Search for the Standard Model Higgs boson produced in association with a vector boson and decaying to a b-quark pair with the ATLAS detector

The ATLAS Collaboration

Abstract

This Letter presents the results of a direct search with the ATLAS detector at the LHC for a Standard Model Higgs boson of mass $110 \leq m_H \leq 130$ GeV produced in association with a W or Z boson and decaying to $b\bar{b}$. Three decay channels are considered: $ZH \rightarrow \ell^+\ell^-b\bar{b}$, $WH \rightarrow \ell\nu b\bar{b}$ and $ZH \rightarrow \nu\bar{\nu}b\bar{b}$, where ℓ corresponds to an electron or a muon. No evidence for Higgs boson production is observed in a dataset of 7 TeV pp collisions corresponding to 4.7 fb$^{-1}$ of integrated luminosity collected by ATLAS in 2011. Exclusion limits on Higgs boson production, at the 95% confidence level, of 2.5 to 5.5 times the Standard Model cross section are obtained in the mass range 110–130 GeV. The expected exclusion limits range between 2.5 and 4.9 for the same mass interval.
Search for the Standard Model Higgs boson produced in association with a vector boson and decaying to a b-quark pair with the ATLAS detector

The ATLAS Collaboration

Abstract

This Letter presents the results of a direct search with the ATLAS detector at the LHC for a Standard Model Higgs boson of mass $110 \leq m_H \leq 130$ GeV produced in association with a W or Z boson and decaying to bb. Three decay channels are considered: $ZH \rightarrow \ell^+\ell^-bb$, $WH \rightarrow \ell\nu bb$ and $ZH \rightarrow \nu\bar{\nu}bb$, where ℓ corresponds to an electron or a muon. No evidence for Higgs boson production is observed in a dataset of 7 TeV pp collisions corresponding to 4.7 fb$^{-1}$ of integrated luminosity collected by ATLAS in 2011. Exclusion limits on Higgs boson production, at the 95% confidence level, of 2.5 to 5.5 times the Standard Model cross section are obtained in the mass range 110–130 GeV. The expected exclusion limits range between 2.5 and 4.9 for the same mass interval.

Keywords: Standard Model Higgs Boson, ATLAS, LHC

1. Introduction

The search for the Standard Model (SM) Higgs boson is one of the most important endeavours of the Large Hadron Collider (LHC). The results of searches in various channels using data corresponding to an integrated luminosity of up to 4.9 fb$^{-1}$ have been reported recently by both the ATLAS and CMS collaborations. The Higgs boson has been excluded at the 95% confidence level below 114.4 GeV by the LEP experiments, in the regions 100–106 GeV and 147–179 GeV at the Tevatron pp collider, and in the regions 112.5–115.5 GeV and 127–600 GeV by the LHC experiments. This Letter reports on a search for the SM Higgs boson performed for the $H \rightarrow bb$ decay mode, over the mass range 110-130 GeV where this decay mode dominates.

Due to the large backgrounds present in the dominant production process $gg \rightarrow H \rightarrow bb$, the analysis reported here is restricted to Higgs boson production in association with a vector boson, WH and ZH, where the vector boson provides an additional final state signature, allowing for significant background suppression. An additional handle against the backgrounds is provided by exploiting the better signal-over-background level of the kinematic regions where the weak bosons have high transverse momenta. These channels are also important contributors to Higgs boson searches at CMS and the Tevatron.

This Letter presents searches in the $ZH \rightarrow \ell^+\ell^-bb$, $WH \rightarrow \ell\nu bb$ and $ZH \rightarrow \nu\bar{\nu}bb$ channels, where ℓ is either an electron or a muon. The data used were recorded by the ATLAS experiment during the 2011 LHC run at a centre-of-mass energy of $\sqrt{s} = 7$ TeV and correspond to integrated luminosities of 4.6 to 4.7 fb$^{-1}$ depending on the analysis channel. The leptonic decay modes of the weak bosons are selected to suppress backgrounds containing only jets in the final state. In the $ZH \rightarrow \nu\bar{\nu}bb$ channel, the multijet background is suppressed by requiring a large missing transverse energy.

2. The ATLAS Detector

The ATLAS detector consists of four main subsystems. An inner tracking detector is immersed in the 2 T magnetic field produced by a superconducting solenoid. Charged particle position and momentum measurements are made by silicon detectors in the pseudorapidity range $|\eta| < 2.5$ and $|\eta| < 4.9$.
by a straw tube tracker in the range $|\eta| < 2.0$. Calorimeters cover $|\eta| < 4.9$ with a variety of detector technologies. The liquid-argon electromagnetic calorimeter is divided into barrel ($|\eta| < 1.475$) and endcap ($1.375 < |\eta| < 3.2$) sections. The hadronic calorimeters (using liquid argon or scintillating tiles as active materials) surround the electromagnetic calorimeter and cover $|\eta| < 4.9$. The muon spectrometer measures the deflection of muon tracks in the field of three large air-core toroidal magnets, each containing eight superconducting coils. It is instrumented with separate trigger chambers (covering $|\eta| < 2.4$) and high-precision tracking chambers (covering $|\eta| < 2.7$).

3. Data and Monte Carlo Samples

The collision data used in this analysis are selected such that all elements of the ATLAS detector were delivering high-quality data. In the $ZH \rightarrow \ell^+\ell^-bb$ and the $WH \rightarrow \ell\nu bb$ analyses, events were primarily collected using single-lepton triggers with a transverse momentum (p_T) threshold of 20 GeV for electrons, which was raised to 22 GeV as the instantaneous luminosity increased, and 18 GeV for muons. In the $ZH \rightarrow \ell^+\ell^-bb$ analysis, these triggers were supplemented with a di-electron trigger with a threshold of 12 GeV. The lepton trigger efficiency is measured using a sample of $Z \rightarrow \ell^+\ell^-$ events. The resulting efficiency, relative to the offline selection, is close to 100% for $ZH \rightarrow e^+e^-bb$ and $WH \rightarrow e\nu bb$. It is around 95% for the $ZH \rightarrow \mu^+\mu^-bb$ channel and 90% for the $WH \rightarrow \mu\nu bb$ channel, due to the lower angular coverage of the muon trigger chambers with respect to the precision tracking chambers. The missing transverse energy (E_T^{miss}) trigger used for the $ZH \rightarrow \nu\bar{\nu}bb$ channel has a threshold of 70 GeV and an efficiency above 50% for E_T^{miss} above 120 GeV. This efficiency exceeds 99% for E_T^{miss} above 170 GeV. The efficiency curve is measured in a sample of $W \rightarrow \mu\nu +$ jet events collected using muon triggers, which do not rely on the presence of E_T^{miss}.

