't=qQ1!1xq
Then (5.20) gives:

§r = x' U (6.23)

By (6.23) one may determine the permutation of equivalence classes induced by

x € N.

iv) The relation between X and Y.

These two matrices are not uniquely determined and neither is their mutual
relationship. But without loss of generality we may place us in the situation
(5.27) with I' = P I Q as in (3.12).

Define the q x p matrices
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a! (6.24)

=1}
1}
2]

and
ﬁ - Q I_'[l P (6-25)
Then using (5.19), (6.22), (5.20), and noticing that U' = T' ¢' one has

=IXU=0IXQU'=nIXTo¢=Y¢ (6.26)

el
]
=
(w=]]]

So for every x € N one easily constructs the matrix X and by using (6.26) one
avoids the difficult word problem (6.11). One determines for each ¢ a corre-

sponding ¢ which must belong to one of the equivalence classes.

T. Example
In this section the techniques explained in the previous sections are

displayed on a specific example. We choose here the point group K = D,,

generated by o, B, (v = 2) and with defining relators (r = 3):
o1(a, B) = a2, ¢,(a, B) = 82, ¢3(a, B) =a B a B (7.1)

Hence the matrix I of (3.2) is given by [ see appendix |

: (7.2)

NaB afB

=
"
= = O

a

We now choose as ¢(K) the 3-dimensional arithmetic point group 222 defined by

o= () e = (M ) (7.3)



Then we have:

and

(we write z for -z).

The ' of (3.12) becomes:

m 0 with P

[eNeoNeNe]

So

B2(Dy, z3) 2 ¢, x Cy x Cy.

OO0 0O0O0O—=20O O -
O =200 0O00O— 0O

OCO0OO0OO0OO0OO—-=00
OO0OO0OO0OO0CO0OO0 0

el e Ne]

o N elNo)

OCO0OO0OO0O-=20000O0
OO0 - 00000

60

There are 8 non-equivalent extensions.

with 2 = Oor1 (i=1,2,3), as the

¢

is

L1e; + €5 + fL3ez .

0
o O
2
200
000 (7.4)
000
0000
0020
0000
000 100700
010 010010
000 001000
000 |and Q= |100000] (7.5)
000 000010
000 000001
100
000
001

(7.6)

They can be characterized by (2£;%523)

general form of an element of:

H2(D,, 23) = < ey, ey, €3; 2e) = 2e, = 2e3 = 0 > (7.7)

According to (5.27) we have correspondingly
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2 0
0
3
2 _ 23
o' = | 23 and ¢ =P lo! = 2 (7.8)
? 0
0
0 0
L2
0
2,/2 L1/2
22/2 12/2
ur = | 23/2 and U=qU'= 23/2 (7.9)
0 21/2
I
0 0
0

One verifies that ¢ and U satisfy (5.19) and that (after identification of
Hi(DZ’ z3) with its isomorphic image (7.6))

¢ = 21e; + %,ep + L3e3 where according to (3.13) e. = p-! €; (i =1,2,3).

If we now denote by a;, a;, a3 the image under k of the free generators

z. of Z3:
1

and

€1

0 0 z3
(zJ , €y = (o ) , €3 = (o ) , then (7.8) and (7.9)

0 Zo 0

mean that for the groups G of (6.1) corresponding to the inequivalent group

extensions (£%,%3) one has (see (3.1)):

®1(r(ﬂ), r(B)) = 2r(a) = 23 a3z

= 21 a) (7-10)

L)
N
—
=
Q
~
-
2}
—
™
~—
1]
\>
2]
—
™
I

2(r(e) + r(R)) = L7 as

(=2
w
—
[¥]
—
2
~—
-
H
—
™
~—
~—
n



62

and (L4.10):

L1 L2 L3
u(a) = — %21+t 5 22 + 5 23

L1
u(B) = —2‘ Z)

L2 L3

u(aB) = (u(a) + au(B)) = < 22 + > 23 and of course
u(e) = 0,

where we extended U by (5.25) to a system of non-primitive translations u,
putting c(a) = 0.

The corresponding factor system is then determined according to (5.26):

m(e,e) = m(e,a) = oo + m(a,e) = 0 (normed factor set)
m(a,a) = 2323; m(B,a) = 27z] - 2,2 - 2323; m(aB,a) = - 2;2; + L725
m(a,B8) = 0 ; ; m(B,B) = 212 ; m(aB,B) = - 2;27; (1.12)

m(a,aB) = 23233 m(B,aB) = = L7525 - 2323 3 m(aB,aB) = Rozy

One verifies that (7.12) fulfil (7.10). This factor set can also be obtained
directly from (7.10) after calculation of the Yi(a,B) of (5.6)

The result is: (omitting the trivial elements)

B gy + 82 - 83 ; mlaB,a) = - g5 + g3

m(a,a) = g 3 m(B,a)

a g2 (7.13)

m(a,8) = 0 3 m(B,8) = g, ; m(aB,B)
m(a,aB) = g3 m(B,aB) = - g; + B g3 ; m(aB,aB) = g3
where according to (T7.10)

g1 = %323 , g2 = L112) and 83 = 2325,
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By choosing U in the standard form (5.27) and by determining u from U by
(5.24) putting c(a) = O one has removed two degrees of freedom.

With the same ¢ one may add to each vector U the vector

0 -
0 ro
V=QV'=4Q 0 = ri, rp, r3€ R (7.14)
r
ra T2
r3 r3

With the same vector U one may choose u'(aB) = u(aB) + i c(aB) for

C(GB) = co e z3 (7-15)

€3

Therefore without changing ¢ one may add to the factor system (7.12) the

following one:

m'(a,a) =0 m'(B8,a) c(aB)

- c(aB) m'(eB,a)

[}
o

c(aB) (7.16)

m'(a,8) = - c(aB) m'(8,8) m'(aB,B)

m'(a,aB) = a c(aB) m'(B,aB) = B c(aB) m'(aB,aB) = 2¢cyz,

. . X9 3
which is an element of B¢(K,Z ).

We now consider the isomorphism classes of these non-equivalent exten-

sions. Putting

X1=(-1'11) -y X2=('_1_1) =8 xa=(1‘_1)

1 010
Xy = ( 01 ) and X5 = 0 01
10 100
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one has
o(K) = < x1, X2 > arithmetic point group
Z = < X1, X2» X3 > centralizer of ¢(K) in GL(3,Z)
N = < X)seessX5 > normalizer of ¢(K) in GL(3,Z).

The automorphisms ws of (6.1) induced by X3 respectively and determined ac-

cording to (6.3) are:
w; = wp = w3 = identity automorphism of K (because x1, X2, X3 € Z)
wy: & *aB >a , B> B
ws: a >aB > B >+ a

We indicate below the calculation of the orbits of Hi(Dz, z3) relative to xu

and quote the corresponding results for the cases of x3 and xs.

Using (6.11) and (6.12) one obtains

0] 0 1 Y
Oy = 0 1 0] and Y, = 0 X 0 (7.17)

1+ 0
1 (1+a) x x (1+a) ©
v oy

This gives with (6.13) and (7.8):

Ez y =P Y, PTler = | g =30, (7.18)

QO o s

Numbering the elements (%j%,%3) of Hi(Dz, z3) according to
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(110)
(011)

1 = (000), 2 = (100), 3 = (010), b = (001), 5
T

6
8

. . » .. .
the induced automorphism Xy: (23£22%3) » (2;23%,) is given by the following

permutation
ks (1) (2) (34) (56) (1) (8)

The same result may be obtained from (6.22) using (6.19):

1 a xu Xua
Qy = and Xy =
o 1 0

X,
Then
11/2 R1/2
372 32
. ) Y272 %572 )
Uy =@ M= 0 v 1o | =Ty
0
0 0

giving rise as it should to the seme permutation.

One verifies that with T of (6.25) one has

O -
o o
- O
o o
o o
o o
O —

0100000

=]
el
£
=
]
OCO0OO0OO0O0O0O—-=000
[eNoNoNoNeNoNoNaNe)
S
g
£

and indeed the relation N X, I ¢ = Y, 0 is satisfied.

