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ABSTRACT 
In m n t  years computational models have become more and more 
important in testing processing mechanisms assumed to underlie 
human spoken-word recognition. Models like TRACE (Mcclelland 
& Elman, 1986) and Shortlist (Noms, 1994) have given us much 
insight in the effects of, for instance, Competition between words 
in the mental lexicon and the use of lexical information during 
word recognition. However, these models neglect the effects of 
coarticulation and variability over time by using mock speech 
instead of real speech input. Here we describe a new connectionist 
model for spoken-word recognition which differs on a number of 
points from other models, in that it takes real speech as input, is 
based on a new architecture for the representation of time, and can 
adapt its own weights. Simulations with the model accurately 
reproduce some important effects found in human word 
recognition. However, the representations of words in the model 
and the implementation of the frequency effect should be 
investigated more thoroughly. 

1. INTRODUCTION 
Almost without problems, listeners recognize ten thousands of 
words every day. Human word recognition therefore seems to be 
a very ordinary activity. However, from another perspective the 
ability to recognize a word is quite amazing. Listenen are able to 
retrieve a particular word well within half a second from a lexicon 
that is estimated to contain 5O.OOO items or more. To do so, they 
must take into account the complex nature of the speech signal. 
Speech is variable over speakers and over time (every unerance of 
a word, even by one speaker, i s  unique), and it is difficult to 
segment into words because it is continuous and contains mutually 
dependent segments (coarticulation). These properties make it 
difficult to build machines that recognize speech, and they 
challenge our inventivity to understand how humans cm perform 
this task so well. 

Psycholinguists investigate the word recognition process in humans 
to better understand the mapping of the incoming acoustidphonetic 
information onto the words stored in the mental lexicon. McQueen 
and Cutler (in press) provide a broad overview of many of the 
known effects in this area- During the last few years, 
computational models such as TRACJ2 (McClelland and Elman, 
1986) and Shortlist (Nonis, 1994) have med to integrate such 
psycholinguistic evidence concaning word rrcognition. However, 
these models did not use real speech input Instead, they took 

mock speech, which is based on a phonetic transcription of words 
as input. In doing so, human word recognition is reduced to a 
relatively simple string matching. 

Mock input assumes that the speech signal is first mapped onto 
phonemic categories before the lexicon is accessed. It ignores all 
nuances in the human recognition process that depend on the 
signal. According to a phonemic transcription, a word sequence 
like ship inquiry has the word shipping fully embedded in it. 
However, in real speech the two spoken sequences shipping and 
ship inq ... are acoustically different in several details. Thus, a 
model based on real speech will to some extent behave differently 
from one that uses phonemes in the input sequence. 

Therefore-, the RAW-model (Real-speech model for Auditory Word 
recognition) was designed to serve as a starting point for a 
simulation lab which combines the use of real speech and the 
implementation of m n t  psycholinguistic knowledge. The model 
intends to (a) adhere to the consuaints defined by psycholinguists 
as much as possible, (b) use real speech as input, (c) store 
temporal pattems in a plausible way (relative to, e.g., TRACE), 
and (d) allow later extensions to account for the use of prosodic 
information and improved anentional and incremental learning 
mechanisms. 

In the design of the model we explicitly chose nor to use m n t  
main-smam Hiddm Markov Model-based, recurrent network- 
based, or hybrid techniques from the world of automatic speech 
recognition. The rationale behind this choice was that these 
techniques do not provide a good basis for simulating 
psycholinguistic issues such as incrementally building up lexica 
and active competition between words. Funhermore, these 
architectures are not open and flexible enough to allow easy 
introduction of exm knowledge sources like prosody. An overview 
of some major limitations of these systems and suggestions for 
new ideas can be found in Bouclard (1995) and Wittenburg, van 
Kuijk, and Behnke (1995). 

2. THE ARCHITECTURE OF RAW 
Like earlier models, RAW nlies on a hierarchical approach. 
Besides a preprocessing step, RAW incorporates a phonemic and 
a word layer. The preprocessing of the speech signal results in a 
number of spccch vectors which fonn the input to a phonemic map 
(pmap) yielding typical activity distributions for each vector. 
Word neurons in the word map (w-map) sum up the activity 
distributions over time, leading to an activity disaibution in the 
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Figure 1: The activation pattern for the /id in sister. Each of the 
crossings in the grid represents a neuron in the pmap, and the 
height of the crossing represents the activation of that neuron. 

w-map as well. Competition between the word-neurons (which is 
suggested by psycholinguistic findings) can be simulated with the 
help of lateral inhibitory links, or by the implementation of a 
recognition rule. 

