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Abstract

Language is the best example of a cultural evolutionary system, able to retain a phylogenetic signal over many thousands of
years. The temporal stability (conservatism) of basic vocabulary is relatively well understood, but the stability of the
structural properties of language (phonology, morphology, syntax) is still unclear. Here we report an extensive Bayesian
phylogenetic investigation of the structural stability of numerous features across many language families and we introduce
a novel method for analyzing the relationships between the ‘‘stability profiles’’ of language families. We found that there is a
strong universal component across language families, suggesting the existence of universal linguistic, cognitive and genetic
constraints. Against this background, however, each language family has a distinct stability profile, and these profiles cluster
by geographic area and likely deep genealogical relationships. These stability profiles seem to show, for example, the
ancient historical relationships between the Siberian and American language families, presumed to be separated by at least
12,000 years, and possible connections between the Eurasian families. We also found preliminary support for the
punctuated evolution of structural features of language across families, types of features and geographic areas. Thus, such
higher-level properties of language seen as an evolutionary system might allow the investigation of ancient connections
between languages and shed light on the peopling of the world.
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Introduction

Historical linguistics [1] investigates the genealogical relation-

ships between languages using a time-honored and complex

methodology [2]. Recently, striking parallels between language

and other evolutionary systems – biological and cultural – have

been identified [3,4] prompting an increasingly successful use of

modern phylogenetic methods inspired by evolutionary biology

[5–9]. A major area of current interest concerns the stability over

time of various components of language and what they can reveal

about human history and universal constraints with origins in

human cognition and learning [6,7,10]. The rates of replacement

in the basic vocabulary (or Swadesh list [11]) – the 200 odd

wordforms expressing the most stable meanings in language – are

relatively well understood [12], with the frequency of use being

suggested as an important explanatory factor in recent work by

Pagel and colleagues [4,5]. These rates seem to be correlated

across language families, so that lexical meanings stable in, for

example, Indo-European languages also tend to be stable in Bantu

or Austronesian languages [5,8,13], as well as across extremely

broad geographical regions [14].

The maximal timedepth of historical reconstruction using

vocabulary methods is generally conceded to lie at about 10,000

years before present [15], leaving scant hope of connecting the

250+ language families of the world [16] or of revealing

relationships that stretch back into the Pleistocene. However, it

is possible that structural features (such as aspects of the phoneme

inventories, morphology and syntax) might well be able to preserve

information about more ancient relationships. One added level of

complexity in studying such structural features is that they

represent abstractions over patterns across many languages and

that their values necessarily include a degree of subjectivity. For

example, even apparently simple and uncontroversial concepts

such as ‘‘noun’’ and ‘‘verb’’ present difficulties when viewed across

widely different languages [17] making cross-linguistic compari-

sons extremely difficult [18]. In this context, the questions then are

(i.) whether it is possible to isolate the most stable structural

features, akin to the conservative basic vocabulary, and (ii.) what

this might reveal about the evolution of current linguistic diversity.

Unfortunately, the stability of the structural features of language

is currently less well understood and has proved more controver-

sial due to divergent empirical findings and theoretical positions.

There are several possible approaches to defining and quantifying

the stability of structural features (see, for some recent examples

[19–22]) varying in the accent placed on the vertical (genealogical)

and horizontal (contact) processes in language. There are sugges-

tions, such as Nichols’ [16] work in linguistic typology and the
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more recent phylogenetic approaches of Dunn and colleagues

[6,10], that structural features are stable enough to retain

phylogenetic signals of relationships between languages over much

deeper time depths than the most conserved vocabulary, and that

they might even be better than genetic markers at conserving a

vertical historical signal against population admixture [10]. On the

other hand, a recent comparison conducted by Greenhill and

colleagues [8] of structural features and the basic vocabulary

suggests that structure and vocabulary have similar stabilities (a

finding also supported by a different approach [22]), but structural

features might be more prone to borrowing, making them less

reliable sources of information about the genealogical relationships

between languages (see also [23] for a similar suggestion). The

study notably suggests that the stability of structural features varies

across language families [8], leading the authors to claim that their

findings ‘‘do not support the existence of a set of universally stable

typological features’’ (p.6). This pessimistic conclusion about the

prospects for using structural features for historical purposes may

seem supported by the recent findings by Dunn and colleagues [7]

that patterns of correlated evolution among types of word order

are different among four major language families. This is in

apparent contrast, however, with the report by Dediu [9] that

there is agreement on the stability of structural features across a

large sample of language families, suggesting that the stability of a

particular structural feature tends to be independent of the

language family concerned.

How are we to reconcile these divergent findings? Are structural

features more stable or less stable than the basic vocabulary? Are

some structural features inherently more stable than others (in a

manner similar to the basic vocabulary) or is their stability fully

determined by idiosyncratic properties and historical contingencies

specific to each language family? And can we use structural

features to peer into the deep past, beyond the 10,000 years

horizon of the classic comparative method in linguistics?

It will take a much more sustained effort to use structural

features in historical reconstruction before we will have definitive

answers to these questions. But meanwhile we believe that by

taking a more abstract approach we may be able to offer a

reconciliation of these divergent opinions, while providing

important groundwork for future progress in this area. We show

here that the cultural evolution of structural features is simulta-

neously shaped by universal tendencies, language family-specific factors

and deep genealogical and areal processes acting across language

families. Thus, the dichotomy between universal tendencies and

language family-specificity in what concerns structural stability is a

false one, given that all three levels are present at the same time.

This three-way partitioning of structural stability among language

families is metaphorically similar to the structure of our species: we

are, simultaneously, fundamentally the same as each other while

being unique individuals who are more similar within kin groups

than across them. Or, as Murray and Kluckhohn [24] put it

‘‘Every man is in certain respects (a) like all other men, (b) like

some other men, (c) like no other man’’ (p. 53). The universal

component – Murray and Kluckhohn’s (a) –, whereby some aspects

of language tend to be stable across all families, might point to

biological and cognitive biases affecting language acquisition,

usage and processing [25,26]. The language family-specific factors –

Murray and Kluckhohn’s (c) – include idiosyncratic affordances

for language change [7] and historical accidents. Finally, the

differences between families are not entirely unconstrained –

Murray and Kluckhohn’s (b) – and we show here that they might

be patterned by deep historical relationships between languages.

Rather than directly using the patterns of values of structural

features to infer the historical relationships between languages, we

here propose investigating the patterns of stability of these features

across language families. In this manner, we use the language

families constructed independently and prior to the application of

our method (and ideally using the historical linguistic comparative

method) to infer the stability of structural features in those families

– what we call here the language family’s stability profile. Essentially,

the stability profile of a language family represents the relative

stabilities (from the most stable to the most unstable) of a set of

structural features in this family. The stability profile of a family is

an abstract, mathematical concept which is in itself completely

agnostic as to the existence or not of universal tendencies,

language family-specific and intra-family processes. Only sets of

stability profiles computed for several families can shed light on

such questions through their mutual relationships.