(7.19)

(7.21)

In the same way one finds that A; is the identity permutation, as are of

* * .
course Ay and A;. For x5 one finds:
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0 0
0 1 0 Xs \\

05 = 0 0 1 and Yg = 0 0 X
B (1+aB) O

. * .
The induced Ag is given by (212,23) = (25,23,21).

Therefore we have

2 (1) (23 L) (5671) (8) (1.22)

0 XS
<: :> and Xg = . (1.23)

This gives the same permutation.

From (7.19) and (7.22) one sees that the orbits of H;(Dz, Z3) relative to N are
(1) (23 4) (56 7) and (8)

These are also the four isomorphism classes: the first containing the equiva-
lence class 1, the second the classes 2, 3 and 4, the third the classes 5, 6
and T and the fourth class 8. Hence for the arithmetic point group 222 one has
L non-isomorphic 3-dimensional space groups denoted in the international nota-
tion [10] by P222, P2,22, P2.2.2 and P2.2.2,.

They are given by the follow1ng table (the relations below are of course only

the non-common part of the defining relations (3.1)).

Non-isomorphic space groups | P222 P2122 P21212 P212121
g1 = 2r(a) 0 0 0 a3

go = 21'(6) 0 a) a3 a)

g3 = 2(r(a) + r(8)) 0 0 a; as

k u(a) 0 3 a) 3(aj+as) | 3(aj+ajs+aj)
k u(8) 3 a) 3 a) 3 a)

k u(aB) 0 0 3 a, 3(ay+ay)
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The group P222 is the split extension of Z3 and 222 and is called a symmorphic

space group.

8. Conclusion

In general for an extension of an abelian group A by a finite group K
one needs the extension conditions for this K. For generalized magnetic point
groups up to the dimension four these extension conditions are given in the
appendix.

For an extension of Z" by a finite group K these conditions are not ex-
plicitly needed. Already the elements ni(aj) (2.2) derived from the defining
relations of K and the monomorphism ¢: K -~ GL(n,Z) provide equations to deter-
mine all non-equivalent extensions, i.e. to determine Hi(K,Zn). Because of the
isomorphism Hi(K,Zn) = Hi(K,Rn/Zn) non-equivalent extensions may also be
determined by corresponding systems of non-primitive translations.

The groups Hi(K,Zn) and H;(K,Rn/zn) have been determined for all (3+1)-
reducible four-dimensional arithmetic crystal classes. The results are pub-

lished elsewhere [6] .
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Extension conditions for groups isomorphic to four-dimensional GM point groups

The four-dimensional GM point groups belong to the following isomorphism

classes:
C(n=1,231,6 =<a ;a"=15
D (n =2,3,4,6) = <a,8; o’ = g2 = (aB)2 =1 >
T =<a,8;ad=82=(aB)3=1>
0 =<a,B ;a*=g83=(aB)2=1>

and the direct products Cn x Cp, Cn x Cop x Cop, Dn x Co, Dn x Co x C2, T x Cp,
T x Cyp x Cogy 0 x Coy O x Cp x Cp.

Notice that C3 x Cp = Cg; D3 x Cp

In the following table for a group & x Co x Co, where G = < a,B an = Bl =

e

Dg and Dy = Cp x Cp.

(a8)® = 1 > , are given: 1) the defining relations ¢i(a,B,Y,5) =1
(i =1,.00,10);

2) a set of generating elements for the ZK-module
formed by the solutions of (2.5); each of these
extension conditions has 10 components;

3) the elements ﬂi(aj) in (2.?) (i=1,...,10;
3= 1,00.,4).

The information for the groups Dn x Co x Co, T x Cyp x Cp and 0 x Cy x Cy 1is
obtained from the table by taking (n,%,m) = (n,2,2), (3,2,3) and (4,3,2)
respectively. The information for other groups, which are subgroups of these
three groups, may be obtained by restriction to those values of i for which
¢i(a,8,y,6) = 1 is a relation of the smaller group and to those extension
conditions which have entries only for these values of i. The corresponding

rows and columns in table II are indicated in table I.
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Notice that in table II the elements ni(aj) are in transposed order relative

to definition (3.2).

Abbreviations: Na =1+a+a2+ ...+ an-1
D =1-a
a
ZaB =a+ 8
For a group K x Cy x C» Ka is an element of the group ring ZK such that
K N = I tg. The words representing Ka may be different in different groups:
reK
K=D K=T K=20
n
2
+ +
K, N, Ng(1+aB) N, (1 as )
Kg N, N (1+8a) N (1+8%a)
+ +a) (1+aB?
a8 N, Ng(1+a) Ng(1+a) (1+a8?)
Group relations ¢i generators n,%,m | elements of the

ZK-module (rows)

Cn i=1 a n,0,0 | H;

C_*Co i=1,k4,5 a,Y n,0,0 | H;,Hs,Hg,H>

C_xC2xC2 | i=1,L4,5,7,8,10 | a,v,6 n,0,0 | Hy,Hs,Hg,H7,H;;,H;2
Hi3,H16,H17,H19

D_ i=1,2,3 a,B n,2,2 | Hy,Hy,H3,H,

D_xCz i=1,2,...,6 a,B,Y n,2,2 | Hy,Hy,...,Hg

T i=1,2,3 a,B 3,2,3 | Hy,eos,Hy

T=C, i=1,2,...,6 a,B,y 3,2,3 | Hy,...,Hg

0 i=1,2,3 a,B 4,3,2 | Hy,eee,Hy

0xCy i=1,2,...,6 a,B,Y 4,3,2 | Hy,...,Hyg
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PART THREE: FOUR-DIMENSIONAL EUCLIDEAN CRYSTAL CLASSES
CORRESPONDING TO GM POINT GROUPS

1. Introduction

A n-dimensional space group g" may be obtained [1] from an extension

0 —— 2 > G > K > 1 (¢) (1.1)

of a free abelian group of rank n by a finite group K with a monomorphism

¢: K > GL(n,Z). To obtain all non-isomorphic space groups it is sufficient to
consider one representative ¢(K) of each arithmetic crystal class. Elsewhere
Bﬂ a method has been given to determine all non-isomorphic extensions (1.1)
once ¢(K) is given. So the remaining problem is the determination of the
arithmetic crystal classes. We limit ourselves here to those point groups
which are R-reducible into a (n-1)-dimensional and a one-dimensional part.
(F-reducibility means full reducibility in GL(n,F) for F a ring).

We call these groups generalized magnetic point groups (GM point groups).
The reason of this limitation is that the space groups (1.1) found for these
crystal classes are isomorphic to discrete subgroups of the inhomogeneous
Lorentz group. Actually each relativistic space-time group with a finite
point group is isomorphic to a space group ¢" (1.1) with ¢(K) a GM point
group [3] .

For n=4 the problem of the determination of all arithmetic crystal
classes has been treated by Zassenhaus [}] and by Blilow [5] who used a group-
theoretical computer program of Neubliser. Both used an algebraic methed taking
account of the work by Dade [6] who determined the maximal finite groups of
L x 4 integral matrices. The method used here to determine the four-dimension-
al arithmetic crystal classes corresponding to a GM point group is rather a
geometric omne,

In section 2 we define a GM point group and show the one-to-one correspon-
dence between n-dimensional GM point groups and (n-1)-dimensional magnetic
point groups. For a fixed choice of the 1-dimensional subspace left invariant,

the GM point groups are in one-to-one correspondence with Euclidean point
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groups. For the geometrically non-equivalent ones among these Euclidean
point groups in section 3 a construction is given of the lattices left in-
variant. Expressing these point groups with respect to bases of these in-
variant lattices one obtains the arithmetic point groups. In section L the
four-dimensional arithmetic crystal classes corresponding to GM point groups
are determined.

In an appendix are given the four-dimensional geometric and arithmetic
crystal classes corresponding to a GM point group and the four-dimensional
Bravais classes of the lattices having a GM point group as holohedry.

The four-dimensional geometric classes have already been published earlier
by Hurley [7,8,9] . His 88 (3+1)-reducible classes are in agreement with our
determination. The Bravais classes have been published by Mackay and Pawley
[Hﬂ . They do not give a systematic derivation and their list is not com-
p}ete. We have checked our 412 arithmetic crystal classes by the list of
Neubliser and Blilow. After correcting some errors and omissions, our list

agrees with theirs, according to a preliminary comparison.