2.1. Pre-lexical Processing 
In automatic speech recognition mainly two techniques for 
preprocessing are used. The first is RASTA-mel-cepstra 
(Hermansky and Morgan, 1994) which yields robustness against 
variations in channel characteristics, and the second is Bark-scaled 
filter bank preprocessing (Hermansky, 1990). We used the second 
technique because it is simple, and because we did not have to 
cope with largely varying channel characteristics since our speech 
data were al l  recorded under identical circumstances. Our 
16-dimensional vectors were derived from acoustical filter-bank 
processing based on 175 N windows with a stepsize of 8.75 ms. 

'onand 
noise filters. 
The specua were further preprocessed by cnergy "ahau . 

The pmap is necessary for context-dependent decomposition of 
the highly modulated segmental information in the speech signal. 
The ulttmate goal of the p-map is to generate, for every incoming 
speech vector. an activation distribution characterizing the speech 
segment represented by that vector in its acoustidphonetic context 
To do so we used a self-organizing feature map (Kohomn, 1988), 
which carries out a data and dimensionality reduction of the input 
space, while at the same time preserving the relations of simila&y 
between the input vectors. As an example; in the nained map the 
activation paaems for different realizations of a /W will be almost 
identical in shape and position on the map. The activation peak for 
/s/, which is acoustically v a y  similar to /thl will arise near the 

Bo~om-up sensor links 

Bottomup links from p-map 

Figure 2: The chain of neurons storing the pattem of one word. It 
exists of a sequence of sensor neurons which are connected to the 
pmap via excitatory bottom-up links. Activations arise in the 
sensor neurons which are passed on to the word neurons by means 
of a special gating mechanism. 

peak for IW, but it will have a different shape. For phonemes 
which are acoustically more different from /th/ the activation 
bubble will be clearly separable from the /th/-bubbles. Figure 1 
shows the activation paaem for the /id in the word sister. The 
implementation of the use of temporal contort in the pmap is still 
being studied. 

22. The Word-Map 
The word-map (w-map) uses the activity distributions in the p-map 
over time to store the acoustical properties of each word. During 
recognition, the word neurons must accumulate matching 
information, but also block incoming activation when the match 
between stored word and input is bad for a pan of the left-hand 
context So the input think must to a certain extent activate both 
the lexical enmes think and thinking, bur the input king must not 
activate thinking because the left-hand context of that entry (rhin) 
was not present in the input. The word neurons must also possess 
the capaciry to store the inherent timing of the spoken words. In 
RAW temporal information about a word is stored in the word 
n e m n  in a sequence of sensor neurons which are co~ected via 
so-called gate signals (see Figure 2). 

Every sensor neuron is sensitive to a certain pattern in the pmap. 
The potential of the sensory neurons i s  computed as a quadratic 
form difference between the vector described by the afferent 
weights and that described by the relevant activity distribution of 
the pmap neurons they are linked to. The activation of each 
sensory neuron is calculated by multiplying its potential with the 
effective gate value of that neuron at that moment. The potential 
of the sensors is context-independent (so during the input king the 
sensors in the second syllable of the lexical entry zhinking will also 
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have high potentials), but the activation of the sensors is context- 
dependent because the gate signal is context-dependent. 

The gate signal is the most important construct for representing the 
sequential structure of a word. During recognition it is computed 
at each time slice as a function of the match between the word 
represented by each word-neuron and the input so far. If the gate 
of a sensor is not open, that sensor can not be activated. The gate 
of the first sensor of each word is always open, so that a word can 
always be activated from its beginning. If the mismatch between 
inpur and word neuron is too high all gates of that word close. As 
a result no more bottom-up activation reaches the word neuron, 
and so it is thrown out of the competition for recognition. The gate 
function is flexible enough to allow RAW to catch up with 
spealung rate variations, omissions and other small distortions of 
the speech signal. In fact, the gate signals have to fulfil a job 
similar to that of dynamic programming algorithms in HMM-based 
systems. 

The activation of the word neuron is a function of all sensor 
activations at any moment in time and the accumulated activation 
from earlier time steps. Figure 3 shows the activations over time 
in the word-map for the input sister. 

The bottom-up links between the pmap and the sensory neurons 
are trained in two stages: a bootstrapping phase and a fine tuning 
phase. In the bootstrapping phase, one good articulation is used to 
initialize the sequence which results in an excellent match of this 
specific token. During the supervised fine tuning phase the links 
are adapted such that they focus on the salient and discriminative 
aspects of the different variants produced. 

The bottom-up links between the sensory neurons and the word 
neurons are constant within each word, but differ between words. 
For high-frequent words these links are stronger, so that a high- 
frequent version of a lexical entry reaches a higher word activation 
than a low-frequent version on the basis of the same acoustical 
input. 

