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Abstract

Speech impairment often occurs in patients after treatment for head and neck cancer. A specific speech characteristic that influences
intelligibility and speech quality is voice-onset-time (VOT) in stop consonants. VOT is one of the functionally most relevant parameters
that distinguishes voiced and voiceless stops. The goal of the present study is to investigate the role and validity of acoustic-phonetic and
artificial neural network analysis (ANN) of stop consonants in a multidimensional speech assessment protocol. Speech recordings of 51
patients 6 months after treatment for oral or oropharyngeal cancer and of 18 control speakers were evaluated by trained speech pathol-
ogists regarding intelligibility and articulation. Acoustic-phonetic analyses and artificial neural network analysis of the phonological fea-
ture voicing were performed in voiced /b/, /d/ and voiceless /p/ and /t/. Results revealed that objective acoustic-phonetic analysis and
feature analysis for /b, d, p/ distinguish between patients and controls. Within patients, /t, d/ distinguish for tumour location and tumour
stage. Measurements of the phonological feature voicing in almost all consonants were significantly correlated with articulation and intel-
ligibility, but not with self-evaluations. Overall, objective acoustic-phonetic and feature analyses of stop consonants are feasible and con-
tribute to further development of a multidimensional speech quality assessment protocol.
� 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Every year, approximately 500,000 patients are diag-
nosed with head and neck cancer (HNC) worldwide.
Medical treatment includes (a combination of) surgery,
radiotherapy, and chemotherapy, with cure rates varying
from 50% to 95%. Patients often experience a range of
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discomforts due to tumour growth and treatment. Inflexi-
bility and deteriorated functionality of the head and neck
structures often result in difficulty with swallowing and
speech, and secondary in problems with social aspects of
daily life as eating in public and communication, ultimately
resulting in a lower quality of life (Bjordal et al., 1999; Kar-
nell et al., 2000; Borggreven et al., 2007).

Earlier research on speech produced by patients treated
for oral or oropharyngeal cancer showed that defects or
loss of tissue mass, less flexibility of the tongue and facial
muscles, stiffened tissue, nerve damage, and velar incompe-
tence are causes of deteriorated speech outcome (Michi
et al., 1989; Pauloski et al., 1998; McConnel et al., 1998;
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Yoshida et al., 2000; Furia et al., 2001; Sumita et al., 2002;
Hara et al., 2003; Seikaly et al., 2003; Su et al., 2003; Bress-
mann et al., 2004; Terai and Shimahara, 2004; Borggreven
et al., 2005; Markkanen-Leppanen et al., 2005; Whitehill
et al., 2006; Kazi et al., 2007; Rinkel et al., 2008; de Bruijn
et al., 2009). Speech quality of patients after treatment for
oral or oropharyngeal cancer appears to be highly depen-
dent on tumour size and site. Patients who underwent
treatment of larger tumours experience more difficulty with
speech than those with smaller tumours. Speech outcome
after treatment for an oral tumour often results in articula-
tion difficulties due to tissue loss, structure alteration of
various speech organs, while problems with speech produc-
tion of patients treated for oropharyngeal cancer often
include nasal resonance problems due to velopharyngeal
inadequacy. In case of surgery for advanced tumours in
the oral cavity or oropharynx, reconstructive surgery is
often performed after treatment for better functionality
of organs in the head and neck area. Reconstructive sur-
gery uses thin skin flaps originating from the patients fore-
arm to cover large defects located at dynamic structures.
More recently, organ preservation protocols as chemo
radiation are introduced also aiming at prevention of func-
tional impairment. However, a recent literature review
reveals that treatment modalities, reconstructive surgery
and organ preservation, still often result in speech impair-
ment (van der Molen et al., 2009).