Monte Carlo (MC) simulation predicts the trigger efficiency to be 5% higher than that observed in collision data for 120 GeV $\leq E_T^{\text{miss}} < 160$ GeV and agrees for $E_T^{\text{miss}} \geq 160$ GeV. A correction factor of 0.95 ± 0.01 is therefore applied to the MC in the lower E_T^{miss} region, and no trigger efficiency correction is applied elsewhere.

The WH and ZH signal processes are modelled using MC events produced by the Pythia 18 event generator, interfaced with the MRST modified-leading-order (LO*) 19 parton distribution functions (PDFs), using the AUET2B tune 20 for the parton shower, hadronization and multiple parton interactions. The total cross sections for these channels, as well as their corresponding uncertainties, are taken from the LHC Higgs Cross Section Working Group report 21. Differential next-to-leading order (NLO) electroweak corrections as a function of the W or Z transverse momentum have also been applied 12, 22. The Higgs boson decay branching ratios are calculated with HDECAY 23.

The background processes are modelled with several different event generators. The Powheg 24–26 generator, in combination with MSTW 2008 NLO PDFs 27 and interfaced with the Pythia program for the parton shower and hadronization, is used to simulate $W^+ \geq 1b$ jet events. The Sherpa generator 28 is used to simulate $Z^+\geq 1b$ jet and $Z^+\geq 1c$ jet events. The Alpgen generator 29 interfaced with the Herwig program 30 is used to simulate $W^+\geq 1c$ jet, $W^+\geq 1$ light jet (i.e. not a c or b jet) and $Z^+\geq 1$ light jet events. The above background simulations include γ^* production and Z/γ^* interference where appropriate. The MC@NLO generator 31, using CTEQ NLO PDFs 32 and interfaced to Herwig, is used for the production of top-quarks (single top and top-quark pair production). The Herwig generator, is used to simulate the diboson (ZZ, WZ and WW) samples. The Herwig generator uses the AUET2 tune 33 for the parton shower and hadronization model, relies on MRST LO* PDFs (except for top production) and is in all cases interfaced to Jimmy 34 for the modelling of multiple parton interactions. MC samples are passed through the full ATLAS detector simulation 35 based on the Geant4 36 program.
4. Reconstruction and Identification of Physics Objects

Events are required to have at least one reconstructed primary vertex with three or more associated tracks with $p_T > 0.4$ GeV in the inner detector. If more than one vertex is reconstructed, the primary vertex is chosen as the one with the highest sum of the squares of the transverse momenta of all its associated tracks.

The charged leptons that are used to reconstruct the vector boson candidate are required to satisfy $p_T > 20$ GeV in the $ZH \rightarrow t\bar{t}bb$ channel, while this cut is increased to $p_T > 25$ GeV in the $WH \rightarrow t\nu bb$ channel in order to be above the trigger threshold, and maintain a high trigger efficiency. In both cases, the leptons must be central ($|\eta| < 2.47$ for electrons and $|\eta| < 2.5$ for muons) and have a matching track in the inner detector that is consistent with originating from the primary vertex.

Electron candidates are reconstructed from energy clusters in the electromagnetic calorimeter and are required to pass identification criteria based on the shower shape. Central electrons must have an energy clustered in the electromagnetic calorimeter using the anti-k_t algorithm [38] with a radius parameter of 0.4. Jet energies are calibrated using p_T- and η-dependent correction factors based on MC simulation and validated with data [39]. A further correction is applied when calculating the di-jet invariant mass, as described in section 5 below. The contribution from jets originating from other collisions in the same bunch crossing is reduced by requiring that at least 75% of the summed transverse momentum of inner detector tracks (with $p_T > 0.4$ GeV) associated with the jet are compatible with originating from the primary vertex. Furthermore, a jet is required to have no identified electron within $\Delta R \leq 0.4$. Only jets with $p_T > 25$ GeV and within the acceptance of the inner detector ($|\eta| < 2.5$) are used to reconstruct Higgs boson candidates. A looser selection, for additional jets with $p_T > 20$ GeV and $|\eta| < 4.5$, is used to suppress additional hadronic activity in the $WH \rightarrow t\nu bb$ channel.

Jets which originate from b quarks can be distinguished from other jets by the relatively long lifetime of hadrons containing b quarks. Such jets are primarily identified (“b-tagged”) by reconstructing one or more secondary decay vertices from tracks within the jet, or by combining the distances of closest approach to the primary event vertex (impact parameters) of tracks in the jet [40, 42]. This information is combined into a single discriminant w, such that a jet with higher w is more likely to be a b jet. A selection cut on w is applied, resulting in an efficiency of about 70% for identifying true b jets, with a c jet rejection factor of about 5, and a light jet rejection factor of about 130, evaluated in simulated $t\bar{t}$ events.

The missing transverse momentum and its magnitude are measured from the vector sum of the transverse momentum vectors associated with clus-
ters of energy reconstructed in the calorimeters with $|\eta| < 4.9$. A correction is applied to the energy of those clusters that are associated with a reconstructed physical object (jet, electron, τ-lepton, photon). Reconstructed muons are also included in the sum, and any calorimeter energy deposits associated with them are excluded. To supplement the calorimeter-based definition of E_T^{miss} in the $ZH \to \nu\bar{b}b$ channel, the track-based missing transverse momentum, p_T^{miss}, is calculated from the vector sum of the transverse momenta of inner detector tracks associated with the primary vertex.