A word is considemi to be recogruzcd when its word activation is 
sufficiently higher than that of all other words in the lexicon. In 
this way competition between words is modeled in a simple and 
efficient manner. 

The complex dynamics of the model are described in more atai l  
in Wittenburg, van Kuijk, and Dijkstra (1996). 

3. SIMULATION RESULTS 
For the simulation results we constructed a lexicon with 32 word 
entries, introducing particular relationships between the words. A 
number of entries were chosen that w m  very similar in 
phonological form, e.g., words like thanking. thinking, and sinking. 
Funhennore, different types of embeddings of words in other 
words were introduced, such as rhink and king in r h h g ,  and free 
in frcaties. Each word was spoken four times by a female speaker. 
Since the fine-tuning is not implemented yet, the model was 
trained with one token of each word. Of the 128 tokens 119 were 
recognized correctly, which is sufficient for the psycholinguistic 
simulations. We analyzed the behavior of the model with respect 
to a number of psycholinguistically relevant factors: Uniqueness 
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Figure 3: Activations over time of the words in the lexicon as a 
mult  of the input sister The x-axis shows the time-dimension in 
terns of time slices, the y-axis the activation. 

Point, Cohort Site, and Word Frequency. 

The uniqueness point (vp) of a word is that point in the signal at 
which the word becomes unique with respect to all other entries in 
the lexicon. This point has been shown to be a valuable precllctor 
of reaction time in human lis". In our lexicon, an almost equal 
number of words had an early (68) and a late (60) UP. Measwed 
from the beginning, the average recognition time of words with 
early Ups was about 51 time slices, and that of other words about 
70 time slices. This indicates that words with early UP are 
recognized earlier, a finding which seems comparable to that for 
humans. 

Ihe number of words that is sti l l  consistent with the speech signal 
at a particular moment in time is caIM a cohort. The effect of 
small (< 4) vs. large (> 3) word-initial cohort sizes was analyzed. 
Words were grouped in WO categories, dependent on the number 
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of word candidates after the first phoneme. The 72 word tokens 
with a small cohort size were reco@zed after on average 54 time 
slices, while the other group was recognized after on average 69 
time slices. Thus, words in a small cohort were recognized earlier 
than those in a large cohort, similar to human word recognition. 

Many psycholinguistic experiments show that human listeners 
recognize high frequent words faster than low frequent words. The 
RAW model exhibits a comparable effect when frequency is 
simulated by allowing the activauons of high-frequent words to 
increase faster than those of low-frequent words, but the effect is 
very small. Furthermore, this implementation of word frequency 
also led to some side effects unknown for human subjects. For 
example, if the wordflarhing is assigned a higher frequency than 
pushing, the word recognized is almost always flashing. Clearly, 
it is not desirable that word frequency ovemdes bottom-up 
acoustic information in this way. 

4. DISCUSSION AND CONCLUSIONS 
The RAW model shows a potential to simulate a number of 
psycholinguistic effects on word recognition and therefore to serve 
as a simulation and theorizing tool. The dynamics of the network 
provides a promising basis for further investigation. It performs 
better than TRACE in that it may pick up early deviations in the 
pronunciation, for instance, the difference in the way the first 
vowel is spoken in wee and rreaties. While this seems to be a 
desirable feature, more information should be collected about how 
and when human listeners make use of such more subtle 
differences in the speech signal. The current implementation of 
word frequency in RAW resulted in some undesirable effects. 
Relating word frequency and bottom-up information to the same 
activation function may be a main reason for this. Other plausible 
architectural solutions which fit better with cumnt psycholinguistic 
insights have to be implemented and tested. 

The speech recognition component in RAW can be improved in 
two ways. First, as already mentioned we are studying a better 
pre-lexical processing which taka the acoustic context into 
account. This new pmap should deliver a richer and more tunable 
output representation than for instance recurrent neural networks 
do. Second, the fine tuning phase of the training has to yield a 
more abstract representation for each word, which is aimed at 
maximizing the differences in representations between words, 
while minimizing those differences within a representation of a 
word. This discrimination can be achieved by including attentional 
mechanisms. In case of similar sound patterns of two different 
words (e.g., pushing and jkzshing) the w-map has to be trained 
such that the stored patterns yield a maximal difference. In case of 
strong afferences between tokens of the same word, a complex 
graph will evolve compared to the simple sequences we have now. 

After this fine-tuning is implemenmi we can examine w k t h a  the 
present implementation of the frequency effect is realistic or not. 
The psycholinguistic component of the model can funher be 
improved by the inclusion of prosodic information in the model. 
Cutler and Noms (1988) suggest that English listeners use the 
weak/strong syllable distinction to guide lexical access. It has to 
be investigated in how far the gate signals can be optimized by 

using such information. 
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