In the general population, speakers are usually able to
correctly produce speech characteristics such as voicing,
silence, building and releasing of air pressure, to build vow-
els, fricatives, stop consonants, and many more – at different
speaking rates. Coordination of glottal activity, and loco-
motion of articulatory muscles usually passes synchro-
nously. A specific speech characteristic that influences
Fig. 1. An example of the segmentation of /t/. The first tier shows the entire
silence”) and burst (“t2 burst”). The spectrogram shows the relative absence o
voicing during the burst. This figure is made in Praat.
intelligibility and speech quality is voice-onset-time (VOT)
in stop consonants. In normal speech, VOT is one of the
functionally most relevant parameters that distinguishes
voiced and voiceless stops and is a result of the temporal
coordination of voicing and oral articulation gestures.
VOT is defined as the length of time that passes between
when a stop consonant is released and when voicing, the
vibration of the vocal folds, begins. For voiced consonant
stops /b, d, g/, voicing starts before the burst of airflow. This
voice lead in voiced stop consonants is typical for the Dutch
language. For voiceless consonant stops /p, t, k/, a short
period of silence precedes the burst (see Fig. 1). Voiced plo-
sives /b, d, g/ usually have a shorter VOT than voiceless plo-
sives /p, t, k/. VOT is significantly related to speaking rate (
Klatt, 1975; Kent, 1992; Ladefoged and Maddieson, 1996;
Houde and Jordan, 1998; Allen et al., 2003). Patients treated
for oral and oropharyngeal cancer may have difficulty with
adequate coordination of motor function of articulatory
speech structures and vocal fold vibration. Building up oral
pressure necessary for stop consonants in combination and
synchronously with ceasing vocal fold vibration in case of
the voiceless stop consonants may be especially problem-
atic. For patients, it seems problematic to quickly stop the
activity of the glottis so that it remains mute. This period
of inactivity results in necessary short silent periods during
speech production, such as the silence during the pressure
building period preceding the burst in production of voice-
less stops. Because this action is difficult to perform for
patients, it is therefore hypothesized that the duration of
VOT preceding the burst in voiceless stops in patients is
longer compared to controls and that the silence period pre-
ceding the burst in voiceless stops show more voicing in
patients compared to controls. The motivation to focus on
phonological feature value is based on medical knowledge
duration of /t/ (“t2”); the second tier displays the partition in silence (“t2
f voicing during the pressure-building silence, followed by the outburst of



Table 1
Characteristics of the 51 patients 6 months after
treatment for oral or oropharyngeal cancer.

n %

Gender

Male 28 55
Female 23 45
Tumour site

Oral cavity 21 41
Oropharynx 30 59
T-classification

1-2 26 51
3-4 25 49
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in this particular domain of this type of patients: voicing is
among the most seriously affected speech characteristics of
this type of pathological speech.

The main objective of the present study is to investigate
feasibility and validity of acoustic-phonetic analyses of
duration of VOT and of the burst in stop consonants as
produced by patients treated for oral or oropharyngeal
cancer compared to control speakers. Also, an artificial
neural network (ANN) objectively analyses the degree of
the phonological feature voicing of VOT (the silent part
before the burst) and of the burst in stop consonants.
Known group differences will be tested: patients versus
controls, and within patients: small versus large tumours,
and tumours originating from the oral cavity versus the
oropharynx. In addition, correlations between objective
speech quality measures of stop consonants and subjective
assessments of intelligibility, articulation and patient
reported speech outcome will be tested. The results of this
study will contribute to further development of multidi-
mensional speech assessment protocol for research pur-
poses and clinical practice.

