The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/103677

Please be advised that this information was generated on 2018-06-15 and may be subject to change.
Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria

Baoli Zhu, a, b, c Gijs van Dijk, b, c Christian Fritz, b Alfons J. P. Smolders, b, c Arjan Pol, a Mike S. M. Jetten, a and Katharina F. Ettwig a

Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands; b, Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands; and B-WARE Research Centre, Radboud University, Nijmegen, The Netherlands

The importance of anaerobic oxidation of methane (AOM) as a methane sink in freshwater systems is largely unexplored, particularly in peat ecosystems. Nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and reported to be catalyzed by the bacterium “Ca. Methylomirabilis oxyfera,” which is affiliated with the NC10 phylum. So far, several “Ca. Methylomirabilis oxyfera” enrichment cultures have been obtained using a limited number of freshwater sediments or wastewater treatment sludge as the inoculum. In this study, using stable isotope measurements and porewater profiles, we investigated the potential of n-damo in a minerotrophic peatland in the south of the Netherlands that is infiltrated by nitrate-rich ground water. Methane and nitrate profiles suggested that all methane produced was oxidized before reaching the oxic layer, and NC10 bacteria could be active in the transition zone where countergradients of methane and nitrate occur. Quantitative PCR showed high NC10 bacterial cell numbers at this methane-nitrate transition zone. This soil section was used to enrich the prevalent NC10 bacteria in a continuous culture supplied with methane and nitrite at an in situ pH of 6.2. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained. Phylogenetic analysis of retrieved 16S rRNA and pmoA genes showed that the enriched bacteria were very similar to the ones found in situ and constituted a new branch of NC10 bacteria with an identity of less than 96 and 90% to the 16S rRNA and pmoA genes of “Ca. Methylomirabilis oxyfera,” respectively. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and highlight their potential contribution to nitrogen and methane cycles.

Wetlands are the largest single source of methane, with estimated emissions of 103 Tg per year, which account for about 20 to 40% of the global annual atmospheric methane flux (1, 8, 19). It is estimated that about 50% of the methane produced in wetlands is consumed before it reaches the atmosphere; this significant microbial methane sink is usually considered to consist exclusively of aerobic methanotrophic bacteria, which degrade methane using oxygen as the electron acceptor (2, 5, 19, 39). In ecosystems where oxygen is depleted but sufficient alternative electron acceptors, e.g., sulfate or nitrate, are present, methane can also be converted anaerobically (25, 38). Anaerobic oxidation of methane (AOM) coupled to sulfate reduction is performed by a consortium of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) (25, 47). Its significance is well established for marine ecosystems, where it may consume more than 90% of the produced methane (39). In freshwater wetlands, and especially peatlands, electron acceptors are more scarce, with concentrations typically in the low µM range (37). For this reason, redox processes are mostly limited by electron acceptor supply and are very dynamic and highly susceptible to alterations, e.g., by influx of polluted groundwater and atmospheric deposition of nitrogen and sulfur species (18, 46). The influence of nitrogen pollution on methane oxidation is complex, and not all feedback loops are well understood (2, 3, 16, 29). In principal, the role of the alternative electron acceptors nitrate and sulfate for diverting carbon fluxes away from methane production is better established, given that sulfate and nitrate reduction are thermodynamically more favorable than methanogenesis (17, 30, 31, 51). However, these alternative electron acceptors can also enable methane oxidation (47, 54), but this topic has received very little attention with respect to methane cycling in peatlands (43).
sequence) to “Ca. Methylophilus marshae” (13, 14, 20, 33). Currently it is unclear, however, if “Ca. Methylomirabilis oxyfera”-related species are the only nitrite-dependent methane-oxidizing microorganisms, if methane oxidation is a general feature of NC10 phylum bacteria or is limited to (close relatives of) “Ca. Methylomirabilis oxyfera,” and how important these bacteria are for methane cycling in various ecosystems.