We use these stability profiles estimated for several language

families to infer deeper relationships between these families, on the

assumption that while individual structural features might be

relatively easily transferred across language (and even language

family) borders or change in a short time, the stability profiles

might be more resistant to such processes. This is due to the fact

that a stability profile summarizes the historical changes of the

whole set of structural features across a whole set of related languages during

the entire history of the family. Borrowing one or more features would

not dramatically change the stability profile of the language family

or families involved, which require alterations to coherent systems

of many inter-related features where components are not free to

change at will (as Meillet put it ‘‘… que chaque langue forme un

système où tout se tient …’’; in our translation from French: ‘‘…

that every language is a system where all parts interact …’’) [27]).

Certainly, there are cases of important restructuring where several

features change together, and in intense contact situations this

restructuring can be massive, but it probably rarely affects enough

members of a language family in such a coherent manner that it

will alter the family’s stability profile. We suggest that, as in

genetics [28], some features might be hubs in the structural

network of the language system while others are more peripheral,

with the first type more resistant to change and borrowing and the

second more prone to it, as proposed by the (extended) complexity

hypothesis in evolutionary biology [29,30]. Such an account may

be consistent with the frequency explanation shown to play a role

in vocabulary [4] in that hub structures may be more frequently

used in linguistic exchanges and thus resistant to change.

To pursue these issues, we examined the stability of a large set of

typological features across many language families, under a range

of different assumptions to test the robustness of the findings. Here,

we understand stability in a genealogical (vertical) context as the

tendency of a structural feature to retain its ancestral value across

subsequent language splits. Thus, a stable feature will tend to have

the same value across all languages descended from the same

proto-language. This is but one possible meaning of stability as

applied to linguistic typology, but it is the currently best quantified

and understood type of stability due to its parallels in evolutionary

biology (see Section ‘‘Comparing structural stability across

methods’’). For a given language family, we estimated the stability

of a set of features using a Bayesian phylogenetic approach which

takes as given the language family tree and the observed feature

values in the family’s languages. Of relevance here is that the

Bayesian phylogenetic software produces posterior distributions of

estimates of ancestral states (values that the features had at the

tree-internal nodes) and the rates at which feature values have

changed across the tree.

In order to control for various sources of potential biases, we

used several different Bayesian phylogenetic software packages,

different quantifications of stability, different outgroup choices,
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language classifications and data codings [9], resulting in 12

distinct datasets. Due to distinct assumptions and codings, the

datasets have different degrees of resolution, but the results

correlate to a very high degree; consequently, but solely for

presentation purposes, we illustrate here with a single represen-

tative dataset (see Materials and Methods). We compare the

resulting stability estimates across language families and show that,

in addition to a background agreement in feature stability, the

variance in stability between language families is geographically

and historically patterned.

This approach, using higher-level properties of language viewed

as a system evolving through time, promises to open up a window

on processes that have shaped human prehistory on a deep time

scale lying beyond the currently available methods.

Results

Drawing on The World Atlas of Language Structures [31,32], we

estimated the stability of a large set of structural features (such as

phoneme inventories, word order or types of negation; see

Materials S1 for the full list) across more than 50 language

families in total using a Bayesian phylogenetic approach. More

specifically, to assess the robustness of the findings, we used two

different Bayesian phylogenetic software packages (MrBayes 3 [33]

and BayesLang [9]), several outgroup choices, three different

language classifications (WALS [31], the Ethnologue [34] and a

collection of more orthodox historical linguistic classifications [35])

and two types of data codings (binary and polymorphic), resulting

in 12 distinct datasets (Materials and Methods, Section

Primary data and stability estimation). This procedure

allowed us to control for the influence of various sources of

potential biases, including the specific method for estimating rates

of change on phylogenies, coding biases in the data, and the effect

of the classifications of languages into genealogical units and of the

degree of resolution of these classifications. Because the two

codings result in different numbers of (polymorphic vs. binary)

features and the two software packages used have different

assumptions and minimum requirements, the composition of the

12 resulting datasets differs in details (see Materials S1), but the

results reported below are similar.

Structural Features of Language Evolve in Punctuational
Bursts

Atkinson and colleagues [36] have recently shown that the basic

vocabulary does not evolve gradually but shows bursts of rapid

change following language splits. Essentially, the amount of

evolution on the path leading from the root of the tree to a

language is positively correlated with the number of nodes (splits)

on the path. Using a complex methodology which controls for

phylogenetic relatedness and the so-called ‘‘node-density’’ artifact

[37] in three language families (Indo-European, Bantu and

Austronesian), they find that between 9.5% and 33% of the

vocabulary change is due to punctuational bursts around splitting

events [36]. Here we use a much simpler method to explore the

possibility that structural change might also follow a punctuational

model by computing the correlation between path length and the

number of nodes (Methods Section: Punctuated evolution).

We found that across all language families and datasets, the

correlation between path length and number of nodes is very high

(range 0.65–0.80, mean = 0.75, sd = 0.046), suggesting that

punctuational bursts might explain about 50% of structural

change. There are large differences between language families

and datasets (Materials S1) with most families showing a positive

correlation (range 20.66–0.87, mean = 0.37, sd = 0.32; one-

sample t-test comparing to 0: t(265)~18:41,pv2:2:10{16). We

also estimated the strength of punctuated evolution for different

categories of linguistic features for the four datasets using Harald

Hammarström’s classification and found important punctuational

effects for all categories (on average on the order of 25%), and

small but significant differences between them

(F (6,2866)~35:2,pv2:10{16 across all families). Phonology and

Morphology show the lowest punctuational effects (on the order of

20%), while Nominal Categories, Word Order and Simple Clauses show

the biggest effects (on the order of 35%); see Materials S1. When

estimating punctuated evolution for each category in each family

(Materials S1), we discovered quite extensive variation between

categories across families (the interaction between family and

category is highly significant, F (188,2608)~6:1,pv2:10{16), but

all categories tend to show consistent punctuational evolution in all

families (one-sample t-tests comparing each category across

families to 0 are highly significant, pv2:10{16). Interestingly,

the strongest punctuation is shown by the largest families and,

while this could be entirely an artifact of better sampling and

branch length estimation, it might also suggest that large and small

families evolve through different processes. Thus, within the limits

of this method, our data suggest that structural features also evolve

in punctuational bursts around language splits.

The Relationships between Stability Profiles Suggest
Universal Tendencies in Structural Stability

As explained in detail in Materials and Methods, the stability

profile of a language family captures the stabilities of a set of

structural features during the evolution of that family. This

stability profile can be visualized as a point in a multi-dimensional

stability hyper-cube (see Figure 1 and Methods Section: The
stability profile of a language family) determined by the

features considered. In any given dataset there are several

language families, and for each family we computed its stability

profile, representing all the features’ stabilities in this family. One

such profile can be visualized as a point in the multi-dimensional

stability hyper-cube determined by the structural features consid-

ered in the dataset, and the profiles of all families in the dataset

form a cloud of such points.