2. Methods

2.1. Speakers

Patients were treated by surgery and radiotherapy at the
Department of Otolaryngology-Head & Neck Surgery of
VU University Medical Center in Amsterdam, the Nether-
lands. In more detail, patients underwent composite resec-
tions for advanced oral or oropharyngeal squamous cell
carcinoma with microvascular soft tissue transfer for the
reconstruction of surgical defects. Surgery consisted of
composite resections including excision of the primary
tumour with en bloc ipsilateral or bilateral neck dissection.
In case of oropharyngeal carcinomas, a paramedian man-
dibular swing approach was used. All free flaps were suc-
cessful. Patients received radiotherapy in case of advanced
(T3-4) tumours, positive or close surgical margins, multiple
lymph node metastases and/or extra nodal spread. The pri-
mary site received a dose of 56 to 66 Gy in total (2 Gy per
fraction, 5 times per week), depending on surgical margins.
The nodal areas received a total of 46, 56 or 66 Gy (2 Gy per
fraction, 5 times a week) in case of N0, N+ without extran-
odal spread and N+ with extranodal spread, respectively.
Exclusion criteria were incapability to participate in func-
tional tests, difficulty communicating in Dutch and age
above 75 years. Fifty-one patients between 23 and 73 years
(mean: 53.8 years, SD: 8.7 years) were included in the study
after written informed consent (Table 1). Eighteen gender-
and age matched controls were included.

2.2. Speech recordings

Patients (6 months after treatment) and controls read-
aloud a standardized Dutch text. The distance between lips
and microphone was 30 cm. Speech recordings were
conducted in a sound attenuated booth. For each speaker
the recording level as adjusted to optimize signal-to-noise
ratio. The recorded speech was digitalized with Cool Edit
PRO 1.2 (Adobe Systems Incorporated, San Jose, CA,
USA) with 22-kHz sample frequency and 16-bit resolution.
2.3. Subjective speech evaluation

Perceptual evaluation of speech quality comprised
ratings on intelligibility and articulation by two speech
pathologists on the entire stretch of running speech. To
enable subjective speech evaluation, a computer program
was developed to perform blinded randomized listening
experiments and to store intelligibility and articulation
scores in a database. Intelligibility was scored using a 10-
point scale, following the Dutch educational grading system
where 1 represents the worst score and 10 represents the best
score and 6 is just sufficient. Articulation was judged using a
4-point scale, ranging from normal to increasingly deviant
speech quality. Interrater agreement for subjective assess-
ment of intelligibility ranged from 40% to 90%. Intrarater
agreement for repeated speech fragments of articulation
was high with 100% equal scores between the ratings.
Speech problems in daily life as reported by patients was
assessed by the Speech Subscale (including 3 items) of the
EORTC Quality of Life Questionnaire H&N35 module
(Bjordal et al., 1999; Aaronson et al., 1993). The scores
are linearly transformed to a scale of 0 to 100, with a higher
score indicating a higher level of speech problems.
2.4. Objective speech evaluation

2.4.1. Acoustic-phonetic analyses
Speaking rate of the entire stretch of speech was calcu-

lated in words per minute. The voiced stop consonants
/b/ and /d/ and their voiceless counterparts /p/ and /t/ were
used as speech material (in the Dutch phonological system,
the voiced counterpart /g/ of the voiceless stop consonant
/k/ is not present, and therefore these velar stop consonants
were not investigated in the present study). For each
selected speech sound (voiced /b, d/ and voiceless /p, t/),
two realizations were segmented from running speech and
were analysed using the speech processing software Praat
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(version 4.6.28) Praat, 2007. Duration of VOT and the
duration of the following release of air pressure, the so-
called burst, were measured (see Fig. 1). Where this paper
refers to the VOT, actually the pre-burst silence portion is
meant.

2.4.2. Artificial neural network and feature analysis
In the context of research on Automatic Speech Recog-

nition (ASR), several speech decoding techniques have
been developed that are able to automatically segment
and label an unknown utterance in terms of phone-like seg-
ments (Nabil and Espy-Wilson, 1995, 1996). In the last dec-
ade however, new approaches were designed that
circumvent the use of phone symbols in the segmentation
of speech. Instead of using phonetic symbols (mostly pre-
defined by the ASR developer), these methods focus on
more basic properties of the speech signal that characterize
the speech signal in a way more similar to acoustic features
or phonological features such as ‘manner’ and ‘place’ of
articulation (Deng and Sun, 1994; Erler and Freeman,
1996). In the last decade, several techniques have become
available, such as Artificial Neural Nets (ANNs) and Sup-
port Vector Machines (King and Taylor, 2000; Robinson
et al., 1996; Bridle et al., 1998).