In this paper, we studied a minerotrophic peatland infiltrated by nitrate-containing groundwater. At the sampling site, no methane emission was detectable. Porewater profiling revealed a nitrate-methane transition zone below the oxic layer that could provide an ecological niche for n-damo microorganisms. NC10 bacterial abundance in soil cores was analyzed using quantitative PCR, and the section with the highest cell numbers of “Ca. Methylomirabilis oxyfera,” coinciding with the methane-nitrate transition zone, was used as the inoculum for the enrichment of n-damo bacteria. By mimicking field conditions as much as possible by using nitrite-amended peatland water in continuous cultivation, a new cluster of “Ca. Methylomirabilis oxyfera”-like bacteria was enriched.

MATERIALS AND METHODS

Site description. The Brunssummerheide peatland (50°55′39.63″N, 5°59′50.73″E) is a small (15 ha) spring fen located in an oligotrophic sandy valley fed by locally upwelling, weakly buffered, nitrate-polluted groundwater. The peat layer is relatively thin (maximum of 2.5 m), and vegetation is dominated by Sphagnum species, Nardium hirsutum, and Molinia caerulea. At the sampling site, nitrate-enriched groundwater overflows the peatland surface and infiltrates into the peat layer.

Porewater profile determination and soil sampling. Nitrate and methane profiles were determined by measuring the concentrations in porewater samples collected using 5-cm ceramic cups (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands) connected to Teflon lines. Porewater samples were obtained at least in duplicate from a depth of 20 to 220 cm at 5- or 10-cm intervals in December 2009 and June 2010. Porewater for methane analyses was collected in vacuumed anaerobic glass bottles (40 ml) prefiltered with 5 g sodium chloride and sealed with butyl rubber stoppers. For chemical analyses, porewater was collected in 60-ml syringes. Samples were transported to the laboratory within 2 h in a cooling box and stored at 4°C for a maximum of 14 days before analysis. Methane in the bottle headspace was measured after pressure equilibration with argon using gas chromatography as described previously (14). Nitrate was analyzed colorimetrically on a Traacs 800 autoanalyzer as described previously (48). Redox potential measurements were performed by gently pushing platinum electrodes into predrilled holes and allowing them to equilibrate. Stable readings were obtained after 30 min (15). Soil samples were obtained from 50- to 130-cm depth with a Russian peat corer, sliced into 5- to 20-cm intervals in the field, immediately put into self-sealing plastic bags, stored in air-tight bins with an oxygen scavenger (Anaerogen; Oxoid), and then transported to the laboratory and stored anaerobically at 4°C until further analysis.

Incubation. Initially, 200 ml soil slurry of the depth layers of 80 to 100 cm, 100 to 120 cm, and 120 to 135 cm (sampled in July 2009) were incubated in separate bottles (500 ml). Surface water from the peatland was collected and used for medium preparation after removal of particles by filtering through a hemofilter (Hemoflow HF80S; Fresenius Medical Care). The medium contained 2 mM KHCO3, 0.2 mM Na2NO3 (99.6% 15N); Isotec), and 0.5 mM NaNO3. The bottles were made anaerobic by 6 cycles of vacuuming and gassing with Ar–CO2 (75:25), followed by 5 min of flushing with Ar–CO2. 13CH4 (10 ml) then was injected into the headspace (final concentration, ca. 20%). The pH in the bottles was around 6.0, and the bottles were incubated at 25°C with gentle shaking at 100 rpm. The production of 13CO2 was measured by gas chromatography-mass spectrometry (GC-MS) in the headspace (see below).