2. GM point groups

Consider the product space of a n-dimensional Euclidean space by a one-
dimensional one. The subgroup of all linear n+l-dimensional transformations
which leave the metric in both spaces invariant is the homogeneous pseudo-
Lorentz group O(n,1) [3] .

Because 0(n,1) 2 o(n) x 0(1) any element Q of 0(n,1) is of the form

P O

Q= (2.1)
0 €

where P ¢ 0(n), e = + 1.

A GM point group is defined as a subgroup of gﬂn,1) which leaves a n+l=-
dimensional lattice invariant.

The coordinates of a point in the product space with respect to a refer-
ence system, which has n orthogonal axes in the n-dimensional space and the
(n+1)th axis in the one-dimensional space, are indicated by x!, xz,...,xn+1.
A GM point group is denoted by K, if it is considered as a subgroup of 0(n,1).

Relative to a basis it is represented as a subgroup of GL(n+1,R). If the basis
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chosen 1s a basis of a K-invariant lattice A, then K may be presented by a
subgroup of GL(n+1, Z). In this case we denote it by ¢(K).

Proposition 1:

. . . +
If the elements @ of a n+l-dimensional GM point group K® ! are of the
form (2.1), the elements P of O(n) form a n-dimensional Euclidean point group
n
K.
Proof: The elements P form a finite subgroup of 0(n). So we have only to show
that the elements P leave a n-dimensional lattice invariant.

+ . . . . .
Suppose K" ! leaves invariant a lattice A with basis vectors a; = [:ri,ti_]

. +
(i = 1,4..,0+1) where r, = (x;,...,xg), t, = x? T,
3 . . + .
For any to # 0 the pair of n-dimensional hyperplanes x" ! =+t 1is trans-
formed onto itself by the elements Q. The hyperplane BP, given by xn+1 =0,

is transformed onto itself.

The intersection A, = 5? n A forms & k-dimensional lattice [3, proposi-

k
tion 13] with 0 € k < n. We suppose that Ak is generated by TlaeeesTys
i) If k = 0, the only point 1n g? 1s the origin. The only point in £ 1.
. . . + . . .
ti is a., the only point in X" ! = - ti 1s - a,. If in (2.1) € = 1, P is an

orthogonal transformation which leaves r. fixed for any i = 1,...,n+1. Hence

P = ln. Ife=-1,P=- ln. Therefore K= is a group generated by + 1n, which
is clearly a point group.

ii) If k = n, the lattice An is already a n-dimensional lattice left invari-
ant by P. So K" is a n-dimensional point group.

iii) For 0 < k < n, we first consider all elements Q with ¢ = + 1, All points

. n+1 . . .
in x = tk+i (i = 1,...,n+1-k) can be written as .t [:2,0:] for a certain
L € Ak. We define R™, the k-dimensional subspace generated by Tlseeesly and

_ k . . k. n . n+1 _
Vk+i = Trei + R, which 1s a coset of R 1in R". Then in x = tk+i the or-
thogonal transformation P leaves invariant the k-dimensional lattice Ak in
Vk+i' If Rﬁfk c BP denotes the orthogonal complement of Rk in EF we define

_ n-k
Veei - Vkei M BL

Because P leaves invariant the k-dimensionel lattice in vk+i:

P Viei = Viei

Because v, ,. is the projection of the origin on Vits it is left invariant by

k+1 1
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the orthogonal transformation P.

So the vector v, .. (which is zero if Tei € Rk) with components (0,...,0,
+
§+1,...,vk+ ) is left invariant by P for any i=1,...,n-k+1. The vectors

k+1
Trsi and e have components ()Lk+ ""’x'k+1’ vk+1""’vk+1) and Erk+1 k+i:|

respectively. So if the n-k+1 vectors vk+i would generate a real vector space

of dimension 4 < n-k, the vectors a; would generate a vector space of dimen-

sion ¢ k+d+1 < n+1. This not being the case the n+l1-k vectors Vi

+i generate
the (n-k)-dimensional subspace Rifk. The matrix P leaving invariant each of

the vectors v, . is the identity transformation on Ri-k. Furthermore it trans-

forms the k-dimensional lattice onto itself, so it has to be of the form

Pk ¢]
P =
0] 1n—k
where the elements Pk corresponding to all P form a k-dimensional point group
Kk.
If € = -1 the same argument is valid in the hyperplane xn+1 = - tk+i' There-~
fore all matrices P have the form
Pk 0
P = (2.2)
0 + 1n—k

vhere the matrices Pk form a k-dimensional point group. So the elements P
form a n-dimensional point group K",
At the same time has been proved:

Proposition 2:

. + . . . . .
If a GM point group K" 1 leaves a lattice A invariant, the intersection

AN BF has dimension > k if and only if the matrices are of the form

(2.3)
0 1 41k

with respect to an orthonormal basis and P

K~

" form a k-dimensional point group
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Choose again a basis of the product space consisting of an orthonormal
basis in the n-dimensional space and the (n+1)th basis vector in the one-
dimensional space. We can distinguish three kinds of GM point groups:

i) the first kind, if the group does not contain the time inversion

i 0

0 -1
and all matrices are of the form
P 0]
0 + 3
ii) the second kind, if the group does contain the time inversion;

iii) the third kind, if the group K does not contain the time inversion, but

there are elements with € = =1 (2,1). The elements with ¢ = +1 form a sub-
group KD of index 2.

Proposition 3:

For each n+1-dimensional GM point group there exists a n-~dimensional
Euclidean point group K such that:
i) If the GM point group is of the first kind, for any P € K there is an

element

and all elements of the GM point group are of this form.

ii) If the GM point group is of the second kind, for any P € K there are two

elements

P 0 P 0
Ql = and 92 =
0 +1 0 =1
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iii) If the GM point group is of the third kind, there exists a subgroup
K'D Cc K of index two, for any PDe KD and PDD € K—KD there are elements

PD 0 PDD 0

e}
—
[}

and Qy =
0 +1 0] -1

respectively and each element of the GM point group is of one of these forms.
Proof: K and a fortiori K leave invariant a lattice A, With basis vectors
TlseeesT o Then all three kinds of groups in n+l-dimensions leave invariant
the split lattice A generated by a; = [:ri,O:] (i =1,.0.,n) and a .4 =
[:O,tn+1 ] (tn+1 arbitrary, real). So they are all GM point groups. (A split
lattice is defined in [3] ).

Because of propositions 1 and 3 there is a one-to-one correspondence
between
i) GM point groups of the first or second kind and n-dimensional trivial
magnetic point groups;
ii) GM point groups of the third kind and n-dimensional non-trivial magnetic
point groups [1{] . So the n+l-dimensional abstract GM point groups are iso-

morphic to these n-dimensional point groups.

For that reason for n+1=k there are 25 abstract GM point groups [12] :

c (n=1,2,3,4,6) ;C xCy (k=1k,6) ,C xCzxCz(k=ht6)
Dn(k = 2,3,4,6) D x Cz (k = 2,4,6) , D x Cp xCp (k = 2,4,6)
T, T xCy;, T xCyp xCp 3 0, 0xCp, 0 xCyp xCp.

Proposition k:

The GM point groups K and K' are GM-geometrically equivalent [3] if and
only if the corresponding magnetic groups Km and Ké are geometrically equiva-
lent.

Proof: If K and K' are geometrically equivalent there is a © € 0(n,1) such
that X' = 0 K 0"!. If Qe K, Q' € K' such that Q' = 6 Q O-l, then the matrices
i:Q' and i:ﬂ (where i3 is the injection of the n+1-dimensional product space

1

in n+1-dimensional R™" , such that the one-dimensional space is mapped on the
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+ . IS . . . . ¥
x" 1-ax1s, and i3 is the induced injection i3: 0(n,1) » GL(n+1, R)) are of

the form
P 0 // P! 0
L% L ¥
139= 139'=\ (C, €'=i1)
0 € 0 €'
Because
Q 0
¥
130 = ‘j , where Q orthogonal,
o +1/
one has P' = Q P Q ! and € = ¢'. This means that Km and KA are geometrically

equivalent magnetic point groups.
On the other hand it is likewise simple to see that K and K' are geometrically
equivalent if Km and K% are geometrically equivalent.