The ‘‘shape’’ of this multi-dimensional cloud contains informa-

tion about the relationships between the stability profiles of the

language families considered (Methods Section: The ‘‘shape’’ of
stability profiles), in the sense that a ‘‘compact’’ (‘‘clustered’’)

cloud points to similar stability profiles, a ‘‘dispersed’’ cloud

suggests dissimilar profiles, while a ‘‘random’’ one indicates a

possible lack of relationships between these stability profiles. To

investigate this multi-dimensional shape, we adapted two tech-

niques from the analysis of spatial point patterns [38] (Methods

Section: The ‘‘shape’’ of stability profiles). Please note that

we use ‘‘spatial’’ to refer to abstract multi-dimensional mathemat-

ical spaces, reserving ‘‘geographical’’ or ‘‘geography’’ for the real

space in which populations speaking languages evolve and

interact.

First, we compared the shape of the relationships between the

stability profiles of the language families to those expected from a

random distribution, and found that the stability profiles across

language families are much more similar (more clustered in the

stability hyper-cube) than expected by chance (pv10{4). We

replicated this by generalizing Ripley’s K function [39] to the

multi-dimensional stability hyper-cube (Methods Section: The
‘‘shape’’ of stability profiles). This generalized Ripley’s K

function compares the properties of the observed stability profiles

to those of an equivalent cloud of points generated by a random

Abstract Profiles of Language Structural Stability
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Poisson process, and determines the nature of its non-randomness

(clustered or dispersed) and its associated significance. Using this,

we strongly rejected the null hypothesis of complete spatial randomness

[38], with pv10{4 in favor of very strong clustering of stability

profiles (Materials S1). Thus, the stability profiles are clumped

together in the stability hyper-cube, showing that the stability

profiles of the language families involved are much more similar

than expected by chance. This suggests that there is a strong

universal component of the structural stability of languages, manifested

as an intrinsic, language family-independent tendency for struc-

tural features to systematically differ in their relative stability.

This finding supports and complements our earlier results [9],

obtained using a different methodology for comparing the stability

of structural features across language families. The consensus

ranking among the 12 datasets of these features, from the most

stable to the most unstable, is given in Materials S1 (see also [9]),

and the top and bottom 15 are given in Table 1. Work in progress

involving the first author (Dediu, D. & Cysouw, M. in preparation,

Some Structural Aspects of Language are More Stable than

Others: A Comparison of Seven Methods), comparing seven

diverse methods of conceptualizing and estimating the stability of

structural features from the linguistic typological literature

(including [9]), concludes that they all agree in finding that some

features tend to be more stable than others (see Section

Comparing structural stability across methods).

The Stability Profiles also Show Patterns of Similarity
among Language Families

The stability hyper-cube is a high-dimensional space (having

between 68 and 86 dimensions depending on the number of

features considered) and, in order to visualize on paper the

relationships between stability profiles of the language families in

these spaces, we used multi-dimensional scaling (MDS; [40]; a

technique for projecting distance matrices on a space with lower

dimensions with minimal distortions) and networks (using Neighbor-

Net [41] as implemented in the SplitsTree4 [42]; a method for

representing a space of probable but partially conflicting trees). We

stress that both the MDS plots and the networks are used here

simply as visual representations of the multi-dimensional relation-

ships between the stability profiles, and we emphatically warn

against automatically interpreting these networks in a phylogenetic

manner. Similar (neighbouring) stability profiles could be a result

of multiple factors, including descent from a common ancestor,

contact and borrowing, chance, or various types of constraints on

language change.

Both methods reveal the existence of striking patterns of

variation across language families, showing a priori unexpected

geographic clusters (see Figures 2 and 3 illustrating the same dataset,

and Materials S1 for all 12 datasets): the American language

families tend to group together along geographic lines (South,

Central and North groups) and the North-Eastern Eurasian

(Siberian) language families are attracted to the American cluster

(Figures 2 and 3, black arrow). Weaker tendencies to clustering are

also shown by Eurasian (except for North-East), and African

(except Khoisan) language families. Interestingly, Australian and

Papuan languages are very distanced from each other. Khoisan and

Australian families are outliers, away from all the other families.

These patterns are striking as there is no a priori reason why the

stability profiles of language families, as opposed to patterns of

feature values, should be similar in such a way. In order to

understand these patterns, (a) we tested the relationship of stability

profiles with geography, (b) we tried to identify the structural

features most responsible for these clusters, and, (c) we tested the

internal consistency of the clusters in an attempt to rule out false

positives. Finally, reassured that these clusters are robust, we went

on to check if this patterning of the stability profiles supports some

of the proposed macro-families in the linguistics literature. We

describe these procedures in turn.

These Patterns Seem to have a Geographic Component
Globally, there are weak to moderate but significant Mantel

correlations [43] between the similarity of the stability profiles of

language families and their geographical closeness (Methods

section: Geographic distances between language families):

0:05ƒrƒ0:32, median(r)~0:22, combined pv10{9 (Materi-
als S1). This suggests that language families closer geographically

also tend to have similar stability profiles. Such a positive

relationship between geography and stability points to a weak or

moderate role played by geographical distance in shaping the

stability profiles of language families. Geographical distance would

play, in this case, a role of proxy for other causal factors, such as

language contact, as this is, in general, facilitated by geographical

closeness. However, genealogically related languages also tend to

be in close geographical proximity due to mechanisms of language

expansion and differentiation. (Another possibility could be

represented by systematic biases in the coding of structural

features in WALS, reflecting geographically-based traditions and

theoretical stances, but we believe this possible source of artifacts

to be negligible given that the stability profiles are abstract

constructs resulting from complex inferential processes using the

whole structural information on groups of related language).

One approach to understanding this positive relationship

between stability profiles and geographic distance is to find out

which subsets of structural features maximize it. If only very stable

features are required then the relationship likely reflects deep

events, while very unstable features might point to recent

phenomena. We used a genetic algorithm-based search (Methods

section: Features maximizing the correlation between

Figure 1. The stability hyper-cube for two features F1 and F2, the
stability profiles of three language families L1, L2 and L3 and
the stability distances between language families (shown for L1

and L2). Please note that L2 and L3 are very close in this space.
doi:10.1371/journal.pone.0045198.g001
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stability and geographic distances) and we found that, in

general, a small subset of 10 to 18 features are required to

maximize this correlation. These features include both very stable

and very unstable ones and tend to differ among datasets

(Materials S1), suggesting that probably a combination of both

ancient and more recent phenomena plays a role.

