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1 Introduction 

The classical Euler B-integral  
1 

l clt = ~(x) r(y)  (Re(x)>0 Re(y)>0). (1.l) B ( x , y ) , = ~ t x - l ( 1 - t )  ' -  f i x + y )  
0 

can be rewrit ten by the subst i tut ion t = a + 1 as 

(1.2) B(x,y)= ~aX-l(1 +a)-X-Yda. 
0 

A mult ivar iable  general izat ion of (1.1) due to Selberg I-S] says that  for 

R e ( x ) > 0 ,  R e ( y ) > 0 ,  R e ( z ) > - m i n { ~  R e ( x ) R e ( y ) ' (  
' n - - l '  n--1 J 

we have  
1 1 

(1.3) B,(x, y, z),= ~... ~ (t,.../,)x- 1 {(1 - t l ) . . .  (1 - tn)}Y-llz] (t)l 2z dtl..,  dtn 
0 0 

12 I F(1 +jz) F(x+O'- 1)z) F(y+( j -  1)z) 

where A (t) denotes  the d iscr iminant  

L] (t)---- zJ ( t l , . . .  , in)= H (ti-- tj). 
i<j 
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a i The same substitution t i - - ~  carries Selberg's integral over into the formula 
a i s - i  

(1.4) B,(x ,  y, z) . . . .  ~ ( a l . . .  an) x - l ,  {(1 q - - a l ) . , .  (1 + an) } x - 3 , - 2 z ( . - 1 )  

o o 

' [A (a) l  2= dax.., da.. 

Suppose a is a Euclidean space with inner product (.,-). The dual space 
a* =Hom(a ,  IR)inherits a natural inner product from a, which we again denote 
by (', '). Let R c a *  be an irreducible reduced root system [B]. The coroot 

t" 
lattice QV c a  is the lattice generated by the dual root system R "  =~:~" 

__2(~") } t 
:= (c~,--~ea;eeR , and the weight lattice P={2ea* ; (2 ,  c~")e7Z gc~eR} is the 

lattice in a* dual to Q v. The Weyl denominator is by definition 

(1.5) A,= [1 (e~--e-~)~Z[P], 
~ R +  

where R+ c R  is a set of positive roots. 
Let Tbe the compact torus with (abelian) Lie algebra t . . = ~ -  1 a and unit lattice 

2rt]/C- 1 Q",  so that A (t) for t~ T can be considered as a Fourier polynomial on 
T with integral coefficients. If 2 = dl <d2 =< ... _-< d, = h denote the degrees of R 
(h being the Coxeter number), and dt the normalized Haar measure on T then 

( 1 . 6 )  j[A(t)]Zkdt=(I(kd~) for k > - h  -1 
T j = l  

This formula was conjectured by Macdonald [M2]. In fact Macdonald conjec- 
tured a more general formula (allowing the root system to be possibly non- 
reduced, and different labels for roots of different lengths), which for the root 
system of type BC, was equivalent with Selberg's integral (1.3). For the root 
system of type A, formula (1.6) was conjectured by Dyson l-D], and proved 
by Gunson [G] and Wilson [Wi] (and unpublished by Selberg [S, p. 212]). 

A uniform proof of (1.6) for all root systems was given by Opdam as an 
application of the calculus of multivariable hypergeometric shift operators [O 3]. 
The original proof of the existence of these hypergeometric shift operators 
depended on transcendental arguments [02] ,  but now this can also be under- 
stood by elementary means [H 2]. 