As for n+1=2,3,4 the geometric classes of magnetic point groups are known,
the GM-geometric classes are also known. They are indicated here by the symbols

used in the literature for magnetic crystallographic groups.

3. Lattices in Euclidean space

Consider the diagram ' .Y#
i, 1) = 0ln+1)
13 1y
GL{n+1,R)
I
i

\

Rn+1

s on e o = e = s - .-
s o e = e == = e -

fig. 2

n+1-dim. n+1-dim.
product space euclidean space
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Proposition 5:

If the GM point groups K and K' are GM-geometrically equivalent, the
groups (i?)-l 0 ig o K and (i’f)_1 0 i; o K' are geometrically equivalent
Euclidean point groups.

Proof: Because (i’f)_1 0 i; o K is a subgroup of O(n+1) which leaves a n+1-
dimensional lattice invariant it is a Euclidean point group. So is

(ii;[')—1 0 i: o K'. If K and K' are equivalent, there is a T € 0(n,1) such that
K' = TK T l. Define Y* = (ia;i)-1 o i:: 0(n,1) » 0(n+1). Then Y* o K' = (y* oT)
(Y* 0 K)(Y* o T)"l. This means that Y*K and Y*K' are geometrically equivalent.
In general the converse is not true.

Consequence:

It is sufficient to consider all non-equivalent GM-geometrical point
groups K and eliminate the Euclidean equivalent ones among the Y*K. In this
way the four-dimensional Euclidean geometric crystal claases, corresponding
to GM point groups, are found. Of course there are still more four-dimension-
al geometric crystal classes, which are not considered here.

The arithmetic point groups corresponding to a Euclidean geometric point
group are found as n+l1-dimensional faithful integral representations of these
groups. Therefore one has to know the lattices left invariant by these groups.
According to [3] it is sufficient to consider one representative of each geo-
metric class with its invariant lattices. Moreover it is not necessary to
determine all invariant lattices for each point group but only for their system
groups. A system group KO of a point group K is the intersection of all holo-
hedries of lattices left invariant by this point group.

Each lattice is left invariant by the central inversion - 1 . .. So the

n+1

system group KO contains the group generated by K and - 1 . For n+1 ¢ 4 one

+
has for all point groups, corresponding to a GM point groﬁp: the following
rules: if K contains a m-fold axis (m > 2) a two-dimensional plane in EP is
an invariant subspace. According to [13, p.T79] a plane lattice with a m-fold
symmetry axis, perpendicular to the plane, has also a reflection on a plane
through this axis as symmetry element. The group generated by K, - ﬂn+1 and
these reflections is a subgroup of the system group.

To find the arithmetic point groups corresponding to a group K one pro-
ceeds as follows. If the lattice A is left invariant by K, the intersection
A, = A n BF is a k-dimensional lattice (0 < k < n) as seen in section 2. If

k

one chooses k basis vectors of Ak as first k basis vectors of A and if the
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basis vectors of A are a; = [:rl, ti:] (i = 1,e0.,n+1), the lattice A is a
repetition of Ak in each hyperplane
n+1
xn+1 = I mt. (m. € 2) .
1=k+1 1

According to proposition 2, if the matrices of K are of the form (2.3), dim

Ak > k. We suppose now KO to be a system group. We consider K:, which is the

subgroup of index two which does not contain - 1 . According to the proof

tk+i :I fixed

n+1

ey e . + .
of proposition 1 (section 2) Ko leaves the point [:vk+i’

(i = 1,...,n+1-k) and the point set [:rk+i + Ak’ tk+i:] invariant. There 1s

k+i € Vk+i (notation of section 2)k§uch that Toei = Thai ¥ Vieei
= =1 -

The vector r has n components: (xk+i""’xk+i’0""’o) and Viewi has n

k+i
+ L. . .
components (0,...,0,v§+;,...,vﬁ+i). So K~ consisting of all matrices P, in

an unique r

the elements Q of KO leaves 1invariant A = rk+i + Ak in Rn and Kk rk+i = rk+i

(mod A, ). This means that r can be chosen as origin of the lattice, or

k k+i
that r is a point with the same point symmetry as the origin. For each lk

left iE:;riant by Kk the vectors in the unit cell with the same symmetry as
the origin are listed for k < 3 in Eﬂﬂ . The positions are given by coor-
dinates, relative to the lattice basis vectors, called lattice coordinates.
For a point in the unit cell 0 ¢ a < 1 for each lattice coordinate.

One can distinguish two cases:
i) The points in the unit cell with the same point symmetry as the origin
form a discrete set.
ii) These points form a continuous (not necessarily connected) set.

To find the invariant lattices one proceeds as follows:

Can i) def
{f s =_0 (i = 1;...,n+1-§), then r, . =v, . anda .= [:vk+i s tk+7] =
8 i T T .= (°k+i""’°k+i) # 0 in lattice coordinates, consider the
smallest positive integer mk+i such that i rk+d.€ Ak. Then

Myeei I:Vk-o-i’ t;k+i:' = T [rk+i T Tke+i? tk+i:I -

= My Sq " Tyei LTieqr 01 €

Choose L Evk+i’ tk+i] as basis vector E’k+i of a sublattice Ao C A. The

lattice A0 is characterized by its metric tensor g with components gij =4a., a.

1

J
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(i,j = 1,...,n+1). If g(k) is the metric tensor of X

k
o = g(k)ij (?,j = 1,...,k)
a;.a, =TV = 0 (i <k, j> k)
= arbitrary real number (i > k, j > k)
Hence -
g(k) 0
ELk+1'l'3'k+1 """""" Elk+1'| n+1
| |
| t
p41°%k+1 - - " T - T - T - &n+1°%n+1
Because dim Ak = k one heas
t; =0 (i ¢ k)
(3.2)
n+1
T c.t. # 0 (any c. € Z)
Jj=k+1 J

However the basis transformation a, s Ei is not unimodular if ;k+i # 0 for
some i. Hence the lattice spanned by Ei (i =1,...,n+1) and determined by
(3.1) is in general a non-primitive lattice. The interior points are generated

by s ] for those values of i for which ;k+i # 0.

. = .+ . .
k+1 ['Vk+1 Frei? tk+1

_ 1 = . . . .
T S c—
Decause [:vk+i’ tk+i ] " 8 4q 10 this case, the lattice coordinates of

Sy 4y 8T€
k 1
Sypi = (011:+i""’°k+i’0""’0’ ——,0,0..,0)
+1i
T th . .. .
(k+i) """ lattice coordinate

Case ii)
- = [ 1 Tr C,I"H cn ]
Tr+i Titi® " 2 Thei? Okai® 2%+

r+i

here 0 < on
wher £ 0 ETEERNL N

< 1 such that mk+i(0,...,0,0 ) = 0 (mod Ak) and

J
k+i
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J
k+i
a) Suppose ¢

0<rt < 1 real parameters.

i+i =0 ] (j = r+1,...,k)
L T1F ees FTL + . 3
Then [:Tk+1 1 ki Tr T Vi Ykei

8y eit Then the metric tensor g 1s given by

] € A . Take this as a basis vector

' .. 1,3
g(k)lJ (i, < k)
8i; = LY (i,J > k) (3.3)
r r 1 <k
I T a..al = I 1 ri.r2
le=1 9 1 g=1 9 k+1 < j < n+1
So
g(k) iy
i "C S o 'S e S+1°%n+1
| i
t ) 1
g = f ] |
] |
1 |
41 By T T T T T T T 77 3n+1°%n+1

where f is a k x {n+1-k) matrix with elements (3.3).

=0 (i ¢« k, kt1 € j € n+1) only if r..r, = 0 for all ¢ < r.

g -
1) %
b) If not all °i+i = 0 the points in the unit cell with the same symmetry as

the origin of Ak form a disconnected continuous set. Again take

a = [ Tl x+ +10 x +v t ]
ki~ Tk k+i T17 7t Thkei Tp k+i® “kt+i

as a basis vector of the sublattice Ao£; A.

