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Abstract

The hippocampal theta and neocortical gamma rhythms are two prominent examples of oscillatory neuronal activity. The
hippocampus has often been hypothesized to influence neocortical networks by its theta rhythm, and, recently, evidence
for such a direct influence has been found. We examined a possible mechanism for this influence by means of a biophysical
model study using conductance-based model neurons. We found, in agreement with previous studies, that networks of
fast-spiking GABA -ergic interneurons, coupled with shunting inhibition, synchronize their spike activity at a gamma
frequency and are able to impose this rhythm on a network of pyramidal cells to which they are coupled. When our model
was supplied with hippocampal theta-modulated input fibres, the theta rhythm biased the spike timings of both the fast-
spiking and pyramidal cells. Furthermore, both the amplitude and frequency of local field potential gamma oscillations were
influenced by the phase of the theta rhythm. We show that the fast-spiking cells, not pyramidal cells, are essential for this
latter phenomenon, thus highlighting their crucial role in the interplay between hippocampus and neocortex.
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Introduction

The hippocampal theta rhythm (3–8 Hz) and the neocortical

gamma rhythm (30–100 Hz) are two prominent examples of

oscillatory neuronal activity [1,2]. The hippocampal theta rhythm

is thought to reflect the ‘‘activation state’’ of the hippocampus [1]

and is important for the temporal coordination of a variety of

functions [3–5]. In the neocortex, cell assembly formation, a

crucial prerequisite for cognitive processing, is strongly associated

with gamma oscillations [6–8].

Both the hippocampus and the neocortex, in particular the

prefrontal cortex, seem to play complementary, yet highly

interdependent, roles in the formation and retrieval of memories

[9–12]. When we take this finding into account, along with the

functional importance of the theta and gamma rhythms, it is not

too far-fetched to hypothesize a direct influence of the hippocam-

pal theta rhythm on neocortical networks.

Indeed, evidence for such a direct influence has recently been

found. In both awake and sleeping rats, the hippocampal theta

rhythm was found to bias both the spike times of individual

neurons in prefrontal cortex and the occurrence of localized

neocortical gamma oscillations ([13–15]; see also [16]). Further-

more, in the human neocortex, the power of the ‘‘high gamma’’

rhythm (80–150 Hz) was found to be phase-locked to theta

oscillations [17]. Importantly, this coupling between oscillations of

different frequencies seems to have behavioral relevance: so far,

evidence has been found to support cross-frequency coupling

being involved in e.g. visual processing [18] and working memory

[19].

The mechanisms by which the hippocampus is able to influence

neocortical networks through its theta rhythm are not well-

understood. The neuronal networks responsible for the generation

of the gamma rhythm are better understood: there is quite some

physiological and biophysical work available on this phenomenon

[20,21].

Interconnected networks of fast-spiking (FS) GABA -ergic

interneurons with strong inhibitory chemical synapses as well as

electrical synapses (gap junctions) tend to synchronize their spiking

activity at a gamma frequency. Hence, they are thought to be

responsible for the generation of the gamma rhythm in the

neocortex [22–26]. Importantly, this hypothesis has been con-

firmed by using a direct manipulation of the activity of fast-spiking

interneurons, so the involvement of these cells goes beyond mere

correlation [27]. Most likely, the inhibition involved in the

synchronization of such fast-spiking interneurons is of the shunting

type [20,28]. Shunting inhibition is a type of synaptic inhibition in

which the reversal potential of the inhibitory synapse is above the

postsynaptic cell’s resting potential. This is different from

hyperpolarizing inhibition, in which the reversal potential is below

the resting potential. Thus, a shunting GABA -ergic synaptic event

can actually be excitatory when the post-synaptic membrane

potential is at or near the resting potential [20,28].

Hippocampal efferent fibres project directly onto neurons of the

prefrontal cortex [29,30]. Both pyramidal cells and interneurons

are the targets of these projections. The projections to the

interneurons, however, are stronger than those to the pyramidal

cells [31,32].
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Taken together, (1) the empirically observed interaction

between the hippocampal theta and neocortical gamma rhythms,

(2) the crucial role played by prefrontal cortex interneurons in the

generation of the gamma rhythm, and (3) the preferential

projection of hippocampal fibres onto these interneurons, led us

to hypothesize that the fast-spiking interneurons of the neocortex

are the key players in the mechanism by which the hippocampal

theta rhythm influences neocortical networks. In this paper, we

analyze this possibility using a biophysical model of a network of

conductance-based neurons.

We briefly summarize and preview our results as follows. First,

we find that networks of coupled fast-spiking interneurons are

robust gamma oscillators, in agreement with previous work

[20,25,26,28]. Second, these interneurons impose their rhythm

on pyramidal cells synaptically innervated by them. Third,

hippocampal theta input to a coupled pyramidal cell/interneuron

network results in theta-phase biased spike timings. Fourth, and

most importantly, the frequency and amplitude of neocortical

gamma oscillations are modulated by the phase of the hippocam-

pal theta rhythm if and only if the neocortical fast-spiking

interneurons receive hippocampal theta input; no such modulation

is observed if only the neocortical pyramidal cells receive

hippocampal theta input. Thus, we show that, indeed, neocortical

fast-spiking interneurons are crucial for the coupling between

hippocampal theta and neocortical gamma rhythms that is

observed in experimental physiology.

Results

To study the influence of hippocampal theta oscillations on

neocortical spike times and gamma oscillations, we modelled a

patch of neocortex by two interconnected subnetworks: one

comprised of 200 fast-spiking inhibitory interneurons (FS cells),

another comprised of 900 pyramidal cells (P cells). See Figure 1 for

an overview of the architecture of the model.

The FS cells’ membrane potential was governed according to

Wang-Buzsáki equations [25]. They were arranged in a one-

dimensional ring-like structure, and each cell was synaptically

coupled to a subset of its neighbours, with a Gaussian probability,

up to a maximum connection distance of 50 cells. Synapses within

the FS cell subnetwork were GABA -ergic and shunting.

Additionally, gap junctions were present between cells and their

nearest neighbours. The first results reported in the present section

concern only this FS cell subnetwork. Later on (as will become

evident from the text), the P cell subnetwork was also involved.

The P cells were implemented as Hodgkin-Huxley model

neurons (standard NEURON implementation) [33,34]. They were

arranged in a two-dimensional lattice-like structure, and each cell

was synaptically coupled to a subset of its neighbours, with a

Gaussian probability, up to a maximum (two-dimensional)

connection distance of 8 cells. Synapses within the P cell

subnetwork were glutamatergic and excitatory.

The two subnetworks were coupled to each other with synapses

of the same type as the ones within each subnetwork. So, each P

cell received shunting GABA -ergic innervation from a subset of

FS cells, and each FS cell received glutamatergic innervation from

a subset of P cells.

Figure 1. A patch of neocortex modelled by a network of interneurons coupled with a network of pyramidal cells. (A) The
macroarchitecture of the model. Shown are the fast-spiking inhibitory interneuron network (circle, left), the pyramidal cell network (triangle, right),
the cortical long-range afferent spike trains (top), and the theta-modulated subcortical afferent spike trains (bottom). (B) The ring-like structure of the
interneuron model. Shown are some of the inhibitory synaptic connections (solid circles) and gap junctions (‘conduits’ between adjacent cells) for cell
1. (C) The two-dimensional structure of the pyramidal cell network. Shown are some of the excitatory synaptic projections from cell (1,1) to its
neighbours. Note the projections to (30,1) and (1,30) are possible because the effective distance from (1,1) to those cells equals 1 (see Methods for
details).
doi:10.1371/journal.pone.0045688.g001
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Gamma generation by a ring of fast-spiking cells
Networks of fast-spiking inhibitory interneurons with fast,

strong, and shunting inhibitory synapses and gap junctions are

hypothesized to be the main generators for the cortical gamma

rhythm, and there is ample empirical evidence available that

supports this hypothesis [20,25]. In an attempt to replicate the

results in the literature, we simulated the dynamics of a ring-like

network of FS cells provided with a direct current input. The

amplitude of the input current to the FS cells was determined by

drawing a specific amplitude I from a Gaussian distribution with

mean Im and a standard deviation determined by a coefficient of

variation over cells CVcells~
s

Im
. A high CVcells results in different

cells in the network having a highly heterogeneous input. This way

of determining input current amplitude allowed us to study the

effects of both net input drive and drive hetereogeneity on the

synchronization properties of our network.