In this paper we use ANNs to obtain a feature represen-
tation of an input speech signal. ANNs contain a number
of model parameters (weights of the connections between
network nodes) that determine the relation between input
and output of these ANNs. The parameters can be trained
on a training set in which input and desired output of the
ANN are specified for each training data point. The ANNs
used in this paper have an input context of 7 input MFCC
frames, which during training are used in combination with
a canonical value (0 or 1) of the phonological feature that is
being modeled by the ANN. The ANNs have been trained
on speech from speakers without reported articulatory
problems and in the test provide estimations of phonolog-
ical features from the acoustic input signal. The ANNs that
were used in the present study were trained on the basis of
speech originating from the corpus of the Institute of Pho-
netic Sciences, University of Amsterdam, the Netherlands
(IFA Spoken Language Corpus). This corpus contains
speech in a variety of styles of four normal speaking males
and four normal speaking females in combination with
accompanying hand-labelled articulatory-inspired features
(http://www.fon.hum.uva.nl/IFA-SpokenLanguageCorpora
/IFAcorpus, 2001). For the training of ANN, speech spec-
tra of one healthy male and one healthy female in combina-
tion with accompanying segmentations were derived from
the IFA-corpus. ANNs were specifically trained on labelled
speech spectra for all phonological features. However, in
the present study we only use one phonological feature:
voicing (in the sequel, the resulting ANN is referred to as
ANN-voicing) (Graupe, 2007).

Training takes place via error-backpropagation, one of
the well-known and commonly used training procedures
for ANNs. After training, ANN-voicing was tested on
speech of two other speakers from this IFA corpus. The
output of ANN-voicing varies between 0 (absent) and 1
(present). A value of 0.8 for instance means that voicing
is rather strongly present in the speech frame. Depending
on the amount of input and of consistency in labels during
training, ANN-voicing achieves high levels of correct clas-
sification. In the quality assessment of ANNs, the perfor-
mance is given in terms of frame accuracy. Performance
during testing was 80% correct at frame level. An accuracy
of 80% means that the classifier correctly classifies the fea-
ture value assigned to this frame for 80% of all frames in
the evaluation test set. The degree of the phonological fea-
ture voicing as identified by the artificial neural network
was determined for VOT as well as for the following burst
of the selected stop consonants.

In the experiments described here, ANNs were used to
estimate the degree of various phonological features such
as manner, place, voicing, front-back and rounding. Each
of these properties are modeled by an ANN. Each ANN
was modeled by a three layer feed-forward network: one
input layer, one hidden layer, and one output layer. The
input layer is fed with the MFCCs (mel-frequency cepstral
coefficients) obtained from the MFCC extraction step. The
units in the output layer represent the estimated values of
the various options for that particular feature. For exam-
ple, the manner feature is modeled by the manner-ANN
which has 6 units on its output layer:
Manner.
 0-approx-fric-nasal-stop-vowel
These six units in the manner-ANN estimate the degree
of NULL, approximant, fricative, nasality, stop, and
vowel, for each 10 ms frame in the input speech signal,
respectively. The NULL value is a unit that takes positive
values if the network is not able to positively assign values
to any of the other five units. In total, the manner-ANN
provides 6 values for each frame of 10 ms.

By taking into account the output of the other five
ANNs (place, voicing, front-back, rounding, and static)
and stacking all results, we obtain a 28-dimensional feature
vector for each frame of 10 ms. In the present study, we
particularly focus on the phonological feature voicing, that
is, on specifically one out of this collection of 28 values per
10 ms. One of the most important model parameters in an
ANN is the dimension (number of hidden units) of the hid-
den layers. In this study, we adopted a setting that has been
suggested in the literature (King and Taylor, 2000) and that
showed good results in training and test sessions with
speech from healthy controls.