5. Event Selection

Events in the $ZH \to \ell^+\ell^-\bar{b}b$ channel are required to contain exactly two same-flavour leptons. The two leptons must be oppositely charged in the case of muons. This is not required for electrons since energy losses from showering in material in the inner detector lead to a higher charge misidentification probability. The invariant mass of the lepton pair must be in the range $83 \text{ GeV} < m_{\ell\ell} < 99 \text{ GeV}$. A requirement of $E_T^{\text{miss}} < 50 \text{ GeV}$ reduces the background from top-quark production. Events in the $WH \to \ell\nu b b$ channel are required to contain a single charged lepton and $E_T^{\text{miss}} > 25 \text{ GeV}$. A requirement on the transverse mass of $m_{\ellT} > 40 \text{ GeV}$ is imposed to suppress the multijet background.

The $ZH \to \nu\bar{b}b$ selection requires $E_T^{\text{miss}} > 120 \text{ GeV}$. A requirement of $p_T^{V}\ell > 30 \text{ GeV}$ is imposed to suppress events with poorly measured E_T^{miss}. Cuts on the difference in azimuthal angle between the directions of E_T^{miss} and $p_T^{V}\ell$, $\Delta \phi(E_T^{\text{miss}}, p_T^{V}\ell) < \pi/2$, and the difference in azimuthal angle between E_T^{miss} and the nearest jet $\Delta \phi(E_T^{\text{miss}}, \text{jet}) > 1.8$ are applied to reduce the multijet background, which is dominated by one or more jets being mismeasured by the calorimeter.

The transverse momentum of the vector boson, p_T^V, is reconstructed from the two leptons in the $ZH \to \ell^+\ell^-\bar{b}b$ channel, from the lepton and E_T^{miss} in the $WH \to \ell\nu b b$ channel and from E_T^{miss} in the $ZH \to \nu\bar{b}b$ channel.

Events in all channels are required to contain exactly two b-tagged jets, of which one must have $p_T > 45 \text{ GeV}$ and the other $p_T > 25 \text{ GeV}$. If p_T^V is less than 200 GeV the two b-tagged jets are required to have a separation of $\Delta R > 0.7$, to reduce W+jet and Z+jet backgrounds. Additionally, in the $ZH \to \nu\bar{b}b$ channel a cut on the separation between the two jets of $\Delta R < 2.0$ ($\Delta R < 1.7$) for $p_T^V < 160 \text{ GeV}$ ($p_T^V > 160 \text{ GeV}$) is applied to reduce the multijet background. Events in the $ZH \to \ell^+\ell^-\bar{b}b$ channel may contain additional non-b-tagged jets, while, in the $WH \to \ell\nu b b$ and $ZH \to \nu\bar{b}b$ channels, events with additional jets are rejected, to further suppress top-quark background. In the $WH \to \ell\nu b b$ analysis, where the top-quark background is dominant, events containing additional jets with $|\eta| < 4.5$ and $p_T > 20 \text{ GeV}$ are rejected, while in the $ZH \to \nu\bar{b}b$ channel the selection is restricted to jets with $|\eta| < 2.5$ and $p_T > 25 \text{ GeV}$.

In the $ZH \to \nu\bar{b}b$ analysis, further cuts are applied on the azimuthal angle between E_T^{miss} and the reconstructed transverse momentum of the $b\bar{b}$ system, $\Delta \phi(b\bar{b}, E_T^{\text{miss}})$, to further reject multijet background. The cuts are $\Delta \phi(b\bar{b}, E_T^{\text{miss}}) > 2.7$ for $120 < p_T^V < 160 \text{ GeV}$ and $\Delta \phi(b\bar{b}, E_T^{\text{miss}}) > 2.9$ for $p_T^V \geq 160 \text{ GeV}$.

A search for $H \to b\bar{b}$ decays is performed by looking for an excess of events above the background expectation in the invariant mass distribution of the b-jet pair (m_{bb}). The value of the reconstructed m_{bb} is scaled by a factor of 1.05, obtained from MC-based studies, to account on average for e.g. losses due to soft muons and neutrinos from b and c hadron decays. To increase the sensitivity of the search, this distribution is examined in bins of p_T^V.

As the expected signal is characterized by a relatively hard p_T^V spectrum, the signal to background ratio increases with p_T^V. The and $ZH \to \ell^+\ell^-\bar{b}b$ and $WH \to \ell\nu b b$ channels are examined in four bins of the transverse momentum of the reconstructed W or Z boson, given by: $p_T^V < 50 \text{ GeV}$, $50 \leq p_T^V < 100 \text{ GeV}$, $100 \leq p_T^V < 200 \text{ GeV}$ and $p_T^V \geq 200 \text{ GeV}$. In the $ZH \to \nu\bar{b}b$ search three bins are defined: $120 < p_T^V < 160 \text{ GeV}$, $160 \leq p_T^V < 200 \text{ GeV}$ and $p_T^V \geq 200 \text{ GeV}$. The expected signal to background ratios for a Higgs boson signal with $m_H = 120 \text{ GeV}$ vary from about 1% in the lowest p_T^V bins to about 10-15% in the highest p_T^V bins. For this Higgs boson mass, 5.0% and 2.4% of the $ZH \to \ell^+\ell^-\bar{b}b$ and $WH \to \ell\nu b b$ events are expected to pass the respective analysis selections,

\[m_{\ell T} = \sqrt{2p_T^\ell p_T^V (1 - \cos(\phi^\ell - \phi^V))}, \]

where $p_T^\ell = E_T^{\text{miss}}$.\footnote{The transverse mass ($m_{\ell T}$) is defined from the transverse momenta and the azimuthal angles of the charged lepton (p_T^ℓ and ϕ^ℓ) and neutrino (p_T^V and ϕ^V): $m_{\ell T} = \sqrt{2p_T^\ell p_T^V (1 - \cos(\phi^\ell - \phi^V))}$, where $p_T^\ell = E_T^{\text{miss}}$.}
with negligible contributions from other final states. On the other hand, the $ZH \rightarrow \nu\bar{b}b$ analysis has a non-negligible contribution from $WH \rightarrow \ell\nu b\bar{b}$: 2.1% of the $ZH \rightarrow \nu\bar{b}b$ signal and 0.2% of the $WH \rightarrow \ell\nu b\bar{b}$ signal are expected to pass the analysis selection.