After 3 months of incubation, the bottle with the strongest 13CO2 production was used as the inoculum for continuous culturing in a 3-liter glass bioreactor (working volume, 1.5 liters; Applikon, Schiedam, the Netherlands) that was operated in sequencing batch mode to prevent biomass loss. One cycle constituted 23 h of a continuous supply of medium and 0.5 h of settling, and finally 0.5 h of discharging with a level-controlled pump. To keep the culture anaerobic, the reactor was continuously flushed with 20 ml min−1 Ar–CO2 (95:5) and 0.5 ml min−1 methane. The temperature was controlled at 25°C and the pH at 6.0 to 6.2. Dissolved oxygen, temperature, and pH in the reactor were monitored by respective electrodes. Medium was prepared as described above, except unlabeled nitrite was used. The nitrite concentration in the reactor was estimated daily with Merckquant test strips (0 to 80 mg liter−1; Merck, Germany), and the concentration in the medium was slowly increased from 0.2 to 2.5 mM depending on the activity of the continuous culture. Nitrite concentrations in the reactor were kept below 20 mg liter−1 (0.44 mM). The medium loading to the reactor was between 200 and 500 ml per day.

Activity analysis. Methane-oxidizing activity in bottles was measured by determining the amount of 13CO2 produced from 13CH4 oxidation with GC-MS (Agilent 5975C inert MSD) as previously described (14). Activity in the reactor was tested in batch experiments with the whole culture. First, medium supply was stopped and unlabeled nitrite was allowed to be depleted. The reactor was flushed with Ar–CO2 (95:5) for 1 h while stirring and was checked for residual methane in the headspace. When undetectable, 0.2 mM 15NO2− and 50 ml 13CH4 were added. Gas samples (20 μl) were taken every hour for analysis of 13CO2, 15,15N2, and 15,14N2. At the same time, 1 ml culture liquid was taken and centrifuged; the supernatant was kept at 4°C for nitrite analysis. Nitrite concentrations were determined with colorimetric methods as described elsewhere (23).

DNA isolation. Total DNA from soil samples was isolated with the PowerSoil DNA isolation kit (MO BIO Laboratories Inc.) according to the manufacturer’s manual. Approximately 0.3 g homogenized soil was used for DNA isolation, and two independent isolations were carried out for each depth interval. DNA was eluted three times with prewarmed Milli-Q water from the column to ensure that all of the DNA had been collected. The influence of pH on activity was determined in batch incubations of 10 ml biomass in 40-ml serum bottles and buffered with MES (2-[(N-morpholino)ethanesulfonate; 20 mM] to pH values between 5.9 and 6.7 and with MOPS [3-(N-morpholino)propanesulfonate; 20 mM] to pH values between 6.75 and 7.4 (measured at the end of incubation).

qPCR. In order to quantify n-damo bacteria and all bacteria at different depths of the soil cores, quantitative PCR (qPCR) targeting the 16S rRNA gene was performed. To account for imperfect primer matching and known variability of results (14), two different primer pairs were used for each group. For NC10 phylum bacteria, primer pairs p1F and p1R and known variability of results (14), two different primer pairs were used for each group. For NC10 phylum bacteria, primer pairs p1F and p1R and known variability of results (14), two different primer pairs were used for each group. For NC10 phylum bacteria, primer pairs p1F and p1R and known variability of results (14), two different primer pairs were used for each group. For NC10 phylum bacteria, primer pairs p1F and p1R and known variability of results (14), two different primer pairs were used for each group. For NC10 phylum bacteria, primer pairs p1F and p1R and known variability of results (14), two different primer pairs were used for each group.
specific and universal bacteria primer pairs were cloned and sequenced using the vector pGEM-T Easy (Promega). The sequences retrieved were of the correct length (201 bp for p1F and p1R, 292 bp for p2F and p2R, 291 bp for 533F and 805R, and 410 bp for 1100F and 1492R), and the obtained n-damo sequences were similar (97.2% identity) to the sequence of “Ca. Methylomirabilis oxyfera” (accession no. FP565575). Standard curves for n-damo bacteria and general bacteria were constructed with plasmids containing corresponding inserts, taking into account the molecular mass of the plasmid, including the insert, and the plasmid concentration. Plasmid copy numbers used as the standard were between 3.07 × 10¹¹ and 3.07 × 10¹² for NC10 bacteria and 8.69 × 10¹¹ and 8.69 × 10¹² for all bacteria. Two soil cores with partial overlap were analyzed. Both cores were sliced in sections between 5 and 10 cm in the field (see the section on soil sampling and DNA isolation). In Fig. 1, each depth interval is represented by its average depth. DNA isolated from soil of a depth of 85 to 90 cm was used to test dilution effects; 10 and 100 times dilutions had a maximum difference from nondiluted ones of 8.7%. For NC10 bacteria, nondiluted DNA was used as templates, but for primers targeting all bacteria, 100-times-diluted DNA was used. PCR efficiencies calculated based on standards were between 90.6 and 99.2%. Both standards and samples were run in triplicates. The copy numbers in samples were calculated based on comparison to the threshold cycle values of the standard curve, taking into account the dilution and the amount of total DNA obtained per gram of soil.