The ANNs that were used in this study are available as
public domain software (http://nico.nikkostrom.com/,
2007). The motivation to use ANNs instead of Support
Vector Machines (SVM) is determined by the facts that
compared to SVM, ANNs are more elegant and deliver a
relatively small model. Moreover, ANNs use continue
mapping and the model does not encounter discrete selec-
tions during the classification task, as is the case with SVM.



Table 3
Results of artificial neural network analyses of the phonological feature
voicing (ANN-voicing): mean and standard deviation of voicing during
voice-onset-time (VOT) and burst of two realizations of the voiced stop
consonants /b/ (b1 and b2) and /d/ (d1 and d2) and voiceless stop
consonants /p/ (p1 and p2) and /t/ (t1 and t2) among patients (n = 51) and
controls (n = 18). A value of 0 represents absence of voicing; a value of 1
represents maximum amount of voicing. Significant differences between
patients and controls are indicated with an asterisk.

Patients Controls

B1 ANN-voicing VOT 0.68 (0.31) 0.61 (0.28)
B2 ANN-voicing VOT 0.82 (0.22) 0.79 (0.18)
B1 ANN-voicing burst * 0.84 (0.24) 0.73 (0.23)
B2 ANN-voicing burst 0.88 (0.17) 0.86 (0.12)

*
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2.5. Statistical analysis

Mann-Whitney tests were performed to test differences
between patients and controls, and within patients differ-
ences regarding tumour stage (smaller (T1-2)) versus larger
(T3-4)) and tumour location (oral cavity versus oropharyn-
geal cavity). Mann-Whitney tests were performed instead
of t-tests due to skewed data. Spearman correlation coeffi-
cients were used to test correlations between the subjective
speech evaluations of articulation and intelligibility, patient
reported outcome, and objective parameters (speaking rate,
duration of VOT and burst, and ANN-voicing during VOT
and burst).
D1 ANN-voicing VOT 0.67 (0.39) 0.50 (0.34)
D2 ANN-voicing VOT * 0.77 (0.31) 0.68 (0.30)
D1 ANN-voicing burst 0.68 (0.36) 0.63 (0.30)
D2 ANN-voicing burst 0.81 (0.30) 0.76 (0.27)

P1 ANN-voicing VOT * 0.18 (0.21) 0.08 (0.07)
P2 ANN-voicing VOT 0.39 (0.30) 0.26 (0.27)
P1 ANN-voicing burst ** 0.45 (0.31) 0.19 (0.17)
P2 ANN-voicing burst * 0.52 (0.30) 0.33 (0.27)

T1 ANN-voicing VOT 0.21 (0.28) 0.09 (0.08)
T2 ANN-voicing VOT 0.28 (0.28) 0.14 (0.08)
T1 ANN-voicing burst 0.22 (0.28) 0.06 (0.07)
T2 ANN-voicing burst * 0.33 (0.30) 0.12 (0.10)

* p 6 0.05.
** p 6 0.01.
3. Results

3.1. Predictive validity

No significant differences were found between any
groups regarding speaking rate. Speaking rate in patients
was 171 words per minute versus 175 words per minute
in controls. Patients had significant longer VOT in the
voiced stop consonants /b/ and /d/, and a shorter burst
in the voiceless consonants /t/ and /p/ (Table 2). Regarding
ANN-voicing, patients had significant more voicing during
VOT in the voiced consonant /d/ and voiceless consonant
/p/, and more voicing during the burst in the voiced conso-
nants /b/, and voiceless consonants /p/ and /t/ (Table 3).
Table 2
Results of acoustic-phonetic analyses: mean and standard deviation of
speaking rate (words per minute), and duration (ms) of voice-onset-time
(VOT) and burst of two realizations of the voiced stop consonants /b/ (b1
and b2) and /d/ (d1 and d2) and voiceless stop consonants /p/ (p1 and p2)
and /t/ (t1 and t2) among patients (n = 51) and controls (n = 18).
Significant differences between patients and controls are indicated with an
asterisk.