6. Background Estimation

Backgrounds are estimated using a combination of data-driven and MC-based techniques. Significant sources of background include top, $W+\text{jet}$, $Z+\text{jet}$, diboson and multijet production. The dominant background in the $ZH \rightarrow \ell^+\ell^-b\bar{b}$ channel is $Z+\text{jet}$ production. In the $WH \rightarrow \ell\nu b\bar{b}$ channel both the top-quark and $W+\text{jet}$ production are important. In the $ZH \rightarrow \nu\bar{b}b$ channel, there is a significant contribution from top, $W+\text{jet}$, $Z+\text{jet}$ and diboson production. Multijet production is a negligible background, except for the $WH \rightarrow \ell\nu b\bar{b}$ channel.

The flavour composition of the $W+\text{jet}$ and $Z+\text{jet}$ backgrounds is determined partially from data. The shapes of the $m_{b\bar{b}}$ distribution of the top, $W+\text{jet}$ and $Z+\text{jet}$ backgrounds are taken from MC simulation, with the respective normalizations being determined from data. The ratio of single-top to top-pair production is taken from NLO QCD computations [45]. Multijet backgrounds are estimated primarily from data. The diboson backgrounds are determined entirely from data. The dijet composition is determined from MC simulation with cross sections normalized to NLO QCD computations [16, 17].

The flavour composition of the $W+\text{jet}$ and $Z+\text{jet}$ samples is determined using templates produced from three exclusive MC samples containing at least one true b jet, at least one true c jet, or only light jets. The relative normalizations of the three components are adjusted by fitting the distribution of the b-tagging discriminating variable w found in MC simulation to the distribution found in control data samples dominated by $W+\text{jet}$ and $Z+\text{jet}$ events. Once the relative normalizations of the flavour components have been fixed, the overall normalizations are determined from data in a separate step.

Sidebands in the $m_{b\bar{b}}$ distribution, defined by selecting events with $m_{b\bar{b}} < 80$ GeV or 150 GeV $< m_{b\bar{b}} < 250$ GeV along with the standard event selection, are used to normalize the $Z+\text{jet}$, $W+\text{jet}$ and top backgrounds.

In addition, two control regions which are dominated by top-quark production are used to further constrain the normalization of the top background. The ZH top control region selects events from the sidebands of the Z boson mass peak: $m_Z \in [60 \text{ GeV}, 76 \text{ GeV}] \cup [106 \text{ GeV}, 150 \text{ GeV}]$ with $E_T^{\text{miss}} > 50$ GeV, while the WH top control region selects $W+3$ jet events with two b-tagged jets.

The normalizations of the $Z+\text{jet}$, $W+\text{jet}$ and top-quark backgrounds are determined in the $ZH \rightarrow \ell^+\ell^-b\bar{b}$ or $WH \rightarrow \ell\nu b\bar{b}$ channels, by simultaneous fits to the sidebands of the $m_{b\bar{b}}$ distributions, and either the ZH or WH top control regions defined above. In the WH and control fit, the normalizations of the top-quark, the $W+2$ jet and the $W+3$ jet distributions are varied. In the ZH sideband fit, the normalizations of the top-quark and $Z+\text{jet}$ backgrounds are left floating. The normalizations of the remaining sub-leading backgrounds are left fixed in the fit at their expectation values from Monte Carlo predictions, except for multi-jet production which is estimated from data. The relative data to MC normalizations for top-quark backgrounds are determined in the $ZH \rightarrow \ell^+\ell^-b\bar{b}$ or $WH \rightarrow \ell\nu b\bar{b}$ sideband fits. The normalization of the top-quark background in the $ZH \rightarrow \ell^+\ell^-b\bar{b}$ signal region is based on the ZH sideband and control region fit result, while the normalization of the same background in the $ZH \rightarrow \ell^+\ell^-b\bar{b}$ and $ZH \rightarrow \nu\bar{b}b$ signal regions is based on the WH sideband and control region fit result. Monte Carlo predictions are used to extrapolate the $Z+\text{jet}$ ($W+\text{jet}$) normalizations determined in the $ZH \rightarrow \ell^+\ell^-b\bar{b}$ ($WH \rightarrow \ell\nu b\bar{b}$) sidebands to the signal regions of all three channels. The normalization factors for $W+\text{jet}$ and $Z+\text{jet}$ range from 0.8 to 2.4 depending on jet flavour and multiplicity. The MC to data normalizations factors are applied to several additional control samples with selections to enhance the Z, W or top-quark contributions. After these corrections are applied, good agreement is found with the data in both shape and normalization within the statistical and systematic uncertainties.

The backgrounds from multijet events are estimated entirely from collision data. For the $ZH \rightarrow \ell^+\ell^-b\bar{b}$ channel, the multijet background normalization is determined from the sidebands of the $m_{\ell\ell}$ distribution in events containing at least two jets, and is found to contribute less than 1% and is therefore neglected. Multijet E_T^{miss} templates for the $WH \rightarrow \ell\nu b\bar{b}$ channel are obtained by selecting events with lepton candidates failing the charged lepton analysis selection, but satisfying looser lep-
ton selections. The normalization is determined by fitting these templates to the E_T^{miss} distribution. A 30% uncertainty is determined from a comparison between the normalized templates and the data in a multijet-dominated control region, defined by requiring $E_T^{miss} < 25$ GeV and $m_T < 40$ GeV.