Let A be the connected simply connected Lie group with Lie algebra a 
(the Lie bracket on a being trivial), so that exp: a--* A is a diffeomorphism. 
Normalize the Haar measure da on A, such that j da= 1. This is the 

A/exp(2 r~Q v ) 

canonical measure on A obtained from the normalized Haar measure dt on 
T by analytic continuation. The Weyl denominator A (a) for a e A can be consid- 
ered as an exponential polynomial on A. 
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Theorem 1.1 For -- h-  ' < Re(k) < 0 we have 

(1.7) Af IA(a)12k da=j~= 2 sin(r~k(1-dj)) j=l 

In fact we will prove a more general formula for R possibly non-reduced and 
different labels for roots of different lengths. For R of type BC, this formula is 
equivalent with Selberg's integral (1.4) as will be shown in Sect. 3. In Sect. 4 we will 
show how the compact imaginary and non-compact real integrations can be related 
with the help of Stokes theorem. However for this we have to replace the integrals 
with measures by the corresponding integrals with differential forms. In Sect. 5 
we finish the proof of (1.7) by connecting the integrals for measures and differential 
forms using the Poincare series for both the finite and the affine Weyl group. 

2 Conditions for integrability 

Let a be a Euclidean space of dimension n, and R c a* a possibly non-reduced 
root system with Weyl group W. Let R+ c R  be a set of positive roots, and 
a + c a the corresponding positive chamber. Write a~ = I~ | a for the complexifi- 
cation of a, and a~g={xsa~ ;  ~(X)=I=0V~R} for the regular points in a~. Sup- 
pose we have given k~ ~ tE for ~ ~ R, such that k ~  = k~ V w ~ W, V ~ ~ R. 

Consider the functions on a~ ~g defined by 

(2.1) 6(k, X)= IF] (e~(X)-e-~(x))  21̀ " 
~eR 

(2.2) g (k ,X)=  I ]  le}~(X'--e-4~(x)lzk" 
:~eR+ 

Here 6(k,-) is the multi-valued analytic continuation of the single-valued analytic 

function on % + = a + | l ~ - 1  a for which 6 (k, X)=/~(k, X) for X ea +. Note that 
#(k, X ) =  Ib(k, X)l if k~6~Vc~eR. 

For Xeac we put 

(2.3) Rx = {a~R; c ~ ( X ) ~ 2 n ~ I  Z}, 

whence Rx c R is a root subsystem. 

Proposition 2.1 Write p(k)::�89 Z k, ct-= ~ lj ~j with {c~, . . . .  , :~,} =R  + the set of 
simple roots. ~R~ j :  1 

a) I f  Re( ~ k~)+rk(Rx)>OVX~a with Rx+O then #(k,.)6L]oc(a, dX). 
~eRx 

b) I f  in addition Re(/j) < 0Vj then t2(k,.)EL x (a, dX). 
c) I f  R e ( ~  k~)+rk(Rx)>O u  with RxJeO then p(k,')eL]o c 

~eRx 
(l/ i-1 a, dX). 

Here dX  denotes Lebesgue measure on a and ~ -  l a respectively. 

Proof The proof is easy and left to the reader. QED 
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Corollary 2.2 Suppose R = R~ w ... u R,, is the decomposition of R into W-orbits. 
Put hi,= ~ (Ri)/rk(Ri) and ki=k~ for e~ Ri. Under the conditions 

m 

(2.4) Re(k,)<Ou ~Re(k~) hi+ 1 > 0  
1 

all conditions of the previous proposition are satisfied. 

Proof The Ri are of type A, D, E or a direct sum of type A 1. Note Rx, ~:= Rx c~ Ri 
and hx, i,= # (Rx, i)/rk(Rx.i). Then it is easy to verify that hx.i<hi. Since rk(Rx) 
> r k (Rx, ~) we get (using Re (ki) < 0 V i): 

m t~ 

~" Re(ki) hi+ 1 > 0 ~ R e ( k i )  hx, i+ 1 > 0 ~  
1 1 

LRe(k~). # (Rx. i)+rk(Rx)>O~ ~ Re(k~)+rk(nx)>O. 
1 ~ E R x  

Hence the conditions under a) and c) are implied by 2.4. Since p(k)=Y, kipi 
1 

with pi=�89 ~, aeeIIct+) we have Re(p(k))e-a+ for Re(ki)<0. Hcnce condition 
a ~ R i ,  § 

b) is implied by (2.4) as well. QED 

Corollary 2.3 On the domain (2.4) in 112" the functions 

(2.5) k~--, ~ p(k, X) dX 
a 

and 

(2.6) k~-~ ~ #(k, X) dX 
[ / ~ l - a ,  2 n I / ~ ] -  Q v 

are holomorphic. 