Phylogenetic analysis. PCR was performed with DNA isolated from the soil layer used as an inoculum (80- to 100-cm depth), the enrichment culture after 3 months of incubation in bottles, and the continuous culture after 1 and 17 months of enrichment in the reactor. 16S rRNA sequences of n-damo bacteria were obtained with universal bacteria primer 8F or n-damo-specific primer 193F in combination with n-damo-specific primer 1043R (Table 1). PCR products of the correct size were ligated into the pGEM-T Easy cloning vector (Promega) and amplified in Escherichia coli DH5α. Plasmids were isolated from 10 to 15 randomly selected white colonies per library using the GeneJet miniprep kit (Fermentas, Lithuania) and were sequenced at the DNA Diagnostics Center of Nijmegen University Medical Center. The sequences were aligned to...
reference sequences with the MUSCLE algorithm. Phylogenetic trees were constructed with MEGA5 using the neighbor-joining method, and the robustness of tree topology was tested by bootstrap analysis (1,000 replicates).

Functional gene (particulate methane monooxygenase subunit A, pmolA) clone libraries were also constructed with the same DNA samples. The particulate methane monooxygenase catalyzes the first step of methane oxidation and is well conserved in methane-oxidizing bacteria, therefore pmolA is widely accepted as a marker gene for assessing diversity of aerobic and “Ca. Methylomirabilis oxyfera”-like anaerobic methanotrophs in the environment (34,36). Two different forward primers targeting either most methanotrophs (A189b) or only close relatives of “Ca. Methylomirabilis oxyfera” (cmo182) were combined with a specific reverse primer (cmo682) (Table 1). A pmolA phylogenetic tree based on nucleotide sequences was constructed as described above.

FISH. On a monthly basis, 1.5 ml biomass was harvested from the reactor and forced through a 0.5-mm needle to break big cell aggregates. The sample then was centrifuged and the pellet was washed twice with 1 ml 1/100 PBS and fixed with paraformaldehyde on ice for 3 h. Fluorescence in situ hybridization (FISH) was performed as previously described (13) using a 40% formamide concentration. The following oligonucleotide probes were used: S*-DBACT-0193-a-A-18 and S*-DBACT-1027-a-A-18, which are specific for n-damo bacteria (38), and a mixture of EUB I, II, III, and V for most Bacteria (7). Images were acquired with a Zeiss Axioplan 2 epifluorescence microscope equipped with a charge-coupled-device camera together with the Axiovision software package (Zeiss, Germany).

Nucleotide sequence accession numbers. Representative 16S rRNA and pmolA gene sequences were deposited at the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/) under the accession numbers JX262153 to JX262155 (pmolA) and JX262156 to JX262161 (16S rRNA).