In the $ZH \rightarrow \nu\nu b\bar{b}$ channel, the multijet background is estimated using three control regions defined using two variables, $\Delta \phi(E_T^{miss},p_T^{miss})$ and $\text{min}(\Delta \phi(E_T^{miss},\text{jets}))$, which showed no appreciable correlation. The ratio of events with $\Delta \phi(E_T^{miss},\text{jet}) > 1.8$ to those with $\text{min}(\Delta \phi(E_T^{miss},\text{jet})) < 1.8$ is determined for events with $\Delta \phi(E_T^{miss},p_T^{miss}) > \pi/2$. This ratio is then applied to events with $\Delta \phi(E_T^{miss},p_T^{miss}) < \pi/2$ to estimate the multijet background in the signal region. Upper estimates of the multijet contamination in the signal region are found to be 0.85, 0.04 and 0.26 events for $120 < p_T^V < 160$ GeV, $160 < p_T^V < 200$ GeV and $p_T^V \geq 200$ GeV, respectively. The accuracy of the estimate is limited by the number of events in the control regions.

The distribution of $m_{\ell\ell}$ in the $ZH \rightarrow \ell^+\ell^- b\bar{b}$ channel is shown in Fig. 1(a) after all analysis requirements have been applied (except for the di-lepton mass cut), including the requirement of two b-tagged jets. The signal region is seen to be dominated by Z+jet with smaller contributions from top-quark and diboson production. The E_T^{miss} distribution in the $WH \rightarrow \ell\nu b\bar{b}$ channel is shown in Fig. 1(b) after all requirements, except for the m_T and E_T^{miss} cuts. The signal region is seen to have large contributions from top-quark production and W+jet, with smaller contributions from the multijet background, Z+jet and diboson production. Figures 1(c) and 1(d) show the $\Delta \phi(E_T^{miss},p_T^{miss})$ and $\text{min}(\Delta \phi(E_T^{miss},\text{jet}))$ distributions for the $ZH \rightarrow \nu\nu b\bar{b}$ channel, after all requirements except for those applied to these variables. The multijet background shape in Figure 1(c) is obtained from data events with $\text{min}(\Delta \phi(E_T^{miss},\text{jet})) < 0.4$, after subtracting the remaining backgrounds, and normalized to the data in the region defined by $\Delta \phi(E_T^{miss},p_T^{miss}) > \pi/2$. In Figure 1(d), the multijet shape is obtained from events with $\Delta \phi(E_T^{miss},p_T^{miss}) > \pi/2$ and normalized to data events with $\text{min}(\Delta \phi(E_T^{miss},\text{jet})) < 0.4$.

It can be seen that the requirements on these variables effectively reduce the multijet background. The signal region has large contributions from Z+jet and top, with smaller contributions from the W+jet, diboson production and multijet backgrounds. For all distributions, the data are reasonably well described by MC simulation and the multijet background, which was determined from data.

7. Systematic Uncertainties

The sources of systematic uncertainty considered are those affecting the various efficiencies (reconstruction, identification, selection), as well as the momentum or energy of physics objects, the normalization and shape of the m_{bb} distribution of the signal and background processes, and the integrated luminosity. Among these, the leading instrumental uncertainties for all channels are related to the uncertainty on the b-tagging efficiency, which varies between 5% and 10% depending on the b-tagged jet p_T, and the jet energy scale (JES) for b-tagged jets which varies between 3% and 4% depending on the jet p_T and η. The p_T dependence of the b-tagging efficiency has been considered, based on the full covariance matrix of the measured b-tagging efficiency in jet p_T intervals.

The uncertainty on the flavour composition of the Z+jet and W+jet background is estimated by varying the fraction of Z+c-jets and W+c-jets by 30% as derived from the fit described in Section 6.

The uncertainties on the SM Higgs boson inclusive cross sections are evaluated by varying the factorization and renormalization scales, and by taking into account the uncertainties on the PDFs, on the strong coupling constant and on the $H \rightarrow bb$ branching fraction. These uncertainties are estimated to be $\approx 4\%$ for both WH and ZH production and are treated according to the recommendations given in Refs. [21, 49, 50]. Additional uncertainties are considered, as a function of the transverse momentum of the W and Z bosons, which range from $\approx 4\%$ to $\approx 8\%$, depending on channel and on the p_T^W or p_T^Z interval. These correspond to the difference between the inclusive and differential electroweak corrections [12, 22], and to differences in acceptance between the Pythia and Powheg+Herwig generators. The latter arise mainly from the perturbative QCD model uncertainty caused by rejecting events with three or more jets in the $WH \rightarrow \ell\nu b\bar{b}$ and $ZH \rightarrow \nu\nu b\bar{b}$ analyses.

The uncertainties on the normalizations of the Z+jet, W+jet and top-quark backgrounds are taken from the statistical uncertainties on the fits to control regions and m_{bb} sidebands (see Section 6) and from variations of the nominal fit result induced...
by the remaining sources of systematic uncertainty. The resulting normalization uncertainties are applied to the \(ZH \rightarrow \ell^+\ell^-bb \) channel. A correlation between the normalizations of the \(W+\text{jet} \) and top-quark backgrounds is introduced by the simultaneous fit to the \(m_{bb} \) sidebands and the \(WH \) top control region in the \(WH \rightarrow \ell\nu bb \) channel. This correlation is taken into account when transferring to the \(ZH \rightarrow \nu\bar{\nu}bb \) channel the uncertainties on the normalization of these backgrounds.