Statistical Robustness of Supra-family Patterns
Finally, we tested the statistical robustness of the groupings

suggested by the MDS plots and networks, on one hand, and by

the existing literature on deep relationships between established

language families, on the other, using a permutation approach

(Methods section: Testing the robustness of groups of
language family). This method compares the properties of the

stability profiles of an observed subset of language families of

interest (say, a particular proposal for ‘‘Nostratic’’, a suggested

macrofamily including various Eurasian language families such as

Indo-European and Uralic [44]) to the properties of 10,000

randomly permuted subsets of the same size chosen from the

whole (or part of the whole) set of families. For each subset of

interest we performed this permutation-robustness test in each of

the 12 datasets, obtaining 12 empirical (‘‘permutation’’) p-values.

Each of these 12 p-values indicates the probability that the

properties of the stability profiles of the language families included

in the subset of interest are ‘‘special’’ relative to random

assemblages of language families from the larger set. Thus, p-

values smaller than an a priori agreed a-level (usually 0.05) indicate

that the subset of interest is ‘‘special’’ with regard to the language

families in the corresponding dataset. ‘‘Special’’ in our case here

means simply more clustered in the stability hyper-cube (the

language families included are more similar in their stability

profiles) than expected by chance in the context of the dataset. This

provides a method for testing whether a ‘‘macro-family’’ proposal

is supported by the particular patterns of retentions and losses of

structural features in the cluster of families being tested. Given the

positive influence of geographical closeness, and thus typological

Table 1. Top and bottom 15 most stable features.

Rank Polymorphic features

1 Absence of Common Consonants

2 Front Rounded Vowels

3 The Optative

4 Vowel Nasalization

5 Obligatory Possessive Inflection

6 Order of Genitive and Noun

7 N-M Pronouns

8 Nominal and Locational Predication

9 Uvular Consonants

10 M-T Pronouns

11 Order of Object and Verb

12 Order of Numeral and Noun

13 Numeral Classifiers

14 Order of Subject and Verb

15 Tone

… …

54 Locus of Marking in the Clause

55 Voicing in Plosives and Fricatives

56 Symmetric and Asymmetric Standard Negation

57 Applicative Constructions

58 Relationship between the Order of Obj. and Verb and the Order of Adj. and Noun

59 Order of Person Markers on the Verb

60 Indefinite Articles

61 Asymmetrical Case-Marking

62 Definite Articles

63 Third Person Pronouns and Demonstratives

64 Position of Polar Question Particles

65 Number of Cases

66 Ordinal Numerals

67 Consonant-Vowel Ratio

68 Consonant Inventories

This ranking represents the consensus among all 12 datasets as given by the first principal component (PC1) of a Principal Component Analysis run on all polymorphic
ranks, explaining 80:9% of the variance and representing the agreement. See Materials S1 for details and WALS [31,32] for the description of the features.
doi:10.1371/journal.pone.0045198.t001
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diffusion by contact, we also controlled for it by comparing the

clustering of the considered subset of language families in the

stability hyper-cube with that expected for a random equivalent

subset separated by the same geographical distances.

Thus, for each subset of interest we performed the same

statistical test (our permutations-based test of robustness) 12 times

on the 12 different datasets. Clearly, these 12 data-sets are not

independent measures, so the standard meta-analytical statistical

tools for combining p-values [45,46] cannot be used a priori.

Nevertheless our 12 data-sets do not correlate perfectly either,

requiring a more refined approach to combining their p-values,

described extensively in Methods section: Combining p-values
from non-independent experiments. In summary, we

combined these empirical p-values from the 12 datasets using five

methods, conservatively taking the largest p-value for the subset of

interest to guard against false positives (see Tables 2 and

Materials S1). We will also report the number of methods (out of

all 5) for combining p-values that result in a significant result at the

a-level of 0.05.

Some Patterns Suggest Possible Ancient Relatedness
The results are intriguing and could provide support for some

proposed macro-families on a large scale. The permutation test

found that the stability profiles of the American language families

are much more similar than expected by chance (p~0:0003) and

this holds even after controlling for geography (p~2:7:10{8), a

result found using all 5 methods for combining p-values; Table 2

(please note that as discussed in the Methods section, most cases

where controlling for geography results in a much lower p-value,

are artifacts of our conservative approach of picking the highest

combined p-value). Moreover, South American families also form

a coherent sub-group (p~0:0054; 5 methods) even after control-

ling for geography (p~0:00018; 5 methods), while North

American families form their own subgroup only when not

controlling for geography (p~0:018, 5 methods and p~0:072, 2

methods, respectively). Importantly, the Siberian language families

(comprising Chukotko-Kamchatkan, Tungusic and Yukaghir; see Mate-
rials S1) group robustly with the Americas (p~0:00022, 5

methods and, after taking geography into account, p~0:00096, 5

methods). In particular, Siberia clusters especially with North

America (p~0:00039, 5 methods and 0:034, 4 methods after

controlling for geography) and with South America (p~0:02, 5

methods, and 0:014, 5 methods when controlling for geography).

Africa shows a suggestion of forming a coherent group

(p~0:074, 3 methods), but this evaporates when controlling for

geography (p~0:39, 0 methods).

Probably the best known proposal for a macro-family is

represented by the various versions of Nostratic (see [44] for a

critical assessment) covering several Eurasian and North African

language families. We found no evidence for a version of Nostratic

comprising Afro-Asiatic, Indo-European, Dravidian and Uralic (‘‘Nos-

tratic v2’’ in Table 1; p~0:24, 0 methods, and p~0:77, 0

methods, when controlling for geography), but there is a positive

indication for another version of Nostratic comprising Altaic (or

Mongolic + Turkic), Indo-European and Uralic (‘‘Nostratic v1’’ in

Table 1; p~0:011, 5 methods, and p~0:13, 3 methods, when

controlling for geography). Interestingly, a comparable indication

seems to hold for the whole of Eurasia (p~0:036, 5 methods, and

Figure 2. Multidimensional scaling (MDS) plot of the relation-
ships between the stability profiles of the language families for
the MBE dataset. Shown are the first (horizontal) and second (vertical)
dimensions. We distinguished ten geographical regions represented by
a distinct color and single digits, as follows: South America (0, dark blue),
Central America (1, blue), South America (2, light blue), Southern Africa
(3, black), Northern Africa (4, red), Eurasia (5, pink), South Asia (6,
orange), Oceania (7, green), Papua-New Guinea (8, dark green) and
Australia (9, cyan). The language families are represented by single
lower case letters allocated in alphabetical order per geographical
region, as follows: Arawakan (0a), Carib (0b), Macro-Ge (0c), Tucanoan
(0d), Tupi (0e), Chibchan (1a), Mayan (1b), Oto-Manguean (1c), Uto-
Aztecan (1d), Algic (2a), Hokan (2b), Na-Dene (2c), Penutian (2d),
Salishan (2e), Wakashan (2f), Khoisan (3a), Niger-Congo (3b), Afro-
Asiatic (4a), Nilo-Saharan (4b), Altaic (5a), Chukotko-Kamchatkan (5b),
Dravidian (5c), Indo-European (5d), North-Caucasian (5e), Uralic (5f),
Austro-Asiatic (6a), Sino-Tibetan (6b), Tai-Kadai (6c), Austronesian (7a),
Sepik (8a), Trans-New-Guinea (8b), West-Papuan (8c) and Australian
(9a). It can be seen that most of the American language families are
distinguished from the others by the first dimension (left side)
respecting the north (bottom) - south (top) geographic direction as
well (second dimension). Eurasia occupies the bottom-right quadrant
while South Asia and Oceania group together as well. Interestingly,
Chukotko-Kamchatkan (5b; marked with a black arrow) clusters with the
(Central and North) American language families. See supplementary
figures in Materials S1 for all 12 datasets.
doi:10.1371/journal.pone.0045198.g002