Patients Controls

Speaking rate 171 (33) 175 (23)

B1 VOT duration ** 0.020 (0.019) 0.008 (0.004)
B2 VOT duration 0.022 (0.027) 0.008 (0.004)
B1 burst duration 0.028 (0.014) 0.025 (0.011)
B2 burst duration 0.021 (0.011) 0.018 (0.006)

D1 VOT duration 0.006 (0.006) 0.007 (0.005)
D2 VOT duration ** 0.020 (0.020) 0.008 (0.004)
D1 burst duration 0.017 (0.014) 0.020 (0.012)
D2 burst duration * 0.014 (0.010) 0.018 (0.008)

P1 VOT duration 0.083 (0.025) 0.081 (0.012)
P2 VOT duration 0.043 (0.023) 0.039 (0.021)
P1 burst duration 0.028 (0.027) 0.023 (0.006)
P2 burst duration * 0.020 (0.011) 0.028 (0.012)

T1 VOT duration 0.030 (0.025) 0.027 (0.009)
T2 VOT duration 0.033 (0.026) 0.033 (0.011)
T1 burst duration 0.034 (0.023) 0.035 (0.014)
T2 burst duration 0.029 (0.025) 0.031 (0.010)

* p 6 0.05.
** p 6 0.01.
However, findings were not always consistent in both real-
izations of the same consonant.

Within patients, patients with larger tumours had signif-
icantly less voicing during VOT compared to patients with
smaller tumours, (mean 0.77 (s.d. 0.31) versus mean 0.69
(s.d. 0.30)) and during the burst (mean 0.81 (s.d. 0.30) ver-
sus mean 0.76 (s.d. 0.27) in the voiced consonant /d/.
Regarding tumour location, patients with a tumour origi-
nating in the oral cavity had a shorter burst (mean 0.029
(s.d. 0.025)) in the voiceless consonant /t/ compared to
patients treated for oropharyngeal cancer (mean 0.031
(s.d. 0.010)). See also Figs. 2 and 3.

3.2. Concurrent validity

Spearman correlation analyses reveal that objective
speech quality parameters are significantly related to sub-
jective ratings of speech quality by speech pathologists,
but not of subjective ratings of speech quality by patients
themselves. Speaking rate and the phonological feature
voicing (ANN-voicing) during VOT and burst of almost
all consonants are significantly correlated to subjectively
judged articulation and intelligibility (Table 4). Correla-
tions coefficients are moderate and vary from 0.25 to 0.35.

4. Discussion

This paper presents an inventory of speech performance
6 months after treatment in a well-defined head and neck
cancer patient group after reconstructive surgery and



Fig. 2. Relative frequency histograms of the dispersion of values of phonological feature voicing on the burst of /b/1 as identified by an Artificial Neural
Network: controls and patients. The x-axis represents the amount of the feature voicing from 0 to 1 and the scale of the y-axis is in percentages.
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Fig. 3. Median duration (in ms), its upper and lower quartiles and the minimum/maximum value within 1.5 times the inter-quartile range distance from
the lower/upper quartile of pre-burst silence (VOT) and burst of /p/1 as measured by acoustic-phonetic analysis (left box plots).Median amount of voicing
(ranging from 0–1), its upper and lower quartiles and the minimum/maximum value within 1.5 times the inter-quartile range distance from the lower/upper
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radiotherapy for advanced oral or oropharyngeal cancer.
The first aim of the study was to investigate predictive validity
of objective analyses of speech quality of stop consonants.
Several objective outcome measures differentiated patients
from controls: duration of VOT in /b/ and /d/, duration
of the burst in /d/ and /p/, and the amount of the phonolog-
ical feature voicing during VOT in /d/ and /p/ and during
the burst of /b/, /p/ and /t/ differentiated patients from con-
trols, although the differences did not reach statistical sig-
nificance in both realisations of the stop consonants (see
Table 2). Within patients, predictive validity was less obvi-
ous: only the amount of voicing during VOT and the burst
of /d/ distinguished tumour stage; duration of the burst in
/t/ distinguished tumour site (see Section 3.1).