The background normalization corrections are determined in an inclusive way, using all selected events in the \(ZH \rightarrow \ell^+\ell^-bb \) and \(WH \rightarrow \ell\nu bb \) channels, and the shape of the \(m_{bb} \) and \(p_T^\ell \) distributions are in each case taken from the MC simulation. Therefore, a possible mismodelling of the underlying \(m_{bb} \) and \(p_T^\ell \) distributions, as predicted by the MC generators, is also considered. An uncertainty due to the shape of the \(p_T^\ell \) distribution for the \(Z+\text{jet} \) background in the \(ZH \rightarrow \ell^+\ell^-bb \) channel is estimated by finding variations of the MC \(p_T^\ell \) distribution in the \(m_{bb} \) sidebands which cover any differences between MC simulation and data. The \(m_{bb} \) distribution of simulated \(Z+\text{jet} \) events is then reweighted according to these variations, to estimate the effect on the final results. An uncertainty due to the modelling of \(W+\text{jet} \) in the \(WH \rightarrow \ell\nu bb \) channel is estimated by reweighting...
the p_T^V and $m_{b\bar{b}}$ distributions of simulated W+jet events by variations motivated by a comparison of different theoretical models (POWHEG+PYTHIA, POWHEG+HERWIG, AMC@NLO+HERWIG, and ALCGEN+HERWIG). Theoretical uncertainties of 11% and 15% are applied to the normalization of the diboson samples and the single-top sample, respectively. The normalization uncertainty for the multijet background is taken to be 30% for $WH \to \ell\nu b\bar{b}$, as described in Section 6. For $ZH \to \ell^+\ell^-bb$ and $ZH \to \nu\nu b\bar{b}$ this background is found to be negligible. The uncertainty in the integrated luminosity has been estimated to be 3.9% [15,16]. This uncertainty is applied only to backgrounds for which the normalization is not taken directly from a comparison between data and MC simulation. Where it is applied, this systematic uncertainty is assumed to be correlated among the different backgrounds.

8. Results

The analysis is performed for five Higgs boson mass hypotheses between 110 GeV and 130 GeV and the signal hypothesis is tested based on a fit to the invariant mass distribution of the b-jet pair, $m_{b\bar{b}}$, in the signal region ($80 < m_{b\bar{b}} < 150$ GeV). The $m_{b\bar{b}}$ distribution is shown in Figs. 2–4 for each channel, separately for different ranges of p_T^V. The data distributions are overlaid with the expectations from the MC simulation and data-driven backgrounds. Within the experimental uncertainty, the data show no excess over the background expectation. The signal shape is dominated by the experimental resolution on the jet energy measurement. The $m_{b\bar{b}}$ resolution for signal events is about 16 GeV on average.

The number of events in the signal region selected in data is shown in Table 1 for each channel. The expected number of signal events for $m_H = 120$ GeV is also shown, along with the corresponding estimated number of background events. Also shown are the relative systematic uncertainties on the signal and total background yields arising from the following sources: b-tagging efficiency and mis-tag rate, background normalization, jet and E_{T} miss uncertainties, lepton reconstruction and identification, integrated luminosity, overlaid collision events (pileup), and uncertainties on the MC predictions (theory). Uncertainties on the shape of the $m_{b\bar{b}}$ distribution are also taken into account in the fit.

For each Higgs boson mass hypothesis, a one-sided upper limit is placed on the ratio of the Higgs boson production cross section to its SM value, $\mu = \sigma/\sigma_{SM}$, at the 95% confidence level (CL). The exclusion limits are derived from the CL S treatment of the p-values computed with the profile likelihood ratio \mathcal{L}, as implemented in the RooStats program [54], using the binned distribution of $m_{b\bar{b}}$. The systematic uncertainties are treated by making the expected $m_{b\bar{b}}$ templates and sample normalizations dependent on additional fit parameters (“nuisance parameters”), one for each systematic uncertainty, which are then constrained with Gaussian terms within their expected uncertainties. The dependence of the $m_{b\bar{b}}$ shapes on the nuisance parameters is described with bin-by-bin linear interpolation between the corresponding $+1\sigma$ or -1σ variations and the nominal case.

The resulting exclusion limits are listed in Table 2 for each channel and for the statistical combination of the three channels. They are also plotted in Fig. 5. The limits are expressed as the multiple of the SM Higgs boson production cross section to its SM value, μ. The observed upper limits range between 7.7 and 10.3 for the $ZH \rightarrow \ell^+\ell^-bb$ channel, between 3.3 and 5.9 for the $WH \rightarrow \ell\nu b\bar{b}$ channel and between 3.7 and 10.3 for the $ZH \rightarrow \nu\nu b\bar{b}$ channel, depending on the Higgs boson mass. The combined exclusion limit for the three channels together ranges from 2.5 to 5.5 times the SM cross section, depending on the Higgs boson mass. The limits include systematic uncertainties, the largest of which arise from the top, Z+jet, and W+jet background estimates, the b-tagging efficiency, and the jet energy scale. The systematic uncertainties weaken the limits by 25–40% depending on the search channel.

9. Summary

This Letter presents the results of a direct search by ATLAS for the Standard Model Higgs boson produced in association with a W or Z boson. The following decay channels are considered: $ZH \rightarrow \ell^+\ell^-bb$, $WH \rightarrow \ell\nu b\bar{b}$ and $ZH \rightarrow \nu\nu b\bar{b}$, where ℓ corresponds to an electron or a muon. The mass range $110 < m_H < 130$ GeV is examined for five Higgs boson mass hypotheses separated by 5 GeV steps. The three channels use datasets corresponding to 4.6–4.7 fb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV. No significant excess of events above the estimated
Table 1: Number of data, simulated signal, and estimated background events in each bin of \(p_T \) for the \(WH \rightarrow \ell \nu b \bar{b} \) and \(ZH \rightarrow \ell \ell b \bar{b} \) channels. The signal corresponds to a Higgs boson mass of \(m_H = 120 \text{ GeV} \). The number of events is shown for the full signal region (\(m_{b \bar{b}} \in [80 \text{ GeV}, 150 \text{ GeV}] \)). Background sources found to be negligible are signalled with “–”. Relative systematic uncertainties on the hypothesized signal and estimated total background are shown.