Then the metric tensor of the (non-primitive) lattice is given by (3.3).

It has a set of interior points generated by vectors with lattice coordinates
(o,...,o,oiil,...,oi+i,o,..., E;%; J0peees0) = 5, 0

In this way one has proved the following proposition which can be applied to
find all lattices left invariant by a given point group.

Proposition 6:

If a point group K leaves invariant a lattice A such that for the k-

dimensional lattice Ak =ADN BF the points in the unit cell of Xk with the
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same symmetry as the origin are {r} one has the following four possibilities
for A c A.
)

i)  If the points {r} form a discrete set, the metric tensor g of A has the

form

g(k) 0

m
"

&(n+1-k)

where g(k) is the metric tensor of Ak; &(n+1-k) is arbitrary symmetric;
a) A, is a primitive lattice (Ao = A); or

- % k
b) it is possible to choose T = (0k+i""’0k+i
the interior points of Ao are generated by points with lattice coordinates

) # 0 for some i ¢ n+l1-k and

rJ .
Ok+i (§ < k)

i s

% i 1 1/mk+i (3 i+k if Tei # 0)
. O {otherwise)

.. . - . - +
ii) If the points {r} form a continuous set: r = [ thee,tt, of 1,...,0k:]

(TJ € R, 01(5 Q) the metric tensor g of AO has the form

g(k) f

&(n+1-x)

where g(k) is the metric tensor of the Ak; g(n+i-k) is arbitrary symmetric;

and gij =0 (i ¢k, k#1 £ j € n+1) only if r..r, = 0 for all % < r.

L
a) A_is a primitive lattice (A = A); or
0 0
r+1 k

K4y = (0yeea,0, Olewi®®®*2%k4i
i ¢ n+1-k and its interior points are generated by points with lattice coor-

b) it is possible to choose r ) # 0 for some

dinates
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J .
( Tk+i (r+1 < j < k)
o2 e e
i < 1/mk+i (j = k+1i if i # 0)
\ O (otherwise)

Consider as an example of the first case the 3-dimensional Euclidean
point group U4/mmm which corresponds to a GM point group. If A is a lattice
left invariant, dim (A n R?) = 2 and K? is the plane point group Lmm which
leaves invariant a plane tetragonal lattice. The points in the unit cell of
this lattice with the same point symmetry as the origin are (00) and (331).

The metric tensor of the lattice Ao is

/ a% 0 0
\o a.% 0
0 2
0 33
If r3 = r3 = (00), one has a primitive lattice (A = AO) and if r3 = (33) one

has a centered lattice. Hence a lattice left invariant by 4/mmm is a primi-

tive or a body centered tetragonal lattice (fig. 3a and 3b)

»
P

—
&
O e — — ————— ——

AzA. AochA
ry=(00) 54%%

(a) {b)

AecA
ry=trh)

(d)

fig. 3



84

As an example of the second case consider the Euclidean 3-dimensional
point group m. Here dim (A n B?) = 1 or 2. Take the case k=2, then K2 is the
point sroup m which leaves invariant a rectangular or a rhombohedral lattice.
if X, is rectangular the points with the same symmetry as the origin are

(t 0) and (1t 3), where T is an arbitrary real number (0 < T < 1). As &;.a3 =

ri.1ry; = rr% and ay.a3 = 1r].ry = 0 the metric tensor of Ao is
a% 0 =aj.az
2
0 a5 0
a).a83 0 ag

If r3 = (1 O A = A, and if ry3 = (1 3), A is centered with interior point
(033). So one finds a primitive and a side-centered monoclinic lattice.

(figs. 3c and 3d).

4. Four-dimensional Bravais classes and arithmetic crystal classes correspon-

ding to GM point groups

By means of the propositions 1 to 6 of section 2 and 3 we are now able
to find the four-dimensional lattices with a holohedry corresponding to a GM
point group and the arithmetic crystal classes corresponding to such groups.
Because of the one-to-one correspondence between GM point groups and magnetic
groups of one dimension less, trivial ones included, there are 122 geometri-
cally non-equivalent four-dimensional GM point groups which give rise, by way
of the mapping (iif)_1 ig of section 3, to the same number of Euclidean geo-
metrie point groups. Among these are 88 geometrically non-equivalent ones,
as one verifies easily using the fact that in Euclidean space reflections
along the fourth axis do not play another role than reflections along the
other axes. The 88 classes, found in this way, are the crystal classes which
are (3+1)-reducible over R.

According to Hurley [7,8] there are 182 reducible and 45 irreducible
classes in the 4-dimensional Euclidean case. Hence the number of 2+2-reducible

crystal classes is 9k.


file:///a1.a3

85

The 88 classes corresponding to GM point groups are given in table I.

From each geometric class we choose a representative group K and con-
struct from this a group K generated by K, the central inversion and a re-
flection on a plane through 3,4 and 6-fold axes. If a lattice is left invari-
ant by K it is also left invariant by a group geometrically equivalent to K.
For this group K we construct all invariant lattices using the method of sec-
tion 3. The maximal point group which leaves invariant all lattices left in-
variant by K is by definition the system group Ko' The system group for each
geometric crystal class is given in teble I. In the present case they are
exactly the geometric classes of the holohedries.

Among all lattices left invariant by a system group Ko we consider those
for which Ko is the geometric holohedry. All lattices which after a conve-
niently chosen basis transformation have a geometric tensor of the same form,
in other words for which the arithmetic representations ¢(Ko) are arithmeti-
cally equivalent, form together a Braveis class. So from all system groups
corresponding to GM point groups we obtain the Bravais classes with a holohe-
dry corresponding to a GM point group. These are given in table II.

If two arithmetic holohedries ¢(H) and ¢$(H) are gecmetrically equivalent they
are also conjugate in GL(n,Q) because ¢(H) and ¢(H) are groups of integral
matrices. Hence Bravais classes with the same geometric holohedry (so they
belong to the same system) are centerings of each other. Moreover some lat-
tices may be presented as centering of a lattice with larger holohedry. The
41 Bravais classes with a holohedry corresponding to a four-dimensional GM
point group are given in table II. The other four-dimensional Bravais classes
have a holchedry which does not correspond to a GM point group.

In general one may define an orientation for lattices in even dimensions:
two lattices in the same Bravais class have the same orientation if their
arithmetic holohedries are conjugated by an element of SL(n,Z).

Lemma:
All lattices of a Bravais class have the same orientation if and only if

the normalizer N of one representative holohedry ¢(H) in GL(n,Z) contains

¢ (H)
an element £ with det (&) = -1,

Proof: Consider two holohedries ¢;(H) and ¢,(H) of lattices in the Bravais
class which are conjugated by x € GL(n,Z) with det (x) = -1.

Suppose there is an element £ € N ) with det (&) = -1. As ¢1(H) = x ¢o(H) x !

¢1(H

one has
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¢1(H) =€ ¢1(H) €71 =€ x ¢,(H) (g x)71

Because det (£ x) = +1 the corresponding lattices have the same orientation.
Conversely, if all lattices of the Bravais class have the same orientation

for any two holohedries ¢;(H) and ¢,(H) in the class one has an element

with
¢1(H) = n ¢(H) n'!  and det (n) = +1 .
Take ¢,(H) = x ¢;(H) x~! with x € GL(n,Z) and det (x) = -1.
Then ¢1(H) = n x ¢1(H) (n x)"!. Sonyxe N¢1(H) and det (n x) = -1.

All lattices in table IT except those in the classes I, III P, III I,

IITI G and IX have a holohedry ¢(H) C N¢(H) with an element £ with det (£) = -1.
The five remaining classes have elements of the normalizers of the holochedry
with this property. So all lattices in table II are non-orientable.