Figure 3. Network representation of the relationships between
the same stability profiles as in Figure 2 (same conventions
apply). Same clusters as in Figure 2 can be observed but the
attachment of Chukotko-Kamchatkan (5b; marked with a black arrow) is
now clearer with the North American families Algic (2a), Penutian (2d),
Wakashan (2f), and the Central American Uto-Aztecan (1d) whose
geographical range, in fact, extends well into North America. See
supplementary figures in Materials S1 for all 12 datasets.
doi:10.1371/journal.pone.0045198.g003
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p~0:70, 3 methods, when controlling for geography). Quite

convincing is the evidence that Core Eurasian families (comprising

Altaic – or Mongolic + Turkic –, Dravidian, Indo-European, Uralic and

the Caucasian families) might form a group (p~0:0013, 5

methods, and p~0:094, 4 methods, when controlling for

geography).

There is a weak signal characterizing the set of so-called

‘Papuan’ families, where ‘Papuan’ just means non-Austronesian

languages in the greater New Guinea areas (p~0:042, 4 methods,

but not supported by any method after controlling for geography).

Moreover, there is no evidence at all for Australia forming a

coherent cluster, nor for groupings such as Papuan + Australian,

and South-East Asian + Austronesian.

Finally, Reid’s [47] controversial proposal suggests that the Tai-

Kadai and Austronesian language families are related forming the

Austro-Tai group; we found a weak suggestion for this hypothesis

(p~0:070, 3 methods, and p~0:12, 3 methods, when controlling

for geography).

Discussion

The findings presented here strongly support the existence of a

universal tendency across language families for some specific

structural features to be intrinsically stable across language families

and geographic regions, as previously reported by the first author

[9]. One implication is that the most stable structural features of

languages could be useful for deep historical reconstruction just

like the most conservative portion of the vocabulary. However,

one potential issue is that structural features have a much more

limited set of possible states than the vocabulary, possibly leading

to faster saturation (exploration of the possible states), and

corresponding loss of phylogenetic signal. While this might indeed

seem to theoretically limit structure-based investigations to

shallower timedepths than those based on the vocabulary, much

depends on rates of change of structure vs. vocabulary. Clearly,

taken as a whole, vocabulary changes at much faster rates than

structure (we can all recognize changes in our own lifetimes; see

[48]). This is why vocabulary methods usually restrict themselves

to the most conservative core of the lexicon, although there are

important exceptions [48,49]. In contrast, recent work by Dunn

and colleagues [7,50] suggests that on average a particular word-

Table 2. Statistical robustness of sets of language families.

Set of families{ Raw Controlling for geography

Most conservative Number signif. Most conservative Number signif.

Africa 0.074 3 0.39 0

America 0.0003 5 2.69 ? 1028 5

S America (vs world) 0.0054 5 0.00018 5

S America (vs
America)

0.049 4 1.20 ? 1029 5

C America (vs world) 0.38 0 0.90 0

C America (vs
America)

0.99 0 0.96 0

N America (vs world) 0.018 5 0.072 2

N America (vs
America)

0.12 3 4.61 ? 10210 5

America + Siberia{ 0.00022 5 0.00096 5

S America +
Siberia

0.02 5 0.014 5

C America + Siberia 0.37 0 0.42 0

N America +
Siberia

0.00039 5 0.034 4

Eurasia 0.036 5 0.70 3

Core Eurasia 0.0013 5 0.094 4

Nostratic v1 0.011 5 0.13 3

Nostratic v2 0.24 0 0.77 0

SE Asia + Oceania 0.48 0 0.83 0

Austro-Tai 0.070 3 0.12 3

PNG 0.042 4 0.22 0

Australia 0.42 0 0.51 0

PNG + Australia 0.87 0 0.99 0

The most conservative combined p-value and the number of combined p-values significant at a-level = 0.05 for the five methods (Fisher, Z-transform, Hartung, Simes and
Makambi) as applied to all 12 datasets for raw and geography-corrected stability distances. The combined p-values significant at a-level = 0.05 are in bold). The sets
with at least 4 significant combined p-values in both the raw and geography-corrected columns are also in bold. See Materials S1 for full details.
{See Materials S1 for the exact composition of these sets. (vs America): randomization only within the Americas. (vs world): randomization not restricted.
{Here we report the results for the maximal composition of ‘‘Siberia’’, namely Chukotko-Kamchatkan, Tungusic and Yukaghir (the results are very similar when excluding
Tungusic). See text and Materials S1 for details.
doi:10.1371/journal.pone.0045198.t002
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order change, for example, occurs just once in tens of thousands of

years of evolution within a language family. As we have shown

here and in [9], structural features also differ in their stability,

some being labile, some highly conservative. We have also shown

that this scale of stability has both universal and more locally

restricted versions, all of which can be exploited judiciously for the

exploration of deep historical relationships between languages.

Another problem that might plague phylogenetic reconstruc-

tions based on structural features is represented by the fact that

they can be affected by horizontal processes such as borrowing [8].

Of course, language contact affects all components of language

[51], especially vocabulary, and while vocabulary lists selected for

conservatism (such as the versions of the Swadesh list) might be

more resistant to it than the rest of the vocabulary, they are

certainly not immune [48,52]. There are significant misunder-

standings of the role of contact in linguistic phylogeny, as pointed

out in [50]: changes, whatever their source, will still be reflected in

the phylogenetic profiles of language families, so the borrowing of

structure should not fundamentally undermine the inference of

phylogeny. In fact, recent simulation studies [53,54] support the

idea that phylogenetic inferences are robust to the degree and type

of horizontal processes affecting language. When estimating rates

of change in a phylogenetic framework – as done here – any source

of change affecting language structures will count. Thus, if a

feature is easily borrowed, these changes will be detected exactly as

if determined by other causes of language change. Also, we find

that the stabilities estimated by our phylogenetic method accord

very well with those estimated by methods that explicitly model

horizontal processes in language. More fundamentally, we believe

that the manner in which horizontal processes in language are

treated reflects deep philosophical questions concerning the

historical processes and the nature of the entities whose history

is reconstructed, in a manner parallel to the current controversy

surrounding horizontal genetic transfer and the status of the Tree

of Life in evolutionary biology [55–57].