When the amplitude of the direct current input is small

(Im~0:5nA cm{2) and for a moderate amount of variation over

cells (CVcells~10%), networks in which the GABA -synaptic

reversal potential was hyperpolarizing (Esyn~{75mV) show only

weak synchronization (Figure 2A). Shunting GABA -synapses

(Esyn~{57mV), on the other hand, result in a strongly

synchronized network (Figure 2B). Additionally, for shunting

inhibition, nearly all cells in the network fire exactly once per

gamma cycle, while the hyperpolarizing reversal potential of

Esyn~{75mV causes the strongly excited cells to silence out the

more weakly excited ones [35]. Fast-spiking interneurons firing

once per gamma cycle, as we observe in our shunting inhibition

condition, is in agreement with observations in vitro [36], in vivo

[37–39] and previous modelling work [25,40].

Spectral analyses of spike histograms revealed only a moderate

peak near 23Hz (and higher harmonics) for a synaptic reversal

potential of Esyn~{75mV (Figure 2C, top panel), while a strong

Figure 2. Shunting inhibition increases robustness in a network of fast-spiking inhibitory interneurons. (A–B) Rasterplots (top) and
spike histograms (bottom) for simulations GABA -synaptic reversal potentials of {75mV (A) and {57mV (B). For these plots, mean drive
Im~0:5nA cm{2 , drive variation CVcells~10%. Synapses were activated at t~{200ms; plots are truncated at t~400ms. (C) Amplitude spectra for
spike histograms. Spectral analyses were performed on complete histograms, ending at t~tstop~2047ms. (D) Two measures of network
synchronization, network coherence k (top row) and average spike volley peak height l (bottom row), as a function of drive variation over cells
CVcells (x-axis), synaptic reversal potential Esyn (y-axis), and mean drive Im (separate columns). Shunting values of Esyn result in stronger
synchronization with increasing drive heterogeneity.
doi:10.1371/journal.pone.0045688.g002
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peak at the gamma frequency of 60Hz appears for a synaptic

reversal potential of Esyn~{57mV (Figure 2C, bottom panel).

To assess the effect of the synaptic reversal potential on network

synchronization in a more general sense, we employed two

different measures of network synchrony: network coherence k
([25]; see equation 9) and average volley peak height l (see

equation 11). As expected, these yield highly similar results, as

revealed by correlation analysis (r~0:99; pv0:0001). k and l
were consistently high with homogeneous drive (CVcells~0%;

Figure 2D, first column within each plot), and decreased with

increasing heterogeneity (Figure 2D, x-axis of plots).

As reported previously [28], the rate of decrease with

heterogeneity was dependent upon the reversal potential of the

GABA -ergic synapses. Specifically, with a small drive of

Im~0:5nA cm{2, coherent oscillations (k§0:15) only occurred

at heterogeneity levels of CVcellsƒ10% when synapses were

hyperpolarizing (Esyn~{75mV), while shunting inhibition

(Esyn~{55mV) resulted in coherent oscillations up to

CVcellsƒ60% of heterogeneity (Figure 2D, left).

Interestingly, and to our knowledge not previously reported, the

most robust synaptic reversal potential (i.e., the value of Esyn that

results in coherent network synchronization up to the highest level

of drive heterogeneity) changed when the amplitude of the input

current was varied: for a drive of Im~1:0nA cm{2, robust

oscillations (up to CVcellsƒ30%) still occurred at Esyn~{55mV.

When the drive was increased further to Im~1:5nA cm{2,

network synchronization was most robust at Esyn~{57mV (up

to CVcellsƒ30%; Figure 2D, third column of plots). At

Im~2:0nA cm{2, the optimal reversal potential for synchroniza-

tion was Esyn~{59mV (synchronization up to CVcellsƒ20%;

Figure 2D, right-most column of plots).

The optimal reversal potential seemed to continue to shift for

even higher values of Imw2:0nA cm{2, but, starting at

Im~2:5nA cm{2, the fraction of active cells in the network and

dependence of network coherence on drive variation started to

decrease markedly (data not shown).

Pyramidal cell network gamma oscillations by
interneuron shunt

The previous section showed that gamma synchronization does

indeed occur in the ring of coupled fast-spiking inhibitory

interneurons in our model. The next step is to show that this

mechanism is sufficient to drive gamma oscillations in a network of

pyramidal cells.

To address this question, we investigated the behavior of a

network of 30|30~900 pyramidal cells. Each P cell was

synaptically coupled to, on average, 62 pyramidal cells. Addition-

ally, the P cells received incoming synapses from simulated fibres

carrying Poisson spike trains, modelling cortical background input.

P cells projected to the fast-spiking cells with glutamatergic

synapses. Each pyramidal cell received a variable number of

incoming GABA -ergic synapses from the fast-spiking cells. These

GABA -ergic synapses were of the shunting type.

First, we analyzed the spike times of the pyramidal cells. When

the pyramidal cell subnetwork only received constant-rate Poisson

spike train input and did not receive shunting inhibition from the

fast-spiking cells, a non-synchronized activity pattern was observed

(Figure 3A, top spike histogram). When the fast-spiking cells

Figure 3. Pyramidal cells show gamma-synchronized activity when cells receive shunting inhibition. (A) Spike histograms and simulated
LFP traces for the unconnected (0 FS to P synapses per P -cell) and connected (14 FS to P synapses per P -cell) conditions. Other input to the P -cells
consisted of constant-rate Poisson spike trains. (B) Amplitude spectra for the simulated LFP in the connected (red) and unconnected (blue)
conditions. The LFP spectrum for the connected condition shows a clear increase in power in the gamma band (30–80 Hz). (C) Relative gamma band
power (top) and pyramidal cell network synchronization (bottom) as a function of the average number of GABA -ergic projections from the FS cells to
a single P -cell. Relative gamma power increases steadily with the number of synapses, reaching a maximum at §15 synapses per P -cell. Network
synchronization starts to occur at §5 synapses per P -cell. Shown are the mean values for 30 simulation runs; error bars represent 95% confidence
interval.
doi:10.1371/journal.pone.0045688.g003
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projected to the pyramidal cells, however, the latter tended to

synchronize in a gamma rhythm (Figure 3A, bottom spike

histogram). The gamma synchronization of the pyramidal cells

involved a much smaller portion of cells than that of the fast-spiking

cells: for the simulation shown, the maximum proportion of cells

active in a single 1ms time window was 1% for the pyramidal cells

and 63% for the fast-spiking cells (compare Figures 2B, bottom

spike histogram, and 3A, bottom spike histogram).

Apart from the spike times, shown in the histograms, we also

analyzed the electrical activity of the pyramidal cells, as measured

by the simulated local field potential (LFP ; see equation 12). The

simulated LFP traces are shown in Figure 3A (panels below the

spike histograms). The simulated LFP shows irregular oscillations

for the condition in which the pyramidal cells do not receive

shunting inhibition from the fast-spiking cells (Figure 3A, top

panel). However, when the GABA -ergic projections from the FS -

cells to the P -cells are active, the simulated LFP shows a regular

oscillatory pattern (Figure 3A, bottom panel).

This effect is evident even more clearly from the LFP amplitude

spectra (Figure 3B): the spectrum for the connected condition (red)

shows a marked increase in gamma-band power over the

unconnected condition (blue). In particular, a peak near 49Hz
can be observed. Note that this frequency is somewhat different

from that reported for the interneuron-only simulations (previous

section). This is because the net total input to the interneuron

subnetwork was somewhat different for the present analyses (i.e.,

Poisson spike train input) than it was for the interneuron-only

simulations (i.e., direct current input). The results presented in the

previous section were based on a direct current input because that

allowed a better comparison with the work of Vida et al. [28].