In the general population, the voiced stop consonants
/b/ and /d/ usually have a shorter VOT than their voiceless



Table 4
Spearman correlation values between the objectively analyzed stop consonants and subjective judgments by two speech language
therapists (“articulation” and “intelligibility”) and by patients themselves (“EORTC QLQ H&N35 Speech Subscale”). The
correlations between the two realizations of the voiced stop consonants /b/ (b1 and b2) and /d/ (d1 and d2) and voiceless stop
consonants /p/ (p1 and p2) and /t/ (t1 and t2) and the subjective judgments of nasal resonance, articulation and intelligibility are
displayed.

Correlation coefficient

Articulation Intelligibility EORTC QLQ-H&N35 speech scale

Speaking rate 0.152 0.321** �0.253
b1 VOT duration �0.136 �0.199 �0.041
b1 burst duration 0.006 0.018 �0.189
b2 VOT duration �0.060 �0.153 0.112
b2 burst duration �0.090 �0.234 0.166
d1 VOT duration 0.123 0.143 0.272
d1 burst duration 0.161 0.150 0.007
d2 VOT duration �0.136 �0.199 �0.041
d2 burst duration 0.163 0.018 0.198
p1 silence duration �0.038 �0.239* 0.112
p1 burst duration �0.108 0.110 �0.259
p2 silence duration 0.005 �0.077 �0.188
p2 burst duration 0.144 0.222 0.030
t1 silence duration 0.079 0.019 �0.082
t1 burst duration 0.027 0.106 �0.069
t2 silence duration �0.047 0.019 �0.159
t2 burst duration 0.176 0.097 �0.118
b1 VOT ANN �0.327* �0.149 �0.109
b1 burst ANN �0.311* �0.201 �0.089
b2 VOT ANN �0.301* �0.262* �0.142
b2 burst ANN �0.314** �0.281* �0.180
d1 VOT ANN �0.310** �0.275* 0.016
d1 burst ANN �0.246* �0.261* 0.082
d2 VOT ANN �0.271* �0.270* �0.047
d2 burst ANN �0.241* �0.237 �0.027
p1 silence ANN �0.288* �0.149 �0.118
p1 burst ANN �0.371** �0.348** 0.061
p2 silence ANN �0.297* �0.197 �0.023
p2 burst ANN �0.351** �0.277* �0.174
t1 silence ANN �0.244* �0.194 0.066
t1 burst ANN �0.354** �0.313** 0.138
t2 silence ANN �0.165 �0.182 �0.066
t2 burst ANN �0.254* �0.241 �0.112

* p 6 0.05.
** p 6 0.01.
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counterparts /p/ and /t/. In the present study, results of
healthy controls as well as results of patients confirm these
findings. It was hypothesized that the duration of VOT pre-
ceding the burst in voiceless stops in patients would be
longer compared to controls and that the silence period
preceding the burst in voiceless stops would show more
voicing in patients compared to controls. Argumentation
hereof comprises that patients may have more difficulty
than controls building up oral pressure in combination
and synchronously with ceasing vocal fold vibration to
produce voiceless stop consonants. The results in the pres-
ent study did not show that the silence period preceding the
burst in voiceless stops was longer compared to controls.
Results in the present study did show indeed that the
silence period preceding the burst of all voiceless stops have
higher amounts of voicing in patients compared to controls
(see Table 3 and Fig. 3 for /p/1). Regarding the voiced stop
consonants /b/ and /d/, patients also had a larger amount
of voicing during VOT compared to controls (see Fig. 2)
and the duration of VOT was also longer. Compared to
previous studies in head and neck cancer, some studies
on stop consonants were performed in laryngeal cancer
patients, often after laryngectomy. VOT in stop consonants
produced by these patients was significantly different from
VOT of control speakers (Robbins et al., 1986; Christensen
et al., 1978; Ng and Wong, 2009). One study including oral
cancer patients who underwent reconstructive surgery after
glossectomy revealed that VOT remained unchanged in
most patients, but in some patients the lengths of VOT dif-
fered largely after surgery. In these cases, this result was
mostly accounted for by the size of the resected tongue
and stiffening of the tongue (Savariaux et al., 2001).