If one knows for each geometric group K its system group KO and the
Bravais classes left invariant by Ko’ it is possible to determine the arith-
metic classes corresponding to each geometric class. The first step is to
determine the arithmetic crystal classes R-equivalent to a given system group
KO. Each Bravais class left invariant by KO and for which KO is the holohedry
glves one arithmetic crystal class R-equivalent to Ko' A Bravais class left
invariant by Ko with a holohedry ¢(H) which does not contain a subgroup arith-
metically equivalent to the holohedry of another Bravais class left invariant
by Ko, gives one or more non-equivalent integral representations of Ko. The
number of non-equivalent arithmetic crystal classes is the number of arith-
metically non-equivalent subgroups of ¢(H) which are R-equivalent to KO. If
the holohedry ¢(H) of a Bravais class left invariant by K, does contain a
subgroup arithmetically equivalent to the holohedry of another Bravais class
it does not give rise to other non-equivalent arithmetic crystal classes.

As all arithmetic point groups R-equivalent to KO are also Q-equivalent, where
Q is the rational number field, the arithmetic crystal classes R-equivalent
to a group K may be obtained as representations of K on bases of lattices
vhich are centerings of each other.

The arithmetic crystal classes corresponding to a point group K are
found as the arithmetically non-equivalent subgroups (R-equivalent to K) of
the arithmetic point groups R-equivalent to the system group Ko. In this way
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one finds 412 arithmetic crystal classes corresponding to the 88 geometric
classes listed in table I. Owing to the remark made at the end of the last
paragraph the arithmetic point groups corresponding to a geometric point group
K are Q-equivalent.

So for each geometric class the arithmetic crystal classes are given by gener-
ators for one group and transformation matrices from GL(n,Q) for the other
ones. If ¢(a) is an element from one arithmetic point group, and if the trans-
formation matrix is T the corresponding element in a second arithmetic point

group is given by
$(a) = T ¢(a) T"1 T € GL(n,Q) (L.1)

For each of the 88 geometric crystal classes generators for one arith-
metic point group and matrices T € GL(4,Q) are given in table I.

So limiting oneself to (3+1)-reducible point groups one finds in four
dimensions 412 arithmetic crystal classes grouped in 88 geometric crystal
classes belonging to 25 isomorphism classes and 41 Bravais classes classified

in 15 systems.
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Table I

Georetric and arithmétic crystal classes corresponding to b-dimensional GM point groups

Systenm Georetric Isomorphism Order Generators Arithmetic classes Number Nurmberaing
[ftable pos ] class class [ table IV ] [ table V J ar1ihn. arithm. cl...
(tavze 111 ] cl.
1 1 C) 1 1 P 1 1
T (o 2 2 P 1 2
11 31 T=21 Cy 2 31 PI 3
17=m C, 2 25 P11
Ti=2'/m D, L 3125 PI U
IIT 2/m* 2=m' (o5 2 16 3 9
2/m' D, L 3L PIG 3 12
IV 2/m1* 2/m=2'mm'=21" D, 4 L 27 PIBCFG k¢ 15
D, L 25 B 21
2'/m'a22'2" D, b 338 IBDCFG 6 22
m1'=2rm D, L 25 27 IBCFG 6 28
2/m1 " =mem* D;4Cy 8 25 27 & IBCFG 6 34
VI 3'm 3 Cy 3 15 P R 2 )
3 Ce 6 37 PR 2 u2
3! Dy 6 15 33 PR 3 4L
D, 15 32 P ué
3n D1 6 15 28 P 3 L7
D3y 15 29 PR 18
3'm D¢ 12 37 28 P 3 50
D¢ 37 29 PR 51
vV 6/m'mn 6 Ce 6 36 P 1 53
B Ce 6 17 P 1 5l
6/m* CgxCy 12 36 L P 1 55
6mm Dg 12 36 28 P 1 56
&rmat Dg 12 17 28 P 2 57
Dg, 17 29 P 58
6212! D¢ 12 36 33 P 1 59
6/m'mm De=C3 2k 36 28 b P 1 60
VII 4/m'mm b o L 23 F1 e 61
I Cy 4 24 Pl 2 63
L/m' CyxCy 8 23 L PI 2 65
Lmm D, 8 23 29 | 2 67
I'om D., 8 2L 32 P1I L 69
D. 24 31 PI° T
Lorae D, 8 23 32 PI 2 73
L/m*mm D, xCy 16 2329 & PI 2 75

+) Number of

arithmetic classes geometrically equivalent

to the given geometric class.

»e)

Given 1s the number of

the first arithmetic class in the row. E.g. arithmetic class 43 is R3', which is generated by T a T !, where a
matrix 37 (teble IV) and T = matrix R (table V).
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System Geometric Isomorphism Order Generators Arithmetic classes Number Numbering
[vtable II] class class [table IV:] [Lable V] arithr. arithm. el.
[ table TIT ] cl.
IX m'm'm’ 222=n'm'2 D, " 35 PIAEFGHSK 13 77
D, 5 6 H 86
D, 6 7 F 88
m'm'm’ D,xC; 8 6 7 4 PIAEFSHEK 9 90
VILT mmml' mrm=mm2 1 D,%C, 8 25 26 27 PIAEFGHS 12 99
DaxCy 25 26 30 A H 107
DyxCh 25 27 30 EF 109
m'm'r=2221" D,xCy 8 6 7 26 PIAEFGE! S 12 111
D,«Cy 6 L o7 3 119
C,yxC; 312 30 FF 121
mmm* DyxCyxCy 16 25 26 27 30 PIAEFGHS 8 123
XI 3m1! 3=6' Ce 6 22 P AR RI " 131
31'=8 C.nCanCy 6 15 30 PAR I L 135
J31'=6'/m Ce*Ca 12 22 30 I ARRI L 139
32=3m' D> 6 15 10 P A RRI 8 143
D, 15 1 P A 1.7
D, 5 9 R FI 149
Im=6"rn" Dg 12 22 29 P ARPFL 6 151
Dg 22 28 P A 155
3mr=6122" Ly 12 22 9 P AR AL 6 157
D¢ 22 8 P A 161
KLY Dg 12 T 9 ® AR RI L 163
321'=Em'2* D]-cygne 2 15 1C 30 P AR RI 6 167
Dy=Co 15 11 20 P A 171
3m1'=6n2 DavC,oDg 12 15 20 20 P AR AL 6 173
D3»C; 15 28 =0 P A 177
3m1t=6"'/mrn’ D xC; 2L 22 29 30 P ARSI 6 179
DgxCy 22 28 30 P A 183
X 6/mmm1* 6/m=61" Ce*Ca 12 36 26 P A 2 185
6'/m' CgxCyp 12 20 L A 187
g1 CexCy 12 19 30 P A 2 189
622=6n'n’ D¢ 12 36 10 b 2 101
E'm'2 D, 12 17 8 P L 193
De, 17 9 © A 195
6/m1t Cg*CoxCy 24 26 2€ 30 PA o 197
Br21! D¢ xCa 24 19 10 30 A “ 199
. Dy*Ca 13 "t 30 A 201
6/mmm=6mm1 ! D¢ %C, 2L 36 28 26 I A 2 ~03
6/mm'n'=6221" Dg>Co 2k 36 8 76 P A 205
6/m'm'm' D »Cy 24 36 8 & P A ? 207
6" /m'mm’ Dg#Cy 24 2028 &4 " A " 209
Dg*C) 2029 4 P A 21
€/mmm1? DgxCoxC, u8 36 29 26 30 A : 213
DgrC2xC
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System Geometric Isomorphism Order Generators Arithmetic classes |Number Numbering
Evtable II ] class class [ table IV ] [table v arithm. arithm. cl.
[ table 111 ] el.
XIII 4'/n'm'm 4=k c, L 0 PIAEHN 7 213
Cy 13 E 221
L*/m* CyxCy 8 Wy PIAEHN 6 222
Lropi=korm' Dy 8 1 N PIAEHN 13 228
Dy 14 12 PIAEH 234
Dy 13 9 E 239
i 137 E 2ko
L 'mm* =52m Dy 8 1 29 PIAEH 13 2k
Dy 13N E 246
Dy, W27 PIAEHRN 2L
Dy 13 12 E 253
b /m'm'm Dy *Cy 16 U 9 b IAEHEN 1 250
Dy xC3 1w 74 IAE 260
XII b/rmm1’ 4/m=b1" CuxCy 8 23 26 PIAEH 6 265
CuxCy 23 30 E 270
b /m=E1 Cy%C3 8 1 26 PIAEH 6 21
CuxCy 13 30 E 2716
L22=lm'm* D, 8 23 N PIAEH 6 277
Dy 23 9 E 282
L'om! Dy 8 2k N PIAEHM 6 283
Dy 2u 12 E 288
L/m1? CyxCyxCy 16 23 26 30 IAE 5 289
Y /rrm=bmm1 Dy *C2 16 23 29 26 IAEHN 6 294
- Dy xC; 23 29 30 E 299
4 /mmmt=k2m1! D.xCy 16 14 29 26 IAE 12 300
Dy xCy 1L 27 26 IAEH 305
D xC; 13 11 30 E 310
Dy *C, 13 12 30 E 311
L/mrtmt=b221! Dy xC, 16 23 9 26 PIAEH 6 312
D, xC3 23 11 30 E 317
b/m'm'm’ Dy *C3 16 23 9 & IAEH 5 318
b /mmm 1 * Du*CyxCy 32 23 29 26 30 PIAEEH 5 323
XV n'im 23 T 12 16 3 PIVFSK 6 328
n'3 TxCy 2L 16 3 2 PIVFSK 6 334
4320 0 2k 14 43 PIVFSK 6 340
53m 0 2k 13 43 PIVFSK 6 346
u'3m 0xCy 48 1443 2 PIVFSK 6 352
XIV m3m1! m3 T=C, 2 16 3 3k PIVFS 5 358
231 TxCy 2y 16 3 30 PIVFS 5 363
m31’ TxCyxCyp L8 16 3 34 30 PIVFS 5 368
432 0 24 23 13 PIVFS 5 373
L'3m* 0 24 24 43 PIVFS 5 378
m3m 0xC, L8 23 L3 3% PIVFS 5 383
m'3m’ 0xC; u8 23 43 2 PIVFS 5 388
m3m' 0xC, L8 14 43 34 PIVFS 5 393
K321 0+, 18 2343 30 PIVFS 5 398
L3m1* 0~C> L8 13 43 30 PIVFS 5 403
m3m1* 0xC2xCa 96 23 L3 34 30 PIVFS 5 Lo8