To determine the amount of GABA -ergic shunting needed for

the pyramidal cells to synchronize in a gamma rhythm, we

systematically varied the average number of projections from the

fast-spiking interneuron subnetwork to each pyramidal cell. The

relative power in the gamma band (30–80 Hz) of the simulated

LFP steadily increased with the number of synapses, and reached a

plateau at about §15 synapses per cell (Figure 3C, top panel). The

network remained in an unsynchronized state for up to ƒ7
synapses per cell, and network synchronization increased steadily

above this threshold (Figure 3C, bottom panel).

The continuity in rise of the relative gamma power with respect

to the number of synapses, when contrasted with the initial zero-

valued plateau that was observed for the synchronization, is

explained by the fact that the LFP is primarily a measure of post-

synaptic potentials (PSP s). For a small, but non-zero connection

strength between a network with synchronized firing at a gamma

frequency (i.e., the FS cells) that projects to another network of

cells (i.e., the P -cells), the PSP s will also oscillate, albeit with a

small amplitude, in the gamma frequency range. If the oscillatory

PSP activity is small and subthreshold, the oscillatory input may

not be reflected in the spiking activity and, consequently, not be

observed as network synchronization, unless the synchronized PSP

s are sufficiently strong relative to the cells’ firing threshold.

Theta modulation of spike times
To investigate the influence of ascending hippocampal fibres,

carrying a theta rhythm, on the spike times of neocortical fast-

spiking and pyramidal cells, we supplied our model network with

variable-rate Poisson spike trains, in addition to the constant-rate

background input already present. These ‘theta fibres’ varied their

firing frequency according to a sinusoid oscillating at a theta

frequency of fh~4Hz (see equation 8; this particular frequency

was chosen to correspond to observed theta frequencies in

anaesthetized rats [13]. Note that we will use the term ‘theta

fibres’ to refer to the projections from the theta-modulated Poisson

spike trains to the cells of our model network. We do not wish to

imply that there are anatomically identifiable fibres running from

the hippocampus to the neocortex that are dedicated exclusively to

the propagation of the theta rhythm.). Each fast-spiking cell

received, on average, 20 incoming synapses from these variable-

rate fibres, while each pyramidal cell received, on average, 10.

An analysis of the spike times of the fast-spiking and pyramidal

cells revealed that the number of spikes (in 25ms bins) occurring at

the peak of the theta rhythm is larger than the number of spikes

occurring at the theta trough (Figure 4A). This finding holds for

both cell populations, and is easily explained by noting that the total

net excitation experienced by a cell is higher during a theta peak

than during a theta trough. (The role of ‘coincidence detection’-like

phenomena in the increased number of spikes during theta peaks is

probably negligible; the P cell membrane time constant is around

6{7ms.) Furthermore, theta modulation of spike times increases

with increasing theta input amplitudes (Figure 4B).

Differential modulation of pyramidal and fast-spiking
cells

The theta modulation of pyramidal cells was much stronger

than that of the fast-spiking cells (Figure 4A and B). This finding is

remarkable, since the fast-spiking cells receive, on average, twice as

many incoming theta-modulated synapses as the pyramidal cells

(20 vs. 10), and even four times as many when the ratio of theta-

modulated to constant-rate fibres is taken into account (FS: 20=50;

P: 10=100). The resulting differential theta-modulation is in

accordance with physiological findings: Sirota et al. [13] found

that, in rats, the spike times of neocortical/hlpyramidal cells are

more strongly biased by the hippocampal theta rhythm than the

spike times of neocortical fast-spiking interneurons.

In order to quantify this difference, we computed two measures

of theta modulation: Pearson’s correlation coefficient r2, computed

between the raw theta signal and the aggregated spike histograms;

and our modulation score j, as described by equation 15. Indeed,

plots of these measures confirm that the theta modulation of the

pyramidal cells is consistently larger than that of the fast-spiking

cells (Figure 4C). For a theta modulation amplitude of

yh~30sp=s, the parameter setting used for Figure 4A, the

relevant values were r2
FS~0:358; r2

P~0:724; jFS~0:072; jP~

0:367.

To find an explanation for the much stronger theta-modulation

of spike activity of the P cells, when compared to the FS cells, we

investigated the firing characteristics of both of our subnetworks in

response to different levels of Poisson spike train input arriving at a

single cell. Results for this simulation are shown in Figure 5. The

FS cells show a reasonably flat response to increasing input after

an initial strong rise, whereas the P cells show a very steep,

exponential response. Given the mean theta input fibre spike rate

of 40sp=s, for a theta input amplitude of yh~30sp=s, the spike

rate of the theta-modulated input fibres varies between

Ah,trough~40{30~10sp=s and Ah,peak~40z30~70sp=s. Con-

sequently, the total input (the sum of the constant-rate input and

the theta-modulated input) experienced, on average, by a single FS

cell varies between 50:40z20:10~2200 and 50:40z20:70~
3400sp=s. The average total input to a single P cell varies between

100:40z10:10~4100 and 100:40z10:70~4700sp=s. These

values correspond to the vertical lines in Figure 5. Notice the

relatively much larger y-axis range corresponding to these input

values for the P cells, when compared to the FS cells. This explains

why the theta-modulation of P cell activity is so strong, even

though the FS cells receive a much more strongly theta-modulated

input.

Hippocampal Theta Modulation of Neocortical Gamma

PLOS ONE | www.plosone.org 5 October 2012 | Volume 7 | Issue 10 | e45688



Effect of theta input to different subnetworks
In the above-mentioned simulations and analyses, theta-

modulated input, when present, was always presented to both

subnetworks of P and FS cells of our model network. We also

investigated the effect of theta-modulated input to each of the

subnetworks separately.

To assess the amount of theta-modulation present in the spike

times of the FS and P cell subnetworks, we computed two

measures sensitive to this modulation (see Methods). Figure 4D

Figure 4. Theta modulation of fast-spiking and pyramidal cell spike times. Fast-spiking cells received, on average, twice as many theta-
modulated input synapses as the pyramidal cells, which, relative to the total input, is four times as many (see main text for details). (A) Spike
histograms for the fast-spiking (blue, middle) and pyramidal (red, bottom) cells relative to theta phase. The amplitude of the incoming theta rhythm
was set to yh~30sp=s (see equation 8). Histogram bin size is 25ms. Above the spike histograms, the ‘raw theta signal’ (see equation 14) is plotted, to
show which phases in the theta cycle correspond to peaks and troughs. (B) Spike counts (color code) relative to theta phase (x-axis) for the fast-
spiking (top) and pyramidal (bottom) cells as a function of theta amplitude yh (y-axis). Spike count bin size is 25ms and bins were non-overlapping.
(C) Two different measures of theta modulation of spike times: Pearson’s r2 (top) and relative modulation amplitude j (bottom; see equation 15) as a
function of incoming theta amplitude yh. (D) The same two measures as a function of theta input distribution.
doi:10.1371/journal.pone.0045688.g004

Hippocampal Theta Modulation of Neocortical Gamma
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shows the results for these simulations. The spiking activity of the

pyramidal cells is theta-modulated when either (or both) of the two

subnetworks receives theta-modulated input. The spiking activity

of the fast-spiking cells, however, is only theta-modulated when

they directly receive theta-modulated input, irrespective of

whether the pyramidal cells receive theta-modulated input or not.

This finding can be explained by looking at the input response

curves for the two subnetworks (Figure 5): (1) the FS cells show a

flat input response curve, thereby requiring a large change in input

to obtain a small change in activity, and (2) the overall spiking

activity of the P cells is very small, when compared to the FS cells

or the input spike trains. When only the P cell subnetwork receives

theta-modulated input, this will be reflected in the spiking activity

of this subnetwork (see Figure 4D). The P cell subnetwork activity

is still very low, however, when compared to the total input to a

single FS cell, coming from other FS cells and input spike trains.

Therefore, the theta-modulated P cell activity will not have a large

enough impact on the FS cells to be noticeable in their spiking

activity.

Theta modulation of LFP gamma activity
In the previous section we demonstrated that the spiking activity

of the pyramidal and fast-spiking cells is theta-modulated when

these subnetworks are presented with theta-modulated input spike

trains. Additionally, we showed that pyramidal cell activity is

theta-modulated if either the pyramidal cells or the fast-spiking

cells receive theta-modulated input, while fast-spiking cell activity

is only theta-modulated when they directly receive theta-modu-

lated input.