RESULTS

Porewater profiles. Porewater depth profiles of the Brunssummerheide sampling location were determined on five occasions between July 2009 and May 2011, with a pattern that was very similar overall. Representative winter (December 2009) and summer (June 2010) profiles are shown in Fig. 1. Nitrate concentration decreased with depth and became undetectable below 100 cm. No methane was detected in the upper 80 cm, but methane gradually increased below the depth of 80 cm and reached the maximum concentration at around 120 cm (Fig. 1A and B). Redox data indicated that the soil was completely anoxic below 50 cm depth, and living roots of vascular plants were not found below 60 cm depth. The maximum concentration of nitrate (0.6 mM) in June 2010 (Fig. 1B) was about 0.2 mM higher than in December 2009 (Fig. 1A), possibly due to relatively stronger evaporation of surface water and higher groundwater influx in summer. The maximum concentration of methane remained similar in both seasons, as did the overall pattern: an opposing gradient at around 80- to 100-cm depth.

Quantifying abundance of NC10 bacteria in different soil depths. Total bacterial and NC10 phylum abundances at different soil depths were determined in two overlapping cores by qPCR using primers targeting the 16S rRNA genes. The highest cell numbers (1.3 × 10⁷ to 3.2 × 10⁷ g⁻¹ wet soil) of NC10 bacteria were found at 80- to 85-cm depth (Fig. 1C and D), coinciding with the concomitant decrease of methane and nitrate (Fig. 1A and B) and a peak in abundance of NC10 phylum-characteristic fatty acids (Fig. 1G) (24a). In contrast, total bacteria cell numbers, ranging from 0.9 × 10⁸ to 11.8 × 10⁸ cells g⁻¹ wet soil, did not show a depth-related pattern (Fig. 1E and F).

Enrichment and activity. Nitrite-dependent methane-oxidizing activity was initially determined by measuring the fraction of ¹³CO₂ in total CO₂ after supplying ¹³CH₄ and nitrite to three soil sections (80 to 100, 100 to 120, and 120 to 135 cm). Despite the addition (and permanent presence) of nitrate (0.5 mM), all soil cores produced some methane in the first 2 weeks of incubation,
but no methane oxidation could be detected (detection limit of approximately 0.5 nmol day$^{-1}$ g$^{-1}$ soil). After about 3 months of incubation, the 80- to 100-cm section showed methane oxidation activity (9.0 nmol day$^{-1}$ g$^{-1}$ soil, assessed as CO$_2$ production), and an increase in this rate indicated microbial growth. This incubation (80 to 100 cm) was used as the inoculum to start a sequencing batch reactor for the enrichment of the responsible microorganism. Batch tests and experience with previous NC10 bacterial enrichment cultures had indicated that nitrite was preferred over nitrate; consequently the medium, prepared with in situ water, was amended not only with nitrate but also with nitrite. Over the first 9 months of enrichment, activity remained low with a nitrite reduction rate of about 50 mol day$^{-1}$ liter$^{-1}$ and then started to increase to about 1.0 mmol (NO$_2^-$) day$^{-1}$ liter$^{-1}$ in month 15. To test the coupling of nitrite reduction to methane oxidation, both activities were tested in batch experiments after 10 months with15N- and13C-labeled substrates during the enrichment period (Fig. 2). Nitrite-N was completely recovered as nitrogen gas, and methane was fully oxidized to CO$_2$. The ratio of13CO$_2$ to15,15N$_2$ production was 3.4.3, similar to the theoretical stoichiometry of 3:4 (38). An activity test at different pH values demonstrated that the culture preferred circumneutral conditions but was active down to the lowest tested value of 5.9 (Fig. 3).

FISH analysis of the enriched bacteria. FISH was performed on biomass of the enrichment culture fixed every month, but no clear hybridization with NC10-specific probes was observed until after 8 months of medium supply. Even though small numbers of NC10 bacteria must have been present, they remained undetectable at first due to strong autofluorescent background and hybridization inhibition, presumably caused by peat material. Starting at month 9, NC10 cells could be detected (Fig. 4A). With the progression of incubation, both total cell numbers visualized by 4',6-diamidino-2-phenylindole (DAPI) staining and the percentage belonging to the NC10 phylum gradually increased (Fig. 4B and C) and coincided with an increased activity of the culture. At month 14 about 50% and at month 19 more than 80% of the population did hybridize with the NC10-specific probes (Fig. 4).