System No.

II

III

VI

VIl

VIII
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Table II

Four-dimensional Bravais classes with a holohedry ccrresponding to a GM point group

System Grouap

2/m'

2/m1’

6/m mm

I'm

Y/t e

mmm1'*

n'm'm’

Order

24

Metric tensor

2

it

—_n

8],

2
&2

[

®

nN

aa

az

N

PN

a).a3

az.a3

3

o
wn O O

o
uwn O o

wN O O

®

wN O O

3a2

va

_—N

a).ay
a.8y
aj.ay
o
0
az.du

ajz.a,

w

—— - ~—

Non-equivalent Nurter of free

centerings parameters
(table V)

P 10
P,I 7
P,1,G 6
r,8,I1,C,F,G 5
P 4
P (VIP=VR) k
=T L
P,I,A,E b
F,5,H,8

P (IXP=VI1IK) I8
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System No. System Group Order Metric tensor Non-equivalent Number of free
centerings parameters
(table V)
X 6/mum 1" L8 aﬁ iaf 0 ) P,A 3
el ] 0
ag 0
2
&,
XI 3m1* 2k al ol aal 0 P,I 3
2 2
a) aay 0 (XIP=XR;
2
=] 0 XII=XRI)
o
XII b /1 ¢ 32 a? 0 0 0 P,I,A,E,A 3
.1 o] o
ag [
of
X111 Lt/m'n'n 16 a2 aaf ga? as? P (XITIP=XIIN) 3
2 2 2
a3 aaj 851
aﬁ un%
o
XIV m3m1?' 926 a% 0 0 [} P,I,V,F,S 2
a? 0 0
a? 0
, °f
XV m'3m L8 al uai ua; ua% P (XVP=XIVK) 2
2 2 2
51 031 (IIB..|
aﬁ aaﬁ
o}
(a,8,y € R)
Table Il
Isomorphism classes
c. (n = 1,2,3,4,6) <ajoa-=e> T < aj,az;3 uf=a5-(qla2)3 = >
€, " C2 (n=1L,6) T
€, C2xC2 (n= L,6) T xCy xCy
D (n = 2,3,4,6) < ay,az; u?-ug=(u]u2)z - > 0 < ay,az; u:-u;=(ulu2)2 =c >
D xC; (n = 2,4,6) 0
D xC2»C; {n=2,4,6) 0 xCy; xCp




Generators of arithmetic point groups
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Table IV

+: direct sum; n order; x trace; d determinant; g second invariant )
E=+1 I=-1
0o 1 10 -1 0 1 [ 1 -1
A= B =< > C = D= < > F = G =
10 1 -1 -1 1A -1 1.0
0 -1 / 0 0 0 1 0 0 -1 0 1 0
K = L = M={1 0 0 K= |- 00 ={0 0 1
10 \-1 0 1 0 0-1 0 1.0 0
n y d o n ¢y d c n ¢ d o
1.  E+b+E+E 1 4 16.  M+E 31 1 0 31, L4I+I+I 2 -2-1 0
2. T+I+I+41 2 -4 1 17. D+I+I T - -3 0 32, A+I+I 2-2-1 0
3. T+[+E+E 2 0 1 =2 16, N+I 6 -1 1 0 33. B+I+1 2-2-1 0
U,  E4E+I+I 2 0 1-=2 19.  D+I+E 6 1 -1 0 34, I+I+1+E 2-2-1 0
S.  I4E+I+E 2 0 1.2 20.  F+E+I 6 1-1 0 35.  I+4I4E+I 2-2-10
6.  I+4E+E+I 2 0 1-=2 21, N+E 6 121 0 36.  F+E+E 6 3 1 &
T.  E+I+E+1 2 0 1-2 22.  G+I+E 6 1 -1 0 37.  C+I+I 6 -7 1 4
8.  B4E+I 2 0 1-2 23.  L+E+E b 2 1 2 38.  I+E+I+I 2-2-1 0
9.  A+k+I 2 0 1-2 2h.  K+I+4T b2 1 2 39. C+I+1 6-1 1 0
10, +I4E 2 0 12 25.  I+E+E+E 2 2.1 0 LO.  C+I+E 6 1 -1 0
11, A+I+E 2 0 1=2 26.  E+E+I+E 2 2-1 0 L1,  F+I+E 6 1 -1 0
12, E+T+I+E 2 0 1-2 27.  E+I+E+E 2 2-1 0 k2.  P+E 31 1 0
13.  K+I+E L 0-1 0 28.  B+E+E 2 2-1 0
T4, L+E+I L o-1 0 29.  A+E+E 2 2.1 0
15.  C+E+E 3 1 1 0 30.  E+E+E+I 2 2-1 0
#) The characteristic equation is \* - xA? + 03? & s +4d = 0.
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Table V

Centerings of the lattices of table II

a) centering symbol; b) number of interior points per unit cell; c) interior points;

d) transformation matrix (4.1).
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SAMENVATTING

Drie-dimensionale magnetische kristallografische groepen zijn al vele
jaren bestudeerd en toegepast. We behandelen hier een generalisatie van dit
begrip tot symmetriegroepen, waarin ook diskrete tijdtranslaties optreden.
Dit leidt tot de bestudering van vier-dimensionale kristallografische groe-
pen in Euklidische, Minkowski- en Galilei-ruimten en in het produkt van een
drie-dimensionale Euklidische ruimte met een &én-dimensionale. In deze ruim-
ten worden kristallografische begrippen gedefinieerd als ruimte(-tijd-) groep,
puntgroep, systeemgroep, arithmetische en geometrische kristalklasse, Bra-
vaisklasse en systeem van roosters. In feite kan men al deze begrippen defi-
nieren in n+l-dimensionale ruimten voor willekeurige n. Waar mogelijk zullen
we uitspraken doen voor willekeurige n.