This raises the following two interrelated questions. First, is the

LFP gamma activity, caused by the FS cell shunting inhibitory

synapses on the P cells, also theta-modulated? And second, if a

theta/gamma coupling exists, which theta-modulated input fibre

projections are necessary and, therefore, presumably responsible,

for this coupling?

Gamma frequency modulation by theta phase. To

answer these questions, we computed simulated LFP from our

model network in four different conditions: no theta input, theta

input only to the P cells, theta input only to the FS cells, or theta

input to both subnetworks. Time-frequency representations for 1s
of these recordings are shown in Figure 6A. In all four conditions

the spectral power peaks in the gamma range near 50Hz.

To determine whether a phase/frequency coupling between the

incoming theta signal and the gamma LFP occurred in our

network, we plotted the highest-power frequency from the above-

mentioned time-frequency representations as a function of time

(Figure 6B). These plots show that the highest-power gamma

frequency varied with the theta rhythm only when the FS cells

received theta-modulated input. Variation in the peak gamma

frequency as a function of theta phase thus requires projections

from the simulated hippocampal afferent fibres to the FS cells.

Gamma amplitude modulation by theta phase. To

determine whether the gamma amplitude is modulated by theta

phase, we computed a composite theta phase/gamma amplitude

signal z(t). Theta phase is distributed uniformly, since the theta

rhythm is generated by a simple sine function. Therefore,

clustering of z(t) in the complex plane (resulting in a radially

asymmetric distribution around the origin) is an indication of

phase/amplitude coupling [17] (see Methods for details). Distri-

butions of z(t), for each of the four theta input conditions, are

shown in Figure 7A. z(t) is distributed uniformly with respect to

theta phase when only the P cells receive theta-modulated input.

However, when the FS cells receive theta-modulated input, the

distribution is clearly non-uniform.

To get a more detailed view of the nature of theta phase/

gamma amplitude coupling, we investigated the distribution of

gamma amplitudes ac at just the peaks and troughs of the theta

rhythm (the phase relates to the sine phase, so a peak is at Qh~
p

2

and a trough is at Qh~{
p

2
). Figure 7B shows these distributions

for each of the four theta input conditions. Note that the data

histograms in Figure 7B do not directly correspond to a single

‘arm’ of the polar phase/amplitude histograms shown in

Figure 7A. To obtain the distributions most accurately corre-

sponding to the two theta extremes, bins for 7B were centered at

either the theta peak or trough, while the theta peak and trough

correspond to a bin edge for 7A. The solid lines in this figure

correspond to the best-fit gamma distributions of gamma

amplitudes for the theta trough (red) and the theta peak (black).

We used gamma distribution fits for our amplitude data because

we wanted to be able to compare our results with Canolty et al.

[17]. The distribution we observed, however, seems to correspond

more to a bimodal distribution (also visible as two concentric rings

of higher distribution density in all four plots of Figure 7A). The

best-fit distribution is shifted to the right, compared to the

distribution for the theta peak, when the FS cells receive theta-

modulated input. The differences between the distribution

parameters are significant (pv0:0001). This indicates that gamma

amplitude is higher at the theta trough than at the theta peak; a

finding that is in agreement with physiological findings in humans

[17].

Finally, to get a quick ‘bird’s eye’ view of the coupling between

theta phase and gamma amplitude, we divided theta phase into 32

Figure 5. Frequency/input curves for the two model subnet-
works: the fast-spiking cells (top) and the pyramidal cells
(bottom). The dotted lines perpendicular to the x-axis represent the
total range of spike train input experienced by the subnetworks due to
the theta-modulated input fibres. Dotted lines perpendicular to the y-
axis represent the resulting subnetwork spike activity. While the theta-
modulation of input spikes is stronger for the FS cells than for the P
cells, the resulting difference in subnetwork spike activity is greater for
the P cells, as can be observed from the intersection of the horizontal
lines with the y-axis.
doi:10.1371/journal.pone.0045688.g005
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bins and computed the mean gamma amplitude for each of these

bins. Plots of these data (Figure 7C) clearly show that, when the FS

cells receive theta-modulated input, gamma amplitudes are higher

at the trough than at the peak of the theta rhythm. The lowest and

highest gamma amplitudes occur somewhat after the theta peak

and trough, respectively. More specifically, the extremes in gamma

amplitudes lag behind the (opposite) theta extremes by 0:26rad
(for the FS only condition) or 0:34rad (for the FS+P condition).

These values correspond to delays of 10:36 and 13:54ms.

Robustness of core results to various model parameters
So far, we have used a fixed theta frequency of fh~4Hz

throughout our paper, which is on the low end of the frequency

range usually associated with theta oscillations [see, e.g., 41]. To

determine whether the results we obtain are specific to 4Hz, or

whether they generalize to other theta-range frequencies, we

systematically varied the frequency fh between 2 and 13Hz and

repeated our phase/amplitude analysis based on the composite

signal z(t). Distributions of z(t) for the varied theta frequencies are

shown in Figure S1. No difference in z(t) distribution is apparent

for the different theta frequencies. We quantitatively verified this

by computing Ez(t)E, i.e., the norm of the mean of all composite

phase/amplitude values. We examined whether this value

depended on the frequency of the theta input (Figure S2).

Although we observed a correlation trend between these two

variables (r2~0:2893), this trend did not reach significance

(p~0:07). We conclude that our main finding does not crucially

depend on theta frequency. Electrophysiological data suggests that

the projections from the hippocampus to neocortical networks are

stronger to interneurons than to pyramidal cells [31,32]. We

incorporated this difference into our model by supplying the FS

cells with a more strongly theta-modulated input than the P cells,

yielding the results described above. We highlighted the crucial

role the FS cells play in the coupling between the theta and

gamma rhythms. An additional simulation, in which we switched

the two theta-modulated input strengths (i.e., in which the input to

the P cells was more strongly theta-modulated than the input to

the FS cells), resulted in the same outcome: a coupling between the

theta and gamma rhythms only occurred in the two conditions in

which the FS cells received theta-modulated input (results not

shown). Therefore, the crucial role played by the FS cells is not

dependent on them receiving more strongly theta-modulated input

than the P cells. This, of course, prompted the question: what

amplitude of theta modulated input would drive the P cell gamma

activity to become theta modulated, in the total absence of theta

input to the FS cells? To gain insight into this question, we

disconnected all theta fibres from the FS cells, while making no

other changes to the model (so FS to P synapses were intact, etc.).

We varied the mean spike rate of the theta input fibres between

Ah~40sp=s and Ah~400sp=s, while the amplitude of the

modulation was set to yh~Ah{10sp=s, so we simultaneously

varied both the average spike rate of the theta fibres and its

modulation strength. We analyzed theta/gamma phase-amplitude

coupling again by computing the mean of z(t), as described above.

Results for this analysis are shown in Figure S3; the dashed

horizontal line indicates the value of the plotted coupling metric

for the physiologically constrained parameters used in the original

simulations described in the bulk of this paper (this parameter

value is indicated by the dotted vertical line). It can clearly be seen

that the amount of theta modulation required for theta/gamma

coupling, when only the P cells receive theta input, is much higher

than when the FS cells receive theta input as well. Specifically,

coupling comparable to the results described above (obtained with

Ah~40sp=s, yh~30sp=s, modulation of 75% of mean) is only

observed with the very high values Ah~160sp=s and

yh~150sp=s (modulation of 94% of mean) or above, when theta

input is restricted to the P cells only. A further interesting factor to

investigate is to what extent does the observed theta/gamma

coupling depend on the gamma synchronization of the FS cells?

Since we found that gamma synchronization cruciallly depends on

the value of the GABA -ergic synaptic reversal potential EGABA,

we varied this parameter to investigate this question. We

computed, for various values of this parameter, the correlation

between the sinusoidal theta rhythm used as input to the model

Figure 6. Effect of theta-modulated input on LFP gamma frequency. (A) Time-frequency representations of one second of simulated LFP
activity. The four panels correspond to theta-modulated input fibres projecting to different parts of the model network. (B) The frequency within the
gamma band with the highest power, for the same data segments shown in A. Theta phase/gamma frequency coupling is observed if and only if the
FS cells receive theta-modulated input.
doi:10.1371/journal.pone.0045688.g006
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network, and the amplitude envelope of the gamma-filtered LFP.