3 The case R of type BC,, 

Whenever the integral converges we write 

(3.1) 
- a c  - ~  i = l  i = 1  

�9 1~ ( sinh2 ( t i -  tj)" sinh 2 (tl + t j)) "e d tl.. .  d t, 
i < j  

Proposition 3.1 We have 

L,(~, fl, 7)= I~I (]7)! ( 2 = + 2 ( j -  1)7)! ( - f l - ( j -  1)7)! ( - ~ - f l - ( n + j - 2 )  7-1 ) !  
j=l (?)! (~ + ( J -  1)7)! ( -  2 / / -  2 0 ' -  1)7)! 
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Proof The proof is analogous to the computation in [M2, p. 992-993]" Substi- 
tute a~,=sinhZtg in Selberg's integral (1.4), and put x=c~+�89 y - - - ~ - f l - 2 7 ( n  
-1),  z=7.  QED 

Remark 3.2 This proposition enables one to prove Theorem 1.1 for R of type B,,, C, 
and D,. However these seem to be the only cases where the non-compact integral 
(1.7) can be reduced to the compact integral (1.6) by a simple change of variables. 

4 From compact imaginary to non-compact real 

Choose an orthonormal basis for a and write X=(X1, . . . ,X , )eN" (or IE") for 
the coordinates of a vector X ~ a  (respectively a~). Let z > 0  be a positive real 
number. Consider the differential n-form 

(4.1) co=co(k,z)= H ( ek~(x)+r-e-�89 A ,.. A d x  n 
~t~R 

defined on the real Weyl chamber a+. This form has a single-valued analytic 
continuation as a closed differential form of type (n, 0) to an open neighborhood 
of c f ( a ~ , + ) = c l ( a + ) O ~ - ! a  (choose the branch as for the function (2.1)). If 
P "  .-={2~a; ~ ( 2 ) e Z V ~ R }  denotes the coweight lattice in a then the continua- 
tion is quasi periodic with respect to 2 ~ 1 / - 1 P  v, i.e. for every X~a~,+ and 
2~P v we have 

(4.2) co(X+2z] /~-  12)= I~ q~'(*).o(X) 
~ER+ 

where 

(4.3) q , = e  ~V='k'. 

Let {21, ..., 2,} c a  be the fundamental coweights defined by c~i(2j)=6 u and 
consider the parallelepiped f2 = [0, 27z] )q + ... +/-0, 2~] 2, spanned by 
2zr21 . . . .  ,2 ~z).,. 

Proposition 4.1 / f  Re (k~,) < 0 for all ~ E R then 

(4.4) I 31= (I (1- [I I 3) 
]/~Tf2 j = l  7ER+ a§ 

Proof Let M be a positive real number and define parallelepipeds 

c,+,~..= [0, M] 2~ + ... + [0, M] 2j 

f2J..=[0, 2re] 2 j§  ... + [0, 2hi  2, 
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with the convention (1+, 0 = f2"= {0} and f2~ O. Then (4.4) will clearly follow 
from a repeated application of the formula (0 < j  < n - 1 )  

(4.5) ~ co=(1-- l-[ q Z~(a,.~,). ~ co+O(e-~;u) 
II I - , j + V  - ~ j  QtER+ a + , j +  l + [ / ~ j 4 .  1 

where O (e-~m) are terms vanishing exponentially as M tends to infinity. 
Formula (4.5) is proved as follows. Observe that if an n dimensional parallelepi- 

ped acc l (% +) is spanned by n vectors two of which span a complex line then 
co b = 0. Just note that ~ is contained in a complex hyperplane. Now modulo parallel- 
epipeds spanned by n vectors two of which are M2j+I and 2 ~ F - 1  )q+l we have 

= (-- 1) j+ '((o+ , j§  ~ - ~ i  t2 ~) - (M 2j+ 1 + o+ ,2 § ~ -  1 (22)) 

§ j+2(((l+,j+l Jc~f~ l~J+l)--(2~-~ 1;.j+lnktl+,j+l § ~/~l~'~j+l)) 

Hence equation (4.5) follows from Stokes theorem, the quasi periodicity relation 
(4.2) and an elementary estimate. QED 

Corollary 4.2 Suppose the numbers k,e(E with kw~=k~ Vwe W, VeeR satisfy the 
conditions (2.4). Then equation (4.4) holds for r = O. 