In aeel I wordt een discussie gegeven van de definities. Zoals in het

+ . .o
n 1, ¢)-uitbreidingen,

Euklidische geval, treden ruimte-tijd-groepen op in (K,Z
waarbij K een kristallografische puntgroep is en ¢ een monomorphisme

¢: K » GL(n+1,Z). Omdat het nog niet bekend is onder welke voorwaarden een
dergelijke uitbreiding geinterpreteerd kan worden als ruimte-tijd-groep (in
het Euklidische geval is dit mogelijk voor iedere eindige K), beperken we de
klassifikatie hier tot het geval van eindige K. De klassifikatie gebeurt met
een isomorfierelatie die rekening houdt met de verschillende soorten trans-
latieelementen.

Voor gegeven geometrische klassen wordt een konstruktieve methode be-
handeld om alle niet-isomorfe ruimte(-tijd-) groepen te bepalen. Het aantal
Bravaisklassen blijkt eindig te zijn in Euklidische en Galilei-ruimten. Het
is aftelbaar oneindig in de zogenaamde produktruimte en overaftelbaar in de

Minkowski-ruimte. Hetzelfde geldt voor het aantal niet-isomorfe ruimte(-tijd-)

groepen,

In deel II wordt de bepaling van de niet-isomorfe uitbreidingen behorend
bij een arithmetische puntgroep meer in detail besproken. De afleiding van de
uitbreidingskondities (volgens M. Hall) wordt aangegeven en expliciet uitge-
voerd voor uitbreidingen van een willekeurige abelse groep met een groep iso-

morf met een reéle 3+1-reducibele kristallografische puntgroep.
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Voor uitbreidingen van z" is een kennis van deze uitbreidingskondities
niet nodig. Voor dit geval wordt een eenvoudige methode gegeven om alle
niet-equivalente uitbreidingen voor gegeven arithmetische puntgroep te be-
palen. De uiteindelijke formules lijken veel op uitdrukkingen van Zassen-
haus. Dit kan worden verklaard uit de isomorfie tussen Hi(K,Zn) en
Hé(K,Rn/Zn) voor eindige K. Verder worden relaties gegeven tussen verschil-
lende manieren om een uitbreiding vast te leggen. Tenslotte wordt de expli-
ciete bepaling van de niet-isomorfe uitbreidingen besproken.

In deel III worden voor het geval n+l1=4 de arithmetische kristalklassen
en Bravaisklassen afgeleid, waaruit met de methode van deel II de niet-iso-
morfe ruimtegroepen bepaald kunnen worden. We beperken ons weer tot de Eukli-
dische puntgroepen die reéel 3+l-reducibel zijn. Dit zijn de gegeneraliseerde
magnetische (GM) puntgroepen. Er bestaat een €&n-één-duidige korrespondentie
tussen n+l-dimensionale GM puntgroepen en n-dimensionale magnetische punt-
groepen. Daarom zijn de vier-dimensionale GM puntgroepen bekend. Hiervoor
worden de overeenkomende arithmetische puntgroepen bepaald door het bepalen
van de invariant gelaten roosters en een discussie van hun arithmetische

equivalentie.



SUMMARY

Magnetic crystallographic groups, defined in three dimensions, have been
studied and applied for several years. Here symmetry groups in which also
discrete time translations occur are discussed. This leads to the study of
four-dimensional crystallographic groups in Euclidean, Minkowskian and
Galilean spaces and in the product of a three-dimensional Euclidean space by
a one-dimensional one. In these spaces crystallographic concepts are defined
like space(-time) group, point group, system group, arithmetic and geometric
crystal class, Bravais class and lattice system. Actually all these concepts
may be defined for n+i-dimensional spaces with n arbitrary. Whenever this is
possible we use this more general point of view.

In part One the various definitions are discussed. As in Euclidean space,

+ ] .
n 1, ¢)-extensions with K a crystallo-

space-time groups ol appear in (K,Z
graphic point group and ¢ a monomorphism ¢: K > GL(n+1,Z). As it is not yet
known under which conditions groups appearing in such extensions may be inter-
preted as space-time groups (in the Euclidean case this may be done for finite K),
we limit ourselves here to the case of finite K. The classification arises
by identifying space(-time) groups related by an isomorphism which takes into
due account the various kinds of translation elements.

For known geometric crystal classes a constructive method to determine
all non-isomorphic space(-time) groups is treated. The number of Bravais
classes in Euclidean and Galilean space turns out to be finite. It is enu-
merably infinite in the so-called product space and continuously infinite in
the Minkowskian space. The same is true for the number of non-isomorphic
space(~time) groups.

In part Two the determination of all non-isomorphic extensions for a
given arithmetic point group is treated in some more detail. The derivation
of the extension conditions (according to M.Hall) is indicated and these are
explicitly given for extensions of an arbitrary abelian group by a group iso-
morphic with a four-dimensional point group which is 3+1-reducible over R.

For extensions of Z" a knowledge of these conditions is not necessary.

For this case a simple method to determine all non-equivalent extensions is
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discussed. The final formulas bear a close resemblance to formulas given by
Zassenhaus. This can be explained by the isomorphism of H;(K,Zn) and
Hé(K,Rn/Zn) for finite K. Relations between various ways of fixing extensions
are given. Also the explicit determination of the non-isomorphic extensions
is treated.

In part Three the arithmetic crystal classes and Bravais classes for
n+1=k are given with the restriction to real 3+1-reducible Euclidean point
groups called generalized magnetic (GM) point groups. The corresponding non-
isomorphic space groups then may be determined using the method of part Two.
There is a one-to-one correspondence between n+l1-~dimensional GM point groups
and n-dimensional magnetic point groups. Hence the four-dimensional GM point
groups are known. The corresponding arithmetic crystal classes are found by
constructing the lattices left invariant by these groups and by discussing

their arithmetic equivalence.
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Stellingen

. Als K een n-dimensionale knistallografische puntgroep met kleinste aantal generatoren Vis en A een ZK-moduul,
kan een coketen-komplex

1
osat@L T g

.............

met A-'(m) = AXAX.. XA((m)faktoren) gedefinieerd worden.
Voorn & 4enm < 3 kan de corand-operator ™ beschreven worden door een J(m + 1)x )(m) matrix met elemen-

ten uit ZK en j(m) = vt m-1
m

. Als een funktie f(x), bekend op equidistante punten, benaderd kan worden door een N-de graads polynoom, kan een
integraal over deze funktie benaderd worden met

b N-p
/ f)dx= Z dlf(xl)A met xl=a+1Aen XN = b
a 1=-p
waar de koefficienten do' e dN een oplossing vormen van
N-p 1 k+ 1
r Kg=— N (0< k <N)
1=-p k+ 1
Een analoge uitdrukking kan worden _egeven voor de p-de afgeleide.

>

Een diskrete groep, die voor iedere energie (E = 0) een ondergroep 1s van de symmetnegroep van het waterstofatoom,
geeft dezelfde opsplitsing van de niveaux der geBonden toestanden als de korresponderende ondergroep van 0 (3) zou
doen, 1ndien men alleen de rotatie-symmetne 1n beschouwing zou nemen.

. Neemt men aan, dat de T-matrix buiten de energieschul slechts langzaam vaneert met de energie, dan 1s het mogelyk
een algebraische vergelijking op te stellen voor de verstrooung van een deeltje aan een gebonden toestand van twee
andere deeltjes.

. In de klassieke hmiet, voor A= (h2 8/ 2n m)l/2 —> 0, gaat de diagramontwikkeling van Lee en Yang over 1n
de klassieke Ursell-Mayer ontwikkeling.
T Janssen, PhysncaZ_6, S 75 (1960).

. De kromme voor de partiéle zuurstofdruk als funktie van de plaats by) zuurstoftransport, gestirnuleerd door de aan-
wezigheid van hemoglobine, zoals gegeven door Wyman, 1s niet in overeenstemming met de randvoorwaarden die by
zyn differentiaalvergelyking horen,

J. Wyman, J. Biol. Chem. ﬁ. 115 (1966).

. De anisotropie van de susceptibiliteit in bismuth-tellunde kan op eenvoudige wijze verklaard worden.
A. Van Itterbeek e.a., Physica 32, 2123 (1966).

. De wize, waarop Zak de representaties van de niet-symmorfe ruimtegroepen afleidt, 1s onjuist.
J. Zak, ] Math. Phys. 1, 165 (1960).

14 jun1 1968. T. Janssen.