(Note that this correlation measure is somewhat different from the

mean composite phase/amplitude vector length we report above.

We use a correlation here instead because binning the gamma

amplitude values is not well-defined when gamma synchrony is

very low.) Results for this analysis are shown in Figure S4. Evident

from this plot is a clear regime between about {60 and {57mV
where theta/gamma coupling occurs, whereas for both lower and

higher GABA reversal potentials, the coupling is absent. These

values of EGABA correspond well to the values which were found

to lead to the greatest robustness in gamma synchronization of the

FS cells (see Figure 2 and earlier in Results). Finally, we note that

our choice of simulated LFP potential is not trivial. Often, the sum

of synaptic transmembrane currents is used to model the LFP .

The LFP indeed mainly depends on postsynaptic currents, but it is

mainly the low-frequency components of these currents that

determine the extracellulary measured LFP [42]. In effect, the

extracellular medium acts as a rather complex low-pass filter.

While attempts have been made at accurately computing the LFP ,

taking this into account [42,43], we decided to use the summed

membrane potential as a simple proxy instead. The temporal profile

of the membrane potential is also low-pass filtered when compared

to the transmembrane currents, due to the conductance properties

of the membrane. Of course, it is important to ensure that our core

results do not qualitatively depend on the choice of our simulated

LFP signal. Therefore, we conducted a control analysis in which

we investigated the effect of the choice of simulated LFP on our

results (the composite phase/amplitude distribution). Results for

this analysis are shown in Figure S5. The distribution is quite a bit

sharper when considering currents (right plot) instead of potential

Figure 7. Effect of theta-modulated input on LFP gamma amplitude. (A) The distribution of a composite theta phase/gamma amplitude
signal z(t) in the complex plane. Color code represents the number of observations; angle corresponds to theta phase (divided into 32 equally-sized

bins); radius corresponds to gamma amplitude (divided into 32 equally-sized bins). (B) Histograms of gamma amplitudes occurring in
2p

32
wide phase

bins centered at the peak of the theta rhythm (Qh~
p

2
; black) and at the trough (Qh~{

p

2
; red). Dashed lines correspond to the observed data

histograms; solid lines represent the best-fit gamma distribution for this data. When FS cells receive theta-modulated input, the best-fit distribution
for the theta trough is shifted to the right, compared to the distribution for the theta peak (parameter differences are significant, pv0:0001). (C) Mean
gamma amplitude as a function of theta phase. For the two rightmost plots, the best-fit sine functions are shown by a dashed red line. Gamma
amplitudes are higher at the trough than at the peak of the theta rhythm, and the lowest and highest gamma amplitudes (indicated by dotted
vertical lines) occur somewhat after the theta peak and trough, respectively.
doi:10.1371/journal.pone.0045688.g007

Hippocampal Theta Modulation of Neocortical Gamma

PLOS ONE | www.plosone.org 9 October 2012 | Volume 7 | Issue 10 | e45688



(left plot, for reference). This is expected, because the ‘smearing’

properties of the membrane potential are not incorporated for the

right plot. Crucially, however, the main features of the distribution

remain the same: a clustering is observed for gamma amplitude as

a function of theta phase.

Discussion

We have put forward a biophysical conductance-based neural

network model, composed of fast-spiking (FS) and pyramidal (P)

cells, that displays robust gamma oscillations. When supplied with

hippocampal theta-modulated input fibres, the network shows

spike activity that is biased by the theta rhythm. Furthermore,

both the frequency and amplitude of the local field potential (LFP)

gamma oscillations are modulated by the phase of the theta

rhythm. However, this latter phenomenon only occurs when the FS

cells directly receive hippocampal theta-modulated input, high-

lighting the crucial role these cells play in the interplay between

neocortex and hippocampus.

The conductance-based neuron models we used in our study

provide the most realistic approximation of actual single-neuron

activity [44] to date. This is in sharp contrast to integrate-and-fire

neurons, which can be simulated far more quickly, but provide a

much rougher approximation of neural activity [44]. Cross-

frequency coupling of neuronal oscillations has been analysed with

biophysical model neurons before, mainly in relation to network

firing rate. Mazzoni et al. [45], for instance, find a significant

coupling between delta phase and gamma amplitude, for network

parameters quite similar to the ones we used in the present study.

Crucially, previous work on this topic has generally used integrate-

and-fire neurons, whereas we show cross-frequency phase/

amplitude coupling for the–to our knowledge–first time using a

conductance-based model for all simulated neurons.

Gamma synchronization and oscillations
When studied in isolation, our subnetwork of FS cells, coupled

with fast inhibitory synapses and gap junctions, shows synchro-

nized activity at a gamma frequency (Figure 2). For GABA -ergic

synapses with a hyperpolarizing reversal potential, this synchro-

nization quickly dissipates with increasing heterogeneity of the

input drive. For shunting reversal potentials, however, the network

remains robustly synchronized for relatively high levels of drive

heterogeneity. This finding is a replication of earlier work [20,28].

The optimally robust synaptic reversal potential for the gamma

synchronization of the FS cells was dependent upon mean input

drive (Figure 2D). For increasing input currents, the optimal

reversal potential shifts towards more negative values, but remains

well above the membrane potential at rest. This phenomenon

likely reflects the important role of strong mutual inhibition

between the FS cells in the generation of the gamma rhythm [25].

When the input current is strong, the FS cells become strongly

excited, and the inhibition balancing this excitation may not be

strong enough when the synaptic reversal potential is relatively

high. This might allow some cells to fire out of phase with the

gamma rhythm. Lower synaptic reversal potentials, on the other

hand, result in sufficiently strong inhibition to silence out any

‘rogue’ cells during the interval between population spike peaks.

The FS cells proved effective in imposing their synchronized

rhythm on a population of P cells (Figure 3). When the FS cell

subnetwork was coupled to the P cell subnetwork, the LFP quickly

became dominated by the GABA -ergic post-synaptic potentials

caused by the FS cells’ spiking activity. This resulted in an increase

in LFP power in the gamma band and in an increased

synchronization of the P cells’ spike times. Thus, gamma

oscillations in our inhibitory interneuron subnetwork carry over

to the pyramidal cells to which it was coupled. This fits nicely with

prominent theories on the role of the gamma rhythm as a

fundamental computational mechanism [37], in which the

amplitude of input to a pyramidal cell network can be transformed

into a phase code. This transformation is achieved through a

coupling of the network to fast-spiking interneurons network which

are firing in a gamma rhythm [37].

In in vivo recordings of cortical LFP , the power spectrum is

usually characterized by a very dominant 1=f or ‘power law’

component [46]. We do not show such a power law scaling in the

spectra computed for our model (Figures 2C, 3B, 6A), which is not

in line with these in vivo findings. However, the power law scaling

of LFP power is usually absent from in vitro recordings [e.g.

36,47,48]. Therefore, the involvement of large-scale dynamic

interactions with the rest of the brain seems essential for the power

law scaling to be apparent. Since model studies typically simulate a

small patch of cortex, their object of study is much more similar to

in vitro than to in vivo recordings. This is also the case for our study,

so the lack of a dominant 1=f component is expected for our

power spectra.

Effect of theta-modulated input
When the network received not only constant-rate input, but

also input from theta-modulated hippocampal afferent fibres, its

spiking activity was modulated by the theta rhythm (Figure 4).

This is in accordance with empirical findings [13–15].

Theta-modulated input to our model network also had an effect

on the gamma oscillations visible in the LFP . Both the frequency

(Figure 6) and the amplitude (Figure 7) of the gamma oscillations

were modulated by the phase of the theta rhythm, but only when

the FS cells directly received a theta-modulated input. Theta/

gamma coupling was completely absent, both regarding frequency

and amplitude, when only the P cells received theta-modulated

input, even though the P cells’ spiking activity was theta-modulated

in this condition. This can be explained by the fact that the

gamma rhythm is generated by the FS cells and imposed upon the

P cell subnetwork by these cells. It follows easily that, when the

activity of the FS cells is not theta-modulated, the gamma rhythm,

as observed in the LFP , is not theta-modulated either. An

exception to this rule was only observed when theta-modulated

input to the P cells was much higher than would be physiologically

plausible (Figure S3).