16S rRNA and pmoA gene phylogenetic analysis. “Ca. Methylomirabilis oxyfera”-related 16S rRNA and pmoA genes were successfully obtained from both inoculum soil and the enrichment after 1 or 17 months of incubation. Long (>1,000 bp) 16S rRNA sequences obtained with primers 8F (universal) and 1043R (NC10 specific) were used for phylogenetic analysis. Results showed that the 16S rRNA sequences belong to group A of NC10 bacteria (14), forming a cluster (differences between 0.1 and 2.7%) with sequences retrieved from a coal-tar-contaminated aquifer (AF351214, AF351217, and FJ810544) and Lake Constance sediment (HQ906524 and HQ906538) (9). These sequences share only 94.9 to 95.5% identity with “Ca. Methylomirabilis oxyfera” (Fig. 5A).

The phylogenetic analysis of the pmoA gene showed similar results. pmoA sequences from both soil and enrichment culture again cluster together with pmoA sequences retrieved from Lake Constance sediment (HQ906571, HQ906568, and HQ906566) (9). These pmoA sequences had an identity to those of “Ca. Methylomirabilis oxyfera” of 86.2 to 90.9% on the nucleotide level, but identity of 95.8 to 97.9% on the amino acid level indicated functional conservation (Fig. 5B). No significant difference could be observed between the inoculum and the 17-month-old enrich-
FIG 5 Phylogenetic trees of the 16S rRNA (A) and the pmoA genes (including amoA and pxmA sequences) (B). The trees were calculated in MEGA5 using the neighbor-joining method. Bootstrap support values (1,000 replicates) greater than 50% are indicated at the nodes. The sequences obtained in this study from inoculum soil and enrichment after 1 or 17 months of incubation are shown in boldface.
ment culture, indicating that no population shift within the NC10 phylum had occurred. Both the 16S rRNA and pmoA gene phylogenetic results suggested that a new cluster of NC bacteria had been enriched.

DISCUSSION

The Brunssummerheide peatland is a spring fen in an oligotrophic sand valley fed by nitrate-polluted groundwater, therefore it contains nitrate concentrations in the upper peat layer which are uncommonly high for pristine peatlands (52). Also in contrast to many other peatlands (6, 24, 26, 27), methane was not detected in the upper 70 to 80 cm of the depth profile at 5 sampling occasions in different seasons from 2009 to 2011, even though methane was produced in the deep anoxic zone (below 100 cm) (Fig. 1A and B). As roots of vascular plants do not reach that deep in the Brunssummerheide (maximum of 60 cm), this suggested the existence of an anoxic methane sink in the peat independent from oxygen and aerenchymal transport by roots, for which oxidized nitrogen species could serve as the electron acceptors. The countergradient of methane and nitrate at the depth of 80 cm may provide an ideal species could serve as the electron acceptors. The countergradient and aerenchymal transport by roots, for which oxidized nitrogen of an anoxic methane sink in the peat independent from oxygen and aerenchymal transport by roots, for which oxidized nitrogen could serve as the electron acceptors. The countergradient of methane and nitrate at the depth of 80 cm may provide an ideal species could serve as the electron acceptors. The countergradient and aerenchymal transport by roots, for which oxidized nitrogen species could serve as the electron acceptors. The countergradient of methane and nitrate at the depth of 80 cm may provide an ideal species could serve as the electron acceptors. The countergradient and aerenchymal transport by roots, for which oxidized nitrogen species could serve as the electron acceptors. The countergradient of methane and nitrate at the depth of 80 cm may provide an ideal species could serve as the electron acceptors.
REFERENCES