The method proposed here attempts to take into account these

issues (i) by considering a large number of structural features covering

diverse aspects of language, (ii) by using Bayesian phylogenetic

methods which can partially incorporate the uncertainty generated

by horizontal processes into the posterior distributions, and (iii) by

focusing on higher-order properties of the evolutionary dynamics of patterns of

structural features.

While supporting the case for a core set of stable structural

features across language families, our approach also reveals that

the residual differences in structural stability between families can

carry a historical signal that may be used to throw light on human

prehistory. We found that the stability profile of a language family

carries a signal reflecting both its deep genealogical relationships

and its areal membership. Controlling for geography removed

about half of the higher-level clusters of language families we

found, suggesting that this similarity between stability profiles is

not fully explained by contact phenomena, leaving as primary

explanation the persistence of deep genealogical relationships.

However, factoring out geography is also likely to factor out some

genuine genealogical relations, since in a model of language

diversification driven by population splits, related languages (and

later, families) will also stay close in geographical space,

confounding geography and underlying phylogeny. Moreover,

this geographical closeness also promotes borrowing across sub-

lineages, promotes language shifts, standardization, etc. As

previous research on deep historical relations between languages

has noted [16], structural profiles of languages can reflect both

deep phylogeny and ancient contact. Supporting this dual

contribution is our finding that the positive correlation between

stability profiles and geographic distances is maximized by a subset

of features containing both stable and unstable structural features.

Whatever the actual relative contribution of horizontal and

vertical processes in shaping the patterning of language family

stability profiles, it seems that these profiles are able to conserve

ancient connections between language families. While it is well-

known that values of structural features show geographic

patterning due to vertical and horizontal processes, we have

shown here that, abstract stability profiles are also geographically

patterned, probably preserving a signal of much older or larger-

scale such processes. For example, the strong clustering of the

Americas and the Siberian languages fits the general migration

patterns inferred from archeology and genetics [58]. The recent

proposal of the linguistic affiliation of the Yenisean languages of

Siberia and the Na-Dene languages of North America [59] could

represent a potentially more recent linguistic example. In support

of our method is the finding that while the whole of the Americas,

and within it, North and South Americas form clusters, Central

America – a well-known linguistic area [60] – does not, suggesting

that the method is not overtly sensitive to relatively recent

horizontal processes. It is important to note that very different

approaches using the distributional patterns of structural linguistic

features have recently suggested that the Americas share certain

such features [61], and that it might even be a member of a

putative linguistic area encircling the Pacific [62]. This suggests

that stability profiles can reveal ancient connections, perhaps in

this case dating back to the original peopling of the Americas at

least 12,000 [63] years ago. Our findings provide some weak

indication for a grouping within Papua-New Guinea, and cannot

reject the Austro-Tai hypothesis. The lack of similarity between

Papuan and Australian languages seems to suggest distinct

demographic events taking place before or after the breaking up

of the Sahul [64] and eroding any signal of relatedness. Finally, we

did find support for one version of Nostratic, and for a Core

Eurasian set of language families. Also, the whole of Eurasia

received some support as a grouping of language families. Thus,

our method seems to suggest some ancient connections between

the Eurasian language families on one hand, and the American

families on the other, but it is unclear if these connections reflect

ancient genealogy or contact phenomena.

We believe that there is no contradiction between our findings

here that the pattern of inter-language family variation in the

higher-order stability profiles has three components (universal,

language family-specific and genealogical/areal) and work sug-

gesting that there are no language universals in general [17,65] or

typological implicational universals in particular [7]. More

precisely, our universal tendencies for some structural features to

be more stable than others across language families (see also [9])

are just that: statistical tendencies far from rigidly dictating the exact

ranking of the features in any particular language family. These

tendencies could result from ‘‘soft’’ cognitive, articulatory or

auditory constraints or biases [25,66] and/or emerging properties

of languages as evolutionary cultural systems whose main function

is complex communication. It is even possible that these

‘‘universal’’ tendencies reflect the ultimate monogenesis of

language rather than persistent constraints, but this would require

a very high conservatism of the stability profiles. The recent

finding [7,50] that constraints on syntactic change have a lineage-

specific character is also consistent with the idea of stability profiles

reflecting underlying genealogy, although one may expect more

comprehensive studies of more language families to reveal some

underlying commonalities.

Our preliminary finding here that structural features of

language also show punctuated evolution like the basic vocabulary
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[36], and that different categories of features tend to be differently

affected by punctuation across families could help shed light on the

process of language divergence. Future work must investigate the

causes for this variation between language families and categories

of features in the importance of punctuation.

In conclusion, we found that the pattern of relative stability

derived from multiple structural features has both a universal

component and a genealogical/areal component. The universal

component may offer insights into systems properties of languages

in general, together with their contributing cognitive and genetic

biases. The genealogical/areal component may offer a glimpse

into ancient demographic and linguistic processes such as the

peopling of the Americas, and promises some reach beyond the

conventional time horizon of the comparative method in historical

linguistics. In addition, comparative work on this higher, more

abstract level of analysis may help to provide tools for more

focused investigations of historical relationships within geographic

areas: for in suggesting features that tend to be universally stable or

stable within specific language families, this method may allow the

judicious selection of structural features for more conventional

phylogenetic analyzes of historical relationships. We hope that

future work capitalizing on higher-order properties of languages

seen as evolutionary systems will prove fruitful for a better

understanding of language and its evolution.

Materials and Methods

All analyzes reported here were conducted using the open

source statistical environment R versions 2.13 and 2.14 [67].

Primary Data
We used the same primary data (structural features and

languages families) and methods for estimating the features’ rates

of change as in [9], and, therefore, we will only briefly describe

them here. To these, we added a new set of language families

(described below), extending the datasets used in [9]. Moreover,

we greatly extend and complement the analyzes presented there

using a novel approach and methodology, and we enlarge the

focus to the apportionment of variation among language families in

addition to their shared, universal tendencies.

We collected structural data from the World Atlas of Language

Structures (henceforth WALS [31,32], available online at http://

www.wals.info), and we filtered them by removing features with a

high percentage of missing data and a low coverage in terms of the

number of families [9]. The features in WALS have a number of

values varying between 2 and 9 and some of these features could

arguably be regarded as conflating two or more distinct aspects.