<table>
<thead>
<tr>
<th>bin</th>
<th>(ZH \rightarrow \ell^+ \ell^- b \bar{b}) (p_T^Y) [GeV]</th>
<th>(WH \rightarrow \ell \nu b \bar{b}) (p_T^Y) [GeV]</th>
<th>(ZH \rightarrow \nu \bar{\nu} b \bar{b}) (p_T^Y) [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-50</td>
<td>1.8 \pm 0.2</td>
<td>4.1 \pm 0.3</td>
<td>4.6 \pm 0.4</td>
</tr>
<tr>
<td>50-100</td>
<td>5.1 \pm 0.6</td>
<td>5.7 \pm 0.7</td>
<td>5.9 \pm 0.8</td>
</tr>
<tr>
<td>100-200</td>
<td>4.2 \pm 0.3</td>
<td>4.0 \pm 0.3</td>
<td>3.9 \pm 0.3</td>
</tr>
<tr>
<td>>200</td>
<td>2.0 \pm 0.2</td>
<td>2.1 \pm 0.2</td>
<td>2.0 \pm 0.1</td>
</tr>
</tbody>
</table>

Components of the relative systematic uncertainties of the background [%]

- b-tag eff: 6.4
- BG norm: 3.9
- jets/\(E_{miss}^T \): 4.6
- leptons: 3.9
- luminosity: 3.9
- pileup: 3.9
- theory: 3.9

Components of the relative systematic uncertainties of the signal [%]

- b-tag eff: 6.4
- jets/\(E_{miss}^T \): 4.6
- leptons: 3.9
- luminosity: 3.9
- pileup: 3.9
- theory: 3.9

Table 2: The observed and expected 95% CL exclusion limits on the Higgs boson cross section for each channel, expressed in multiples of the SM cross section as a function of the hypothesized Higgs boson mass. The last two columns show the combined exclusion limits for the three channels.

<table>
<thead>
<tr>
<th>Mass [GeV]</th>
<th>(ZH \rightarrow \ell^+ \ell^- b \bar{b}) Obs.</th>
<th>(WH \rightarrow \ell \nu b \bar{b}) Obs.</th>
<th>(ZH \rightarrow \nu \bar{\nu} b \bar{b}) Obs.</th>
<th>Combined Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>7.7</td>
<td>6.0</td>
<td>3.3</td>
<td>4.2</td>
</tr>
<tr>
<td>115</td>
<td>7.7</td>
<td>6.2</td>
<td>4.0</td>
<td>4.9</td>
</tr>
<tr>
<td>120</td>
<td>10.4</td>
<td>8.0</td>
<td>4.9</td>
<td>5.9</td>
</tr>
<tr>
<td>125</td>
<td>11.6</td>
<td>9.1</td>
<td>5.5</td>
<td>7.5</td>
</tr>
<tr>
<td>130</td>
<td>14.4</td>
<td>11.6</td>
<td>5.9</td>
<td>9.2</td>
</tr>
</tbody>
</table>

9
backgrounds is observed. Upper limits on Higgs boson production, at the 95% confidence level, of 2.5 to 5.5 times the Standard Model cross section are obtained in the mass range 110 − 130 GeV. The expected exclusion limits range between 2.5 and 4.9 for the same mass interval.

10. Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COFECYT, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and RosATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

[7] Combined CDF and D0 Upper Limits on Standard Model Higgs Boson Production with up to 8.6 fb−1 of Data. arXiv:1107.5518

Figure 2: The invariant mass $m_{b\bar{b}}$ for $ZH\rightarrow \ell^+\ell^-b\bar{b}$ shown for the different p_T bins: (a) $0 < p_T < 50$ GeV, (b) $50 \leq p_T < 100$ GeV, (c) $100 \leq p_T < 200$ GeV, (d) $p_T \geq 200$ GeV and (e) for the combination of all p_T bins. The signal distributions are shown for $m_H = 120$ GeV and are enhanced by a factor of five for visibility. The shaded area indicates the total uncertainty on the background prediction. For better visibility, the signal histogram is stacked onto the total background, unlike the various background components which are simply overlaid in the figure.
Figure 3: The invariant mass m_{bb} for $WH \rightarrow ℓνbb$ shown for the different p_T^W bins: (a) $0 < p_T^W < 50$ GeV, (b) $50 \leq p_T^W < 100$ GeV, (c) $100 \leq p_T^W < 200$ GeV, (d) $p_T^W \geq 200$ GeV and (e) for the combination of all p_T^W bins. The signal distributions are shown for $m_H = 120$ GeV and are enhanced by a factor of five for visibility. The shaded area indicates the total uncertainty on the background prediction. For better visibility, the signal histogram is stacked onto the total background, unlike the various background components which are simply overlaid in the figure.
Figure 4: The invariant mass m_{bb} for $ZH \rightarrow \nu \bar{\nu} b \bar{b}$ shown for the different p_T^Z bins: (a) $120 < p_T^Z < 160$ GeV, (b) $160 \leq p_T^Z < 200$ GeV, (c) $p_T^Z \geq 200$ GeV and (d) for the combination of all p_T^Z bins. The signal distributions are shown for $m_H = 120$ GeV and are enhanced by a factor of five for visibility. The shaded area indicates the total uncertainty on the background prediction. For better visibility, the signal histogram is stacked onto the total background, unlike the various background components which are simply overlaid in the figure.
Figure 5: Expected (dashed) and observed (solid line) exclusion limits for (a) the $ZH \rightarrow \ell^+\ell^- b\bar{b}$, (b) $WH \rightarrow \ell\nu b\bar{b}$ and (c) $ZH \rightarrow \nu\bar{\nu} b\bar{b}$ channels expressed as the ratio to the SM Higgs boson cross section, using the profile-likelihood method with CL_s. The dark (green) and light (yellow) areas represent the 1σ and 2σ ranges of the expectation in the absence of a signal. (d) shows the 95% confidence level exclusion limits obtained from the combination of the three channels.
The ATLAS Collaboration