Proof. By Corollary 2.2 both sides of equation (4.4) converge for t = 0 .  Now 
apply the Lebesgue dominated convergence theorem. QED 

5 Evaluation of the non-compact integral 

From now on we assume that R c a* is a reduced irreducible root system. For 
eeR  and neTZ let e + n  be the affine linear function X~-,e(X)+n on a. The set 
R~ = {e+ n; eeR,  heN} is the affine root system associated with R, and elements of 
R are called affine roots. For each ae/~ let ra denote the orthogonal (affine) reflec- 
tion in the hyperplane L~ = {Xea; a(X)=0}. The affine Weyl group Wis the group 
generated by the reflections ro with aeR. The group W acts on /~ by the dual 
action: if we [7Vand ae/~ then wa is the function X~--,a(w-lX) on a. 

Fix R+ c R  set of positive roots, and let /~+..=R+ u R + { 1 , 2 , 3 ,  ...} c /~  be 
the corresponding set of positive anne  roots. Let {el, . . . ,e,} o R +  be the set 
of simple roots and S=  {rl, ..., r,} the Coxeter generators for W. If OeR+ is 
the highest root then a o = - 0 + l e R +  is positive, and we write roelTv for the 
corresponding reflection. Then I7V is a Coxeter group with generators 
={ro , . . . , r ,} .  Let a+={Xea;e(X)>OVeeR+} be the Weyl chamber corre- 
sponding to R +, and C = {X e a; a (X) > 0 V a e/~ + } the fundamental alcove corre- 
sponding to R+. 

On W we have the usual length function l(w) as well as the i-length function 
l(w)=(l,(w))i=~ ...... where me{l ,  2, 3} is the number of I~-orbits in R (see [B], 
[M I]). These functions behave nicely for the restriction from 17V to W. 

Lemma 5.1 Suppose weC-V, w4:l such that w(C)ca+. Then there exists r~eg 
with I(wr~)<l(w) and wri(C)~(1+. Moreover if one crosses the separating wall 
between wri(C) and w(C) going from wri(C) to w(C) one goes in the direction 
of a positive root in R+. 
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Proof Choose X e C  a generic point. The straight line from w(X) to X intersects 
the boundary of w(C) in the wall La for some ae/] .  Now clearly L, separates 
w(C) and C. Hence l (r ,w)=l(w)- l .  Since L, is a wall of w(C) we also have 
r~w=wr~ for some i. This proves the first statement. The second statement 
is obvious from this construction. QED 

Lemma 5.2 For w~W we have l(w)=l(v)+ l(v-aw) where veW is the element 
with w(C)cv(ct + ). 

Proof. Choose X ~ C  a generic point but close to the origin. The straight line 
from X to w(X) first meets the reflecting hyperplanes separating C and v(C) 
and then the ones separating v(C) and w(C). QED 

In view of Corollary 2.3 it is no restriction to assume k ~ c ~ V ~ R  which 
we will do from now on. Instead of the affine Weyl group 17V with translation 
lattice Q v (the real realization) we will work from now on with the affine Weyl 
group with translation lattice 2~z]/-~--1 Q" (the imaginary realization). By abuse 
of notation we denote this group again by W. 

Lemma 5.3 Suppose w ~ ffV satisfies w (2 n [/~-1C) = 2 n ~ - l  ~ +. Then we have 
for X e 2 7 r ~ -  1C 

(5.1) 8(k, w(X)) =( ~ q~).qZtiw) 
#(k, w(X)) ~e~+ 

with q~=e ~r and q2_/(w)= 1~ q21i(w) where qro=qo (0ER+, the highest root); 
i = 1  

qr,=q~, Jor i= 1 . . . . .  n, and the index i~{1, ..., m} indicates the conjugacy class 
of simple reflections under rV. 