The frequency of the gamma rhythm was higher during the

peak of the theta rhythm than during the trough (Figure 6). The

gamma rhythm is generated by the FS cells. During the theta

peaks these experience a stronger net total input and, therefore,

increase their firing rate while remaining synchronized, hence

resulting in a higher frequency of the corresponding gamma

oscillations. We do not know of any empirical reports on a

coupling between hippocampal theta phase and neocortical peak

gamma frequency, but this is an interesting prediction that can be

tested.

The amplitude of the LFP gamma oscillations was also

influenced by the phase of the incoming theta rhythm (Figure 7).

Gamma amplitude was higher during the trough than during the

peak of the theta rhythm, a phenomenon that was also reported

for human subjects [17]. The highest gamma amplitude occurred

somewhat after the theta trough and the lowest gamma amplitude

occurred somewhat after the theta peak.

The mechanisms by which the amplitude of gamma oscillations

is actually highest during the periods of least net total input to the

network are not entirely clear to us. Canolty et al. [17] found a

similar phase/amplitude coupling between the theta and gamma
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rhythms, in the human neocortex. As to the mechanism of this

coupling, they hypothesize that ‘‘basal forebrain cortical-project-

ing GABA ergic neurons (…) preferentially synapse onto

intracortical GABA ergic neurons (…), with disinhibitory spike

bursts causing a brief increase in gamma power at the theta

trough’’ [17, p. 1628].

While the basal forebrain (BF) GABA -ergic neurons probably

play a role in the modulation of neocortical networks [49], our

results suggest that they are not responsible for the coupling

between theta phase and gamma amplitude. We were able to

reproduce such a coupling using only excitatory (glutamatergic)

fibres to carry the theta rhythm. Of course, this does not directly

preclude the alternative hypothesis (i.e., the BF GABA -ergic

neurons playing the crucial role), but we believe this alternative to

be unlikely for the following reason. The gamma oscillations

visible in the EEG and LFP are mainly due to post-synaptic

potentials in the pyramidal cells resulting from spike events in

intracortical GABA -ergic fast-spiking cells. If the latter cells

receive inhibition (e.g., from BF GABA -ergic neurons), the result

would be a weakening of the gamma oscillations, and not an

increase in amplitude. Therefore, we believe that excitatory, rather

than inhibitory, projections to the FS cells are responsible for the

modulation of gamma amplitude by theta phase.

Functional role of cross-frequency coupling
Between- and within-region coupling between neuronal oscil-

lations of different frequencies, in particular between the phase of

a lower-frequency oscillation and the amplitude of a higher-

frequency one, has been observed in rodents [13–15], macaque

monkeys [50], and humans [17–19]. This type of cross-frequency

coupling is thought to play an important role in the integration of

the various timescales at which the brain processes information:

large-scale dynamical brain networks, reflected in lower-frequency

oscillations, entrain high-frequency local neuronal computations,

thereby enabling various brain regions to process the incoming

information in the most efficient and task-relevant manner [51].

It has recently been suggested that cross-frequency coupling

between the alpha (8–12 Hz) and gamma bands could implement

a mechanism of pulsed inhibition by which salient stimuli are

given priority over less salient ones [52]. This suggestion was

inspired by evidence that the phase of alpha oscillations modulates

both perception [53,54] and gamma amplitude [18,55]. Alpha

activity likely serves to inhibit brain regions that are irrelevant to

the behaviour at hand; e.g. to inhibit parts of visual cortex that

correspond to non-attended parts of the visual field [56]. To still

enable processing of important stimuli in those non-attended parts

of the environment, by those inhibited brain regions, alpha activity

creates a temporal code that serves to order the stimuli according

to saliency. The actual processing itself is reflected in the gamma

band, thus resulting in coupling between the phase of alpha and

the amplitude of gamma [52].

While the present paper is mainly concerned with coupling

between hippocampal theta and neocortical gamma oscillations, it

seems equally applicable to such coupling within the neocortex

between the alpha and gamma bands. The core findings of our

model are upheld when we change the low-frequency signal from

the theta to the alpha band, as shown in Figures S1 and S2. This is

particularly interesting considering the crucial role we find for

inhibitory cells in our model: the cross-frequency relation between

alpha and gamma in humans is hypothesized to fulfill a temporal

code in which local inhibition of brain regions is crucial. A

mechanism of low-frequency modulation of gamma oscillations

very similar to the one we explore here might thus elegantly

explain the ordering and inhibition of stimuli according to saliency

as well. Of course, further work is needed to determine to what

extent this speculation holds.

In conclusion, our model demonstrates that the empirically

observed coupling between the hippocampal theta and neocortical

gamma rhythms crucially involves a neocortically local network of

fast-spiking interneurons. Thus, our findings shed light on the

mechanism behind large-scale cortical interactions responsible for

an ‘oscillatory hierarchy’ of neuronal information processing

[37,50]. The crucial role of fast-spiking interneurons in cross-

region phase/amplitude coupling is, we believe, an interesting and

testable prediction of our model.

Methods

All network simulations were conducted using version 7.1 of the

NEURON simulation environment [34], released on January

15th, 2009. All data analyses were conducted using custom scripts,

written either for NEURON 7.1, or for MATLAB (Mathworks

Inc., Natick, MA , USA).

Interneuron subnetwork
The interneuron subnetwork was modelled after some quite

extensive previous neurophysiological and modelling work

[20,40], and consists of a virtual ring of 200 single-compartmental

Hodgkin-Huxley-like model neurons [33]. We used this ring-like

structure because we use a synaptic connection probability that is

dependent on cell distance (described in more detail below): if we

had just used an unfolded one-dimensional line, cells at the edges

of the line would have fewer synaptic connections than cells near

the middle of the line. Using a ring avoids this problem[20,40].

Cells had a resting potential of Erest~{65mV and a

membrane surface area of 100mm2. Leakage, Naz, and Kz

conductances were inserted into each neuron according to the

model of Wang & Buzsáki ([25]; ‘ WB ’ conductances). These

differ from standard Hodgkin-Huxley (‘ HH ’) conductances in

two important respects (see appendix for detailed equations): first,

the fast Naz current activation variable m is substituted by its

steady-state value m?; second, the remaining gating kinetics for

the Naz and Kz current are sped up by a factor w~5. These

specifics are computationally efficient, because of the m~m?

substitution, and, because of the adjusted time course of the

currents, ensure that a firing pattern emerges that is characteristic

of fast-spiking inhibitory interneurons [25].

Each interneuron receives incoming GABA -ergic synapses from

a subset of its neighbours on the ring with a Gaussian probability

dependent upon the distance between two cells, up to a maximum

connection distance of 50 cells (3s~50). Synapses were either on or

off; the Gaussian probability only governs whether or not there will

be a synapse and is not used to determine synaptic strength.

Synaptic events were modelled by insertion of a conductance

determined by a two-state kinetic scheme of the form:

gsyn(t)~�ggsynN e
{ t

td {e{ t
tr

� �
ð1Þ

with resulting current:

Isyn(t)~gsyn(t)(V (t){Esyn) ð2Þ

where �ggsyn is the maximum synaptic conductance, Esyn is the

synapse reversal potential, and N is a normalization factor:
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N~
1

exp {
tr

td{tr

ln
td

tr

� �� �
{ exp {

td

td{tr

ln
td

tr

� �� � ð3Þ

that ensures that the peak conductance is given by the relevant

parameter �ggsyn.

The GABA -ergic synapses were governed by a rise time

constant of tGABA,rise~0:16ms and a decay time constant of

tGABA,decay~1:8ms. The unitary post-synaptic peak conductance

was �ggGABA~0:1mS cm{2. These values are consistent with

empirical findings [57,58]. The synaptic reversal potential was

varied for the study of gamma rhythm generation, while it was set

to EGABA~{57mV for all subsequent simulations, in accordance

with gamma rhythm results and previous studies [28,59].