Thus, to control for the effects of coding and study the behavior of

such aspects separately, we coded the features as either polymorphic

(the original rank-level coding from WALS; e.g., the feature tone

has three values in WALS, namely ‘‘no tones’’, ‘‘simple tone’’ or

‘‘complex tone’’) or binary (linguistically informed recoding based

on the WALS values; e.g., tone results in two binary aspects: tone1 =

‘‘no tones’’ versus any type of tone, and tone2 = ‘‘complex tone’’

versus ‘‘simple’’ and ‘‘no tones’’). See Materials S1 for the list of

structural features used here, their description and the binary

aspects (if any) and [9] for full details. It should be noted that, on

top of the general issues concerning the comparability of

typological categories across languages [18], WALS introduces

several other difficulties. WALS does not provide the actual values

for several features (such as the number of consonants or vowels in

a language) but instead offers ranked summaries (such as languages

with a ‘‘small’’, ‘‘average’’ or ‘‘large’’ number of vowels), which

artificially increases the homogeneity within such classes and the

differences at the border between classes (i.e., a language with 4

vowels belongs to the ‘‘small’’ category but one with 5 to the

‘‘average’’. Therefore, our results may depend on these charac-

teristics of the WALS (which, with all its imperfections is currently

the best available source of typological information with a large

coverage both in terms of languages and features), but this must be

left for future studies to assess.

Individual languages can be either isolates (such as Basque or Ainu)

when no genealogical relationships with other languages can be

established using historical linguistic methods, or they are classified

as belonging to a language family, representing a genealogical

grouping such as Indo-European. It has to be pointed out that the

classification of languages into genealogical entities (language

families) is a far from simple process and many disagreements

persist as to the number, composition and internal structure of

many language families. For some families (such as Indo-

European) the agreement is greater than for others, while some

are hotly debated (such as ‘‘Altaic’’) or generally considered not to

represent valid genealogical units (such as ‘‘Khoisan’’) [2]. We

avoided making such subjective judgments ourselves and instead

took the ‘‘language families’’ as reported in several sources, each

with its own characteristics. We collected such genealogical

classifications of languages from three different sources: WALS

[31], the Ethnologue [34] and Harald Hammarström’s appendix

to [35], in order to control for the effect these classification might

have on our results. The classifications offered by WALS and the

Ethnologue are not independent and they mostly agree, but there

are also slight differences, especially in what concerns the degree of

specification of these genealogical trees. In both classifications

there are entities with controversial status such as ‘‘Khoisan’’,

‘‘Altaic’’ and ‘‘Australian’’ mostly rejected by orthodox historical

linguists [2]. The classifications in WALS generally recognize only

three levels (‘‘Family’’, ‘‘Genus’’ and ‘‘Language’’), while Ethno-

logue recognizes as many as 14 levels and Hammarström’s 16.

The language families collected by Harald Hammarström for his

investigation into the language-farming co-dispersal hypothesis

[35] follow several stringent criteria such as a ‘‘published

demonstration’’ of their genealogical affiliation using the ‘‘ortho-

dox comparative method’’ as described by Campbell and Poser

[2]. There are no such entities as ‘‘Khoisan’’ or ‘‘Australian’’

present here. Details of these families, including their sources, are

present in the appendix to [35] and a slightly updated electronic

version of their structure was kindly provided to us by the author

in January 2012. We used these electronic files to extract the tree

topology for each language family. We allocated language families

to 10 geographic areas (see Figure 2) loosely following WALS [31].

This allocation is mostly pragmatic, as it enhances the visualization

and presentation of the results without impacting in any way on

the actual process of hypothesis testing, which can consider

arbitrary sets of language families, as described below. Details

about the language families used, their structure and their

allocation into geographic areas are given in Materials S1 and

Figures 1 and 2.

Stability Estimation
For the inference of the features’ rates of change, we considered

each language family as an independent given phylogeny with the

feature values also given for the tips of this phylogeny (the extant

languages). We used a Bayesian phylogenetic approach to

estimating the rates of change. More specifically, to control for

the effects of the specific method for estimating rates of change, we

used two software packages, the widely used MrBayes 3 [33] and

the custom-written BayesLang, specifically designed for the

characteristics of this problem [9]. In general, Bayesian methods
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produce whole posterior distributions of parameter estimates (as

opposed to single point estimates), and our procedure results in a

distribution of estimated rates for each feature in the set of features

for the considered language family. For MrBayes 3 we converted

the language families into a set of constraints specifying the

topology of the tree. The outgroup required by the software for

rooting and rate estimation was represented in turn by each of a

large set of language isolates selected for their feature completeness

in WALS. With these, MrBayes 3 was used to infer branch lengths,

ancient states and the rates of change for the features under

investigation. Likewise, BayesLang does not require branch length

but only a rooted tree topology represented by the language

family. It also estimates branch lengths, ancient states and the rates

of change for the features under investigation, with the difference

that the rates represent the minimum number of changes required

for the estimated ancestral state to result in the observed states

given the evolutionary model assumed for the structural feature.

This estimate is akin to a maximum parsimony model and was

specifically chosen so that it uses a dissimilar method from

MrBayes 3. For more details, please see [9]. Both MrBayes 3 and

BayesLang share general assumptions such as the models of

evolution on tree phylogenies and the computation of the

likelihood of such phylogenies given the observed data, evolution-

ary models and their parameters [68,69]. The main differences are

that while MrBayes 3 was designed for biological datasets (and we

treated the polymorphic features as morphological data and the

binary features as restriction data), BayesLang was designed for the

inference of the evolution of language structural data on fixed

rooted tree topologies and it also accepts more refined (even user-

defined) models of change for a given feature. Another difference

discussed above concerns the type of rates estimated. Using these

methods for linguistic structural data could induce certain biases.

For example, treating linguistic structural data as restriction/

morphological in MrBayes 3 might affect the estimation of rates,

while the parsimony-like estimation in BayesLang could be

affected by long branches. However, as detailed below, the high

correlations between the results produced by these two software

packages seems to suggest that these biases may not be important.

Another possible issue, usually raised in relation to the application

of phylogenetic methods to language, concerns the influence of not

modeling the pervasive horizontal processes affecting language.

However, as detailed in the Discussion, we believe that for this

particular type of investigation, contact is implicitly included as yet

another source of language change, contributing to the instability

of the affected features.

With these, there are in total 12 datasets, each comprising a

software package (MrBayes or BayesLang), a data coding (Binary or

Polymorphic) and a genealogical classification (Ethnologue, WALS or

Hammarström). We will denote these datasets using the initial

letters of the software package, data coding and genealogical

classification: MBE, MBW, MBH, MPE, MPW, MPH, BBE,

BBW, BBH, BPE, BPW and BPH (see Materials S1). Overall,

we analyzed a total of 56 language families represented by 240

unique phylogenies composed of a total of 3836 languages, and 70

polymorphic and 86 binary features.