Proof With induction on l(w). I f / ( w ) = 0  then (5.1) is clear: Moving X from 
27rC to 27r~/~-1C one picks up a factor ]-I (1~-- 1) 2~'= H q-. If l (w)>l  then 

~ > 0  ~ > 0  

choose ri~S with l(wri)<l(w ) and wri(C)ca+ as in Lemma 5.1. Going from 
wr~(2zl/Z-1 C)to w ( 2 ~ l f - l - C  ) one picks up one extra factor q~ in 6 relative 
to #. This proves the lemma. QED 

Consider the Poincar6 series W(t)= ~ t "'~) and 17V(t)= ~ t ~ )  (see [M 1]). 
wEW w~f~" 

Lemma 5.4 We have 

(5.2) if(t) = w(t). { Z ~(~} 
w e  if ' ,  w ( 2  ~ U -  I C )  ~ V = q - a  + 

and 

(5.3) Y t.w,= (1- Yl Z t-"w'} 
w e  if ' ,  w (2 r~ 1 / ~ T C )  ~ 1 / ~ T f 2  j = l  aER+ weVV, w(2nl/-'~TC)~l/~Ta+ 

in the notation of the previous section. 

Proof The first statement is clear from Lemma 5.2. As observed in (4.2) the 
function 8 is quasi periodic for the lattice 2 zt ~ - - 1  P v. Together with Lemma 5.3 
we get (with t = q2) 
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w e W ,  w ( 2 n l / ~ T C ) ~ l / ~ T a +  welTV, w ( 2 r V ~ T C ) ~ l / ~ T I 2  2eZ+ ),1 + ... +Z~ 2n ~eR~ 

and (5.3) follows by summing the geometric series. QED 

Theorem 5.5 Suppose the Lebesgue measure d X  on a is normalized such that 
dX  = I (this normalization is obtained from the normalized Haar measure 

a / 2 n Q  ~ 

dt on T. '=~- - l a /2z r~f -1Q~ by analytic continuation). IJ" the parameter k sat- 
isfies the conditions (2.4) then 

(5.4) 

y #(k, X) dX  (]/'~- 1)". H q~' 17V(q 2) 

#(k, t) dt W(q 2) 

Proof Normalize the inner product on a such that the Lebesgue measure dX  
on n is the density associated with the differential form dx~/x .../x dx, ,  and 
denote by d Y the corresponding Lebesgue measure on l / - 1  Assume that 
a is oriented such that ~ d x l A . . .  A dx,=vol(Q). Then we have a" 

0 

l #(k , t )dt  
T 

= j" p(k, Y)dY=IWI  I #(k, Y ) d Y  
V ~ - y  a/ 2 rt l / ~ T  Q V 2 n V -'=~f C 

IWr ~ fi(k,Y)dY 

o~>0 w e W ,  w ( 2 r r V = S C ) c V - - - - F l 2  

_ IWl lim 
(1~--1) "" 1-[ q~ " E q 21-'w) ~ t ~ l~r  o 

a > 0  welTV, w ( 2 n ~ C ) c I f = ~  

[Wf- f I  (1-- l-[ q Z~(~j)) 
o)(k ,  O) 

(]/~-- 1)"" ~-[ q~" Z qZ!(w) o+ J 

~o(k, ~) 

by (5.1) 

by Corollary 4.2 

a > 0  w e W ,  w ( 2 n l / ~ T C ) ~ ] 7 ~ f . Q  

IWl ~ ~(k,X)dg 
(~---- 1)"" ~1 q~" E q2,(w) o+ 

W ( q  2) 