In addition to GABA -receptors, AMPA - and NMDA -

receptors were also present at the membrane of the fast-spiking

cells, in order to model the connections between the two

subnetworks and to model incoming spike trains as input. These

were modelled by conductance insertion according to two separate

bi-exponential functions of the type described by equation 1.

Separate time constants were used to model the AMPA and

NMDA currents: tAMPA,rise~0:5ms, tAMPA,decay~2:0ms,
tNMDA,rise~3ms, tNMDA,decay~40ms [60,61]. The reversal po-

tential for both receptor types was set to EAMPA~ENMDA~0mV.

The unitary post-synaptic peak conductances for the glutamatergic

synapses on the fast-spiking cells were given by

�ggAMPA~0:5mS cm{2 and �ggNMDA~0:05mS cm{2. These con-

ductance values were chosen to ensure that the average net current

input to the fast-spiking cells, resulting from synaptic events, was

comparable in amplitude to the direct current input used in the

model of Vida and colleagues [28].

Apart from the above-mentioned chemical synapses, electrical

synapses, or gap junctions, were included in the interneuron network.

Gap junctions allow small quantities of ions to flow between two

coupled cells; a given cell is thereby able to directly influence the

membrane potential of another cell. Between each cell and its 8
nearest neighbours, a gap junction was inserted with a probability of

0:5, resulting in, on average, 4 gap junctions per cell [28].

Gap junctions were modelled by a constant conductance

insertion of ggap~10pS between two cells [62,63]. The resulting

current between two coupled cells i and j is given by

Igap~ggap(Vi{Vj) ð4Þ

Pyramidal cell subnetwork
The pyramidal cell subnetwork consists of a two-dimensional

sheet of 30|30~900 single-compartmental Hodgkin-Huxley

model neurons (standard NEURON implementation) [33,34].

This results in an anatomically realistic ratio of 900=1100~82%
pyramidal cells versus 200=1100~18% interneurons [13]. The

resting potential of the pyramidal cells was equal to that of the

interneurons, Erest~{65mV, and standard Hodgkin-Huxley

conductances were inserted to model cell membrane channels

[33]. Each neuron received glutamatergic synaptic afferents from a

subset of its neighbours according to a two-dimensional Gaussian

probability, dependent on cell distance. Maximum connection

distance was 8 cells (3sx~3sy~8), ensuring a realistic ratio of

synaptic densities within the pyramidal cell subnetwork (see

Table 1). The standard Euclidean measure was used to define

the distance between cells:

d(a,b)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xa{xb)2z(ya{yb)2

q
ð5Þ

As with the interneuron subnetwork, here it is also important to

avoid edge effects on the number of synapses per cell. For this two-

dimensional case, we created a torus out of our network by folding

opposing edges onto each other:

Vy : d((xmax,y),(xmin,y))~1

Vx : d((x,ymax),(x,ymin))~1

Incoming glutamatergic and GABA -ergic synaptic events were

modelled by the same bi-exponential functions as described above

for the fast-spiking cells (see equation 1), but with different peak

conductances: for the pyramidal cells, �ggAMPA~3mS cm{2,

�ggNMDA~0:4mS cm{2, and �ggGABA~0:05mS cm{2. These values

were chosen to obtain accurate cortical pyramidal cell firing

characteristics for the model neurons; most importantly, they

ensured an ongoing ‘background firing noise’ of about 1{2sp=s
[13,64].

Subnetwork interconnections and network input
For the investigation of theta–gamma coupling, each pyramidal

cell received GABA -ergic afferents from, on average, 14 randomly

chosen fast-spiking cells and each fast-spiking cell received

glutamatergic afferents from, on average, 45 randomly chosen

pyramidal cells. These values were chosen to obtain realistic ratios

of synaptic densities between the two subnetworks (see Table 1).

For the investigation of the influence of the gamma-synchronized

interneuron subnetwork on the synchronization of the pyramidal

cells, the average number of incoming P synapses per FS cell was

kept constant at 45, while the average number of incoming FS

synapses per P cell was varied in the range between 0 and 20.

For the investigation of gamma rhythm generation by the

interneuron subnetwork, a direct current input was supplied to the

fast-spiking cells. This allowed a straightforward comparison of our

simulations with results found in the literature [28]. The amplitude

of the current was different for different cells, and varied as a

Table 1. Model connectivity values.

Model (%) Anatomy (%)

FS ? FS 4.24 1.34

P ? FS 4.47 4.97

P ? P 28.09 28.17

FS ? P 6.30 7.62

ext? FS 7.09 6.66

ext? P 49.80 50.66

Shown is the number of synapses of different types, presented as ratios of the
total number of synapses. Model values were either chosen to reflect
connectivity known from anatomy (reported anatomical values are from [65]),
or, in the case of the FS ? FS connectivity, based on previous modelling work
[28].
doi:10.1371/journal.pone.0045688.t001
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function of time. This resulted in a variable intrinsic firing

frequency for each fast-spiking cell, enabling the study of the

robustness of network synchronization as a function of different

parameters.

Specifically, drive amplitude was determined by drawing a

mean drive mi for each cell i[f1,2, . . . ,200g from a normal

distribution with mean Im and then, for each time window of 1ms,

drawing a specific drive amplitude from a new normal distribution

with mean mi:

mi~N (Im,s2) ð6Þ

Iext,i(t)~N (mi,s
2
i ) ð7Þ

The spread of the distributions was defined in terms of

coefficients of variation (CV ), resulting in standard deviations

s~CVcellsIm and si~CVtimemi. The variation over time was kept

constant, CVtime~10%, while both Im and CVcells were varied to

assess the network’s robustness in generating a gamma rhythm.

To investigate (1) the influence of the gamma-synchronized

interneuron subnetwork on the pyramidal cells and (2) the

influence of the theta rhythm on the interconnected network of

fast-spiking and pyramidal cells, direct current input was replaced

by Poisson spike train input acting on glutamatergic synapses, to

serve as a more realistic model of actual neuronal input.

Two pools of Poisson input spike trains were initialized, both

consisting of 1000 fibres. The fibres in the first pool had a constant

average firing rate, rconst~40sp=s, modelling cortical background

noise. The firing patterns of these fibres were mutually uncorre-

lated. The fibres in the second pool varied their spiking rate

according to a sinusoid, modelling the ascending fibres that carry

the theta rhythm. The average spiking rate for the ‘variable-

spiking’ fibres is given by:

rvar(t)~Azy sin (2pfht) ð8Þ

with average spiking rate A~40sp=s, amplitude y~30sp=s, and

frequency fh~4Hz. For each fibre in the two pools, the

probability of a time window of Dt~1ms containing a single

spike is given by pspike~rDtƒ0:07.

Each pyramidal cell received incoming synapses from, on

average, 100 randomly selected fibres with a constant firing rate

and 10 randomly selected variable-spiking fibres, while each fast-

spiking cell received incoming synapses from, on average, 50
randomly selected fibres with a constant firing rate and 20
randomly selected variable-spiking fibres. The strong projection

from hippocampal afferents to interneurons, relative to pyramidal

cells, is in accordance with previous morphological and physio-

logical findings ([31,32]; see table 1).

All of the synaptic densities reported above (i.e., concerning

synapses within one of the two subnetworks, synapses between the

two subnetworks, and external afferent synapses) were either

chosen to reflect anatomically known ratios of different synaptic

types ([65]; see Table 1), or based on previous modelling work

[28].

Network analyses and simulation characteristics
Assessment of network synchrony. Two different mea-

sures were used to assess network synchrony. The first is the

normalized averaged cross-correlation based ‘network coherence’

measure k introduced by Wang & Buzsáki [25]. To determine this

measure, two binary spike trains with bin size Dt~1ms and

resulting length L~
T

Dt
are given by X (l)~0 or 1, Y (l)~0 or 1,

with 0 – no spikes and 1 – a spike present in time bin with index

l~1,2, . . . ,L. The pairwise coherence between two spike trains X
and Y is given by:

kXY ~

PL
l~1

X (l)Y (l)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL
i~1

X (i)
PL
j~1

Y (j)

s ð9Þ

The network coherence measure k is then defined as the

average pairwise coherence for all neuron pairs in the network.