L. Živković, V.V. Zmouchko,
G. Zobernig, A. Zoccoli,
M. zur Nedden, V. Zutshi, L. Zwalinski

1 Physics Department, SUNY Albany, Albany NY, United States of America
2 Department of Physics, University of Alberta, Edmonton AB, Canada
3 (a)Department of Physics, Ankara University, Ankara; (b)Department of Physics, Dumlupınar University, Kutahya; (c)Department of Physics, Gazi University, Ankara; (d)Division of Physics, TOBB University of Economics and Technology, Ankara; (e)Turkish Atomic Energy Authority, Ankara, Turkey
4 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
6 Department of Physics, University of Arizona, Tucson AZ, United States of America
7 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 (a)Institute of Physics, University of Belgrade, Belgrade; (b)Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 (a)Department of Physics, Bogazici University, Istanbul; (b)Division of Physics, Dogus University, Istanbul; (c)Department of Physics Engineering, Gaziantep University, Gaziantep; (d)Department of Physics, Istanbul Technical University, Istanbul, Turkey
19 (a)INFN Sezione di Bologna; (b)Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, University of Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston MA, United States of America
22 Department of Physics, Brandeis University, Waltham MA, United States of America
23 (a)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b)Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c)Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d)Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
25 (a)National Institute of Physics and Nuclear Engineering, Bucharest; (b)University Politehnica Bucharest, Bucharest; (c)West University in Timisoara, Timisoara, Romania
26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
31 (a)Departamento de Física, Pontifícia Universidad Católica de Chile, Santiago; (b)Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32 (a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b)Department of Modern Physics, University of Science and Technology of China, Anhui; (c)Department of Physics, Nanjing University, Jiangsu; (d)School of Physics, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université et Université Blaise Pascal and CNRS/IN2P3, Aubière Cedex, France
34 Nevis Laboratory, Columbia University, Irvington NY, United States of America
35 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
36 (a)INFN Gruppo Collegato di Cosenza; (b)Dipartimento di Fisica, Università della Calabria, Arcavàtia di Rende, Italy
AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

Physics Department, Southern Methodist University, Dallas TX, United States of America

Physics Department, University of Texas at Dallas, Richardson TX, United States of America

DESY, Hamburg and Zeuthen, Germany

Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 32700 Wiener Neustadt, Austria

INFN Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany

Section de Physique, Université de Genève, Geneva, Switzerland

INFN Sezione di Genova; Dipartimento di Fisica, Università di Genova, Genova, Italy

E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

Department of Physics, Hampton University, Hampton VA, United States of America

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America

Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Physics, Indiana University, Bloomington IN, United States of America

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City IA, United States of America

Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Department of Physics, Kyushu University, Fukuoka, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, United Kingdom

INFN Sezione di Lecce; Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

Department of Physics, Royal Holloway University of London, Surrey, United Kingdom

Department of Physics and Astronomy, University College London, London, United Kingdom

Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

Fysiska institutionen, Lunds universitet, Lund, Sweden
Sweden
80 Department de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
81 Institut für Physik, Universität Mainz, Mainz, Germany
82 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
83 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
84 Department of Physics, University of Massachusetts, Amherst MA, United States of America
85 Department of Physics, McGill University, Montreal QC, Canada
86 School of Physics, University of Melbourne, Victoria, Australia
87 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
88 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
89 (a)INFN Sezione di Milano; (b)Dipartimento di Fisica, Università di Milano, Milano, Italy
90 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
92 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
93 Group of Particle Physics, University of Montreal, Montreal QC, Canada
94 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
95 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
96 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
97 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
99 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
100 Nagasaki Institute of Applied Science, Nagasaki, Japan
101 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
102 (a)INFN Sezione di Napoli; (b)Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
103 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
104 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
105 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
106 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
107 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
108 Department of Physics, New York University, New York NY, United States of America
109 Ohio State University, Columbus OH, United States of America
110 Faculty of Science, Okayama University, Okayama, Japan
111 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
112 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
113 Palacký University, RCPTM, Olomouc, Czech Republic
114 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
115 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
116 Graduate School of Science, Osaka University, Osaka, Japan
117 Department of Physics, University of Oslo, Oslo, Norway
118 Department of Physics, Oxford University, Oxford, United Kingdom
119 (a)INFN Sezione di Pavia; (b)Dipartimento di Fisica, Università di Pavia, Pavia, Italy
120 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
121 Petersburg Nuclear Physics Institute, Gatchina, Russia
122 (a)INFN Sezione di Pisa; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
123 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
Antonio Narino, Bogota, Colombia

163 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

164 (a) INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

165 Department of Physics, University of Illinois, Urbana IL, United States of America

166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

168 Department of Physics, University of British Columbia, Vancouver BC, Canada

169 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

170 Department of Physics, University of Warwick, Coventry, United Kingdom

171 Waseda University, Tokyo, Japan

172 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

173 Department of Physics, University of Wisconsin, Madison WI, United States of America

174 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

175 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

176 Department of Physics, Yale University, New Haven CT, United States of America

177 Yerevan Physics Institute, Yerevan, Armenia

178 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

(a) Also at Laboratorio de Instrumentacion e Fisica Experimental de Particulas - LIP, Lisboa, Portugal

(b) Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal

(c) Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

(d) Also at TRIUMF, Vancouver BC, Canada

(e) Also at Department of Physics, California State University, Fresno CA, United States of America

(f) Also at Novosibirsk State University, Novosibirsk, Russia

(g) Also at Fermilab, Batavia IL, United States of America

(h) Also at Department of Physics, University of Coimbra, Coimbra, Portugal

(a) Also at Department of Physics, UASLP, San Luis Potosí, Mexico

(b) Also at Università di Napoli Parthenope, Napoli, Italy

(c) Also at Institute of Particle Physics (IPP), Canada

(d) Also at Department of Physics, Middle East Technical University, Ankara, Turkey

(e) Also at Louisiana Tech University, Ruston LA, United States of America

(f) Also at Dep Física and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

(g) Also at Department of Physics and Astronomy, University College London, London, United Kingdom

(h) Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada

(i) Also at Department of Physics, University of Cape Town, Cape Town, South Africa

(j) Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

(k) Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany

(l) Also at Manhattan College, New York NY, United States of America

(m) Also at School of Physics, Shandong University, Shandong, China

(n) Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

(o) Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China

(p) Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan

(q) Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy

(r) Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France

(s) Also at Section de Physique, Université de Genève, Geneva, Switzerland

(t) Also at Dipartimento di Fisica, Universidade de Minho, Braga, Portugal

(u) Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America

(v) Also at Department of Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
ae Also at California Institute of Technology, Pasadena CA, United States of America
af Also at Institute of Physics, Jagiellonian University, Krakow, Poland
ag Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
ah Also at Nevis Laboratory, Columbia University, Irvington NY, United States of America
ai Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
aj Also at Department of Physics, Oxford University, Oxford, United Kingdom
ak Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
al Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
* Deceased