(~--1)". [ I  q~'VV(q2) " ! # ( k ' X ) d X  

by (5.3) 

by (5.2) 

which proves the theorem. QED 

Remark5.6 In case k~=kVa~R Theorem 1.1 is easily obtained from Theo- 
rem 5.5. Indeed in this case the Poincar6 series for W and I71/are given by 

w(t)= I~ O-tmJ+') 
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and 
" ( l - t  "'+') 

W(O = .~, ( 1 - ~ - -  t"~) 

as originally computed by Bott (see LM 1], p. 164 and p. 173). Here mj=dj-1 
are the exponents of R. Hence the right hand side of (5.4) becomes (using 
4~ (R +) = ~ m j) 

(~--1)" .  q ea+ .17V(q 2) 
W(q 2) 

n ~ m j  n ( ~ 1 )  .q, -- 1 

~ _ ~ G ~  =:_[I 1 2 sin(nkm~) 
J 

and Theorem 1.1 follows from (1.6) and (5.4). 

6 Final remarks 

Consider the differential operator on A 

02 e ~ + e - +  ~ (~ 
L(k)= + Z k~ - - -  

e ~ --e ~ 63~ i= 1 ~ e R , ,  

as studied in [H0, H 1, 2, O l, 2]. Then there exists a commutative family ID(k) 
of differential operators on A, depending polynomially on the parameter k and 
containing L(k), which is isomorphic to a polynomial algebra in n variables. 
More precisely there exists an algebra isomorphism 

~ Dik)  ~ s ay  

which can be considered as a deformation in k of the Harish-Chandra isomorph- 
ism for the invariant differential operators on a Riemannian symmetric space 
G/K. In fact we have 7(k) (L(k)) (2)=(2, )d-(p(k), p(k)). 

Suppose e > 0  small and k ,>  --eV~ER. Then it is easy to see that the real 
subspace of lD(k) corresponding to IR [~--]~a*] w under ?(k) consists of symmet- 
ric operators for the measure #(k, a)da on A. A problem of considerable interest 
would be to obtain the (presumably existing) simultaneous spectral resolution 
of this commuting family of differential operators in explicit form. It is known 
that there exists a unique solution F = F ( 2 ,  k;a) for each ).ca* to the system 
of differential equations 

DF=7(k)(D)(~.).F VD~ID(k), 

which is analytic and W-invariant on A and normalized by the condition F 
F(2, k; e)= 1. Moreover on A+ this function has an asymptotic expansion 

F(2, k;a)~ ~. c(w2, k)a ~'~-~162 
w ~ W  



10 R. Brussee et al. 

with c(2, k) the c-function given by the Gindikin-Karpelevic product formula 
(see [04]).  In case the parameters k, are half the root multiplicities of the 
restricted root system of G/K then this spectral resolution is given by Harish- 
Chandra's Plancherel formula for G/K. It says that for feC~(A) w we have 
(with da and d2 regularly normalized) 

(6.1) 
) 1 d;. 

f (" =I~W~ ~ {~ f(a) F(--]~--12, k;a) g(k,a)da} F ( ] / - 1  ~, k;-) 
[ c ( ] / -~L  k) l 2 

In case of rank one this formula boils down to the example of the Weyl-Titchmarsch 
spectral theory for the Gaussian hypergeometric function. One might expect for- 
mula (6.1) to remain valid under the assumption k~,>OV~R. However the set of 
eigenfunctions F(]//~- 12, k; a) with 2 e a* fails to be complete if k, becomes negative 
and small. Indeed, discrete spectrum occurs for the eigenfunction F(p (k), k; a)-1 
and what we have computed in this paper is the L2-norm of this function. 

Note that for R of type BC,, (with three root multiplicities k~, k,,, ks for 
the long, medium and short roots) more discrete spectrum will occur when 
kz'~0 and kt + ks, k,, > - E .  The eigenfunctions are analytic continuations of the 
multivariable Jacobi polynomials associated with R, and their L2-norms can 
be computed by using either the contiguity relations as in [H1, Sect. 8] or 
the hypergeometric shift operators from [O1, 2, H2]. The fact that a finite 
number of discrete eigenfunctions arise this way was already observed in the 
rank one case in [We, p. 235]. 
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