Wang & Buzsáki [25] define network coherence k as a function of

bin size and, indeed, this measure is quite strongly dependent upon

bin size. Network synchrony is most accurately reflected by k,

however, when bin size is small. As a statistic, therefore, we report

this measure only for a bin size of 1ms, i.e., our k~k(1). This is in

accordance with previous work [40].

As a second measure of network synchrony, we introduce the

average spike volley peak height. To automatically determine the

occurrence of a volley peak, all of the network’s spikes are first

aggregated in Dt~1ms bins, such that the number of spikes in the

interval ½t{Dt,t) is given by A(t) (time in ms). The occurrence of a

peak is then defined as:

k(t)~

if A’(t{Dt) w 0 ,

1 and A’(t)v0,

and A(t)§Athr

0 otherwise :

0BBB@ ð10Þ

where Athr~
1

10
NFScells for the fast-spiking cells and

Athr~
1

200
NPcells for the pyramidal cells. The discrete derivative

A’(t)~
A(tzDt){A(t)

Dt
. The average spike volley peak height is

given by:

l~

Ptstop

t~t0

k(t)A(t)

Ptstop

t~t0

k(t)

ð11Þ

with t0 and tstop the begin and end times (in ms) of the simulation

period to be analyzed, respectively.
Simulation timings. It is important to ensure that a truly

(pseudo-)random firing pattern will emerge in the network, so that

no initialization effects will influence the results. Therefore, at the

beginning of a network simulation, at t~{400ms, no synaptic

connections are inserted, within or between the two subnetworks.

At t~{200ms, synapses and gap junctions are inserted, and all

analyses of network firing characteristics are started at

t~t0~0ms, allowing the network to settle into its new, connected,

state and preventing transient network properties due to synapse

initialization to affect the results. All results reported in the present

article were robust across simulations; i.e., the network always

settled into the same state when initial conditions were identical.

Noise due to the random number generator was of course different
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across simulations. For the study of gamma generation, simula-

tions were stopped at t~tstop~211{1~2047ms; for the study of

theta modulation of gamma oscillations, simulations were stopped

at t~tstop~216{1~65535ms.

Measure of electrical activity. The main phenomena in

which gamma oscillations are usually said to occur are the local

field potential (LFP) and electro-encephalogram (EEG). Both these

measures of neural activity are thought to reflect the summed total

electrical activity in the dendrites of pyramidal cells [see, e.g., 42] .

In order to analyse not only the spike times, but also the

continuous electrical activity of our network, we generated a

simulated LFP by calculating the negative summed total pyramidal

cell potential:

Vtotal(t)~{
XNpyr

j~1

Vj(t) ð12Þ

and low-pass filtering this signal using an FFT -based finite

impulse response filter with a {3dB cutoff frequency of 300Hz.

The LFP is taken as the negative, rather than the positive, summed

total, because the LFP is measured outside the cells in electrophys-

iological work. The summed total pyramidal cell potential in our

model corresponds to the potential inside the cells, so a sign change

is needed for our simulated LFP to accurately correspond to its

electrophysiological counterpart.

Assessment of theta modulation of spike times. To

quantify the amount of theta modulaton of spike times in both the

fast-spiking and pyramidal cell populations, we used two measures.

To compute these, all of a subnetwork’s spikes are first summed

into 1ms non-overlapping bins, such that the number of spikes in

the interval ½t{1,t) is given by A(t) (time in ms). The resulting

population activity measure is then aggregated over all theta

periods:

Aaggr(t)~
Xtstop

Th
{1

k~0

A(kThzt) ð13Þ

with theta period Th~
1000

fh
~250 and 0ƒtƒTh.

The first measure used to quantify spike time theta modulation

is the squared Pearson correlation coefficient r2, computed

between this aggregate activity measure and the ‘raw’ theta signal

given by:

h(t)~ sin (2pfht) ð14Þ

As a second measure of theta modulation of spike times, we

introduce a simple modulation score j. To compute this measure, the

aggregate activity Aaggr with bin size 1ms is re-binned into 25ms

bins, resulting in an activity measure B(u) with u[f1,2, . . . ,
Th

25
g.

This re-binning prevents any high-frequency (w40Hz) informa-

tion from influencing the modulation score. The modulation score

j is then given by:

j~
max (B){ min (B)

2:mean(B)
ð15Þ

and can be interpreted as the relative amplitude of any theta

oscillation, if such an oscillation is reflected in the spiking activity

of the network. The two subpopulations of cells, the FS and P cells,

differ strongly in their average firing rate (as do pyramidal and

fast-spiking cell populations in the real brain). Therefore, the

absolute amplitude of theta-modulated spiking activity cannot be

used to compare the two subpopulations. We thus use this relative

amplitude measure j, rather than an absolute amplitude, to

compare the variations in activity in the two subpopulations of

cells.

Note that, because of the period-wise aggregation described by

equation 13, the time values t and u mentioned above correspond

to certain phases Q:h[(0,2p� in the theta cycle:

Q:h~
2pt

Th
~25

2pu

Th
ð16Þ

This relationship will be used in plotting spike counts versus

theta phase.

Measure of cross-frequency phase/amplitude

coupling. To quantify cross-frequency phase/amplitude cou-

pling, we used a measure very similar to that employed by Canolty

et al. [17].

First, a gamma-only signal is derived from the LFP by band-pass

filtering the latter signal between 30 and 150Hz. We denote this

gamma-only signal by xc(t). We obtain the analytic representation

uc(t) of xc(t) using the Hilbert transform:

uc(t)~xc(t)zi:bxxc(t) ð17Þ

~ac(t):eiQc(t) ð18Þ

where f̂f denotes the Hilbert transform of a function f , ac(t) is the

analytic amplitude time series, and Qc(t) is the analytic phase time

series. We also obtain the analytic representation uh(t) of the ‘raw’

theta signal (equation 14) used in determining the spike rates of the

variable-rate input fibres:

uh(t)~h(t)zi:ĥh(t) ð19Þ

~ah(t):eiQh(t) ð20Þ

These two measures are combined into a single, complex-valued

signal z(t):

z(t)~ac(t):eiQh(t) ð21Þ

Theta phase is distributed uniformly, since the theta rhythm is

generated according to a simple sine function. Therefore, if

gamma amplitude and theta phase are independent, the distribu-

tion of z(t) values should be approximately radially symmetric

relative to the origin in the complex plane. If, however, the two are

not independent, clustering of z(t) values in the complex plane is

expected to occur. We use the distribution of z(t) in the complex

plane as a measure of theta phase/gamma amplitude coupling (see

Figure 7).

Finally, note that our measure differs in an important respect

from that used by Canolty et al. [17]. Canolty et al. ’s measure was
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computed on two signals that were obtained by band-pass filtering

the same signal using two different frequency bands. Our analysis

uses a (gamma) band-pass filtered signal for the amplitude time

series, but uses a different signal for the phase time series, namely

the raw theta signal that governs the variable-rate input spike

trains. This is simply an adaptation of Canolty et al. ’s measure to

a set of simulated data; the interpretation of the measure does not

change.

Supporting Information

Appendix S1

(PDF)

Figure S1 Distributions of theta phase/gamma ampli-
tude values for different frequencies of the theta signal
provided as input to the model network.
(EPS)

Figure S2 Norm of the mean of the composite phase/
amplitude distributions, as a function of theta frequen-
cy.
(EPS)

Figure S3 Norm of the mean of the composite phase/
amplitude distributions, as a function of theta input
amplitude, when only the pyramidal cells receive theta-
modulated input. The dotted line represents the value of this

metric for the physiologically constrained parameters used in the

original simulations.

(EPS)

Figure S4 Correlations between the sinusoidal theta
input signal, and the amplitude envelope of the LFP
gamma oscillations, as a function of GABA-ergic synap-
tic reversal potential. Since we know that GABA reversal

potential greatly influences gamma synchrony in the interneurons,

this parameter is here used as a proxy for manipulating gamma

synchrony.

(EPS)

Figure S5 Distributions of composite phase/amplitude
values when using total postsynaptic current (right)
versus membrane potential (left) as simulated LFP
signal.

(EPS)
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