No artificial neural network analysis on the phonologi-
cal feature voicing in stop consonants was performed in
previous research in patients treated for head and neck
cancer. Results of previous research by automatic speech
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recognition of speech of patients with head and neck cancer
included patients after laryngectomy and oral cancer.
Schuster et al. (2006) reported that automatic speech recog-
nition techniques seem good means to objectify and quan-
tify global speech outcome of laryngectomees. Haderlein
et al. (2009) also investigated speech of laryngectomized
patients and concluded that automatic speech recognition
can be used for objective intelligibility ratings with results
comparable to those of human experts. Windrich et al.
(2008) demonstrated that automatic speech recognition
yielded mean word recognition rate of 49% in oral cancer
patients and of 76% in controls. Automatic evaluation
highly correlated with the experts’ perceptual evaluation
of intelligibility (Windrich et al., 2008). However, a direct
comparison of previously found results and results of the
present study is not possible. The present study uses one
specific phonological feature – voicing – while the previ-
ously mentioned studies aimed at the recognition of words.

These findings that neural network feature analyses cor-
relate with subjective speech evaluation were confirmed by
the present study. Overall speaking rate and the amount of
the phonological feature voicing in almost all consonants
was significantly, but moderately, correlated with articula-
tion and intelligibility. No significant correlations were
found between objective speech quality measures and
patient reported speech outcome (see Table 4). Apparently,
to be useful for clinical practice purpose, other factors than
consonant production alone may be taken in consideration
regarding for speech problems as experienced by patients
themselves. These factors may include other speech charac-
teristics such as the production of vowels and velar conso-
nants and also coping strategies in dealing with speech
problems after cancer treatment (Borggreven et al., 2005;
Rinkel et al., 2008; de Bruijn et al., 2009).

The results in the present study indicate that patients do
maintain a similar overall speaking rate as controls and
also similar duration of VOT in voiceless consonants (see
Fig. 3 for /p/1) but not in voiced consonants where patients
need more time. In general, patients have a higher amount
of voicing during voiceless stop consonants compared to
controls (see Fig. 3 for /p/1). These findings indicate that
patients treated for oral or oropharyngeal cancer have
more difficulty coordinating articulatory speech move-
ments in conjunction with cessation of vocal fold vibration.
However, differences between patients and controls did not
always reach statistical significance and were not always
consistent for both realizations of the same consonant,
indicating that, although there is an overall difference
between patients and controls, this difference is not very
large or the patient cohort was too small to detect these dif-
ferences. Other drawbacks of the present study are that the
consonants were extracted from running speech meaning
that multiple factors may have had influence on consonant
production. Such influences could be speaking rate, phono-
logical context (coarticulation or assimilation), pattern of
emphasis of syllables or simply a less fluent way of speak-
ing because of difficulty with reading out loud. Further
investigation could rule out these variables by analyzing
speech sounds produced in isolation. We would like to
emphasize that the current results are obtained by analysis
of relatively simple origin. In spite here of, significant
results are found which could be considered as promising
for future research. In a later developmental stage, a more
extensive, dedicated analysis could be used upon a larger
data set. In conclusion, the analysis in the present shape
is not yet clinically relevant and further research is strongly
recommended, but the obtained results are interesting and
valuable –for this stage of development.
5. Conclusion

Objective analysis by acoustic-phonetic measures and
artificial neural network analysis of stop consonants in
speech of patients treated for oral or oropharyngeal cancer
is feasible and valid. Further research is ongoing with lar-
ger study samples enabling more in depth analysis and
external validation. Results contribute to further develop-
ment of a multidimensional speech evaluation protocol to
be used for research purposes and clinical practice.
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