As explained in [9], to be able to compare these rates of change

across language families and datasets without assuming calibra-

tion, we converted the absolute rates produced by the phylogenetic

software packages to standardized relative ranks varying between 0.0

(most stable) to 1.0 (most unstable), as follows. For a posterior

distribution of absolute rates (representing the results for a feature

in a language family in a dataset), we extracted one by one each

posterior observation of rates and ranked them (using the mean

rank for ties); next, we normalized these ranks to the interval 0.1 as

explained in detail below. For each of the 12 datasets, there is a set

of structural features F~fF1,F2 . . . FNg and a set of language

families L~fL1,L2 . . . LMg (for details see [9]). The application of

MrBayes 3 or BayesLang to a particular language family Lj[L

results in a large but finite sample (of size K ) from the posterior

distribution of absolute rates Ra
ijk, i~1::N, j~1::M, k~1::K ,

representing the kth sampled absolute rate of feature Fi in

language family Lj . This is then converted to the relative rank

sample, Rr
ijk~rank(Ra

ijk; Ra
1jk,Ra

2jk, . . . Ra
Njk), where

rank(xi; x1,x2, . . . xN ) gives the rank of xi among the N numbers

(e.g., rank(0:3; 0:1,0:3,0:5,0:6)~2). Further, these relative ranks

Rr are standardized to Rs
ijk~

rank(Rr
ijk; Rr

1jk,Rr
2jk, . . . Rr

Njk){mr

MR{mr
,

where mr represents the minimum rank and MR the maximum

rank among Rr
1jk, Rr

2jk, . . . Rr
Njk . This standardized stability ranks

distribution Rs
ijk can then be summarized by its mean across the K

extractions, rij~meank~1::K Rs
ijk, the mean standardized stability rank

(but summarizing these standardized stability ranks distribution

Rs
ijk using the median produces similar results) of feature Fi in

language family Lj . Thus, in the end we have the mean

standardized stability ranks per feature, language family and

dataset, representing the input data for the subsequent analyzes

reported here.

Given the novel usage of Harald Hammarström’s [35] more

‘‘orthodox’’ classification here, it is important to quantify how well

the stabilities estimated using it accord with those estimated using

WALS and Ethnologue. To this end, we performed a Principal

Component Analysis [70] on the rankings produced by the 6

binary and 6 polymorphic datasets separately. For both, the first

principal component (PC1) explains most of the variance(92.16%

and 80.96% respectively) and represents the agreement between

the two software packages and three linguistic classifications (all

loadings have the same sign; see Table 1 and Materials S1).

Thus, we confirm and extend the previous finding [9] that the

relative stability of various structural features of language is

conserved across methods and classifications.

Punctuated Evolution
In order to estimate the existence and importance of punctuated

evolution [37] on the structural features of language, we used a

much simpler methodology than [36]. Our method is intended as

an initial exploration of this topic, and is based on the principle

that gradual and punctuated evolution result in different

relationships between path length (the sum of the length of all

branches connecting the root of the tree to a terminal node) and

the number of nodes on the path: no correlation between the two for

gradual evolution and a positive correlation for a punctuational

process [71].

Given that the WALS classification limits the depth of trees to 3,

we will focus here only on the Ethnologue and Hammarström’s

classifications, resulting in 8 datasets (BBE, BBH, BPE, BPH,

MBE, MBH, MPE and MPH). For each dataset and each

posterior tree, we computed the correlation (Pearson’s r and

Spearman’s r) between path length and the number of nodes on

the path for each terminal node (language) in the tree. For

MrBayes the path length is the sum of the lengths of all branches

composing the path, while for BayesLang the path length is

computed as the total number of changes required to transform

the root ancestral states for all structural values into the actually

observed states in the terminal node (language). The two

correlation coefficients used agree very well (Materials S1) such

that we used only Pearson’s r. We computed the percent of
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variation explained by punctuational processes as the square of the

correlation, r2.

For each of the seven categories of features as defined by WALS

covered by our dataset (Morphology, Nominal Categories, Nominal

Syntax, Phonology, Simple Clauses, Verbal Categories and Word Order) we

estimated the punctuated evolution only for the four datasets using

Hammarström’s classification (BBH, BPH, MBH and MPH) due

to the high computational costs. Moreover, given that not all

families cover all seven categories, we considered three cases

defined by the set of families covering at least N categories: N~1
(all families), N~5 and N~7 (only families covering all

categories). We found similar results for these three cases, but

N~1 highlights the unreliability of estimating punctuated

evolution for small families with poor coverage.

This simple method for estimating the role of punctuated

evolution for the structural features of language does not control

for shared ancestry among the languages of the same family nor

does it shield against the ‘‘node-density artifact’’, probably

resulting in an inflated estimation of the contribution of

punctuated evolution [36,37,71]. Therefore, these results should

be taken as indicative, and more complex but also more time-

consuming methods must be used to provide a better estimate of

this effect. Nevertheless, given the large effects sizes found and

their consistency across datasets and software packages (Materi-
als S1), our estimates are most probably relatively accurate.

The Stability Profile of a Language Family
Given a dataset, let us denote the mean standardized stability

ranks of the structural features F~fF1,F2, . . . FNg estimated for

the language families L~fL1,L2 . . . LMg as rij . Given that

0ƒrijƒ1, we can visualize each language family Lj as a point

in the N-dimensional hyper-cube defined by the N structural

features F , with coordinates (r1j ,r2j . . . rNj). We call this N-

dimensional hyper-cube bounded by 0 and 1 the stability hyper-cube

and the coordinates of the language family Lj in this space as the

language family’s stability profile. It should be noted that the

concepts of stability hyper-cube and stability profile as defined

above do not make any assumptions concerning the existence or

not of universal tendencies, language family-specific or deep

relationships between languages, but simply assume that language

families can be compared with respect to the relative stability of a

set of structural features in these families.

Given two language families, Lj and Lk, we computed the

Euclidean distance between their stability profiles in the stability

hyper-cube, djk~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1 (rij{rik)2

q
representing the stability

distance between the two language families. The maximum possible

stability distance between two families in an N-dimensional

stability hyper-cube is dmax~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1 12

q
~

ffiffiffiffiffi
N
p

.

To make things clear, let us consider just two features, F1 and

F2 (say tone and number of vowels) and three language families L1, L2

and L3 (say, Indo-European, Uralic and Altaic). Then the stability

hyper-cube is, in fact, the 2-dimensional square of width 1 and the

language families can be easily visualized as points in this plane

(see Figure 1). The relative stability (mean standardized stability

ranks) of feature F1 in family L1 is 0.13, in L2 is 0.68 and L3 is

0.91 (the horizontal axis in the figure), while for feature F1 these

stabilities are 0.10, 0.63 and 0.72, respectively (the vertical axis).

The stability hyper-cube is the shaded area bounded by 0 and 1 on

both axes and represents the theoretically possible stabilities these

two features, F1 and F2, can have in any possible language family.

The maximum possible stability distance in this case is
ffiffiffi
2
p

&1:41.

Families L2 and L3 are grouped together, having a small stability

distance between their stability profiles showing that they tend to

have very similar stabilities for the features considered.

The ‘‘Shape’’ of Stability Profiles
The stability profiles of the M language families,

L~fL1,L2 . . . LMg, are a set of M points in the N-dimensional

stability hyper-cube. As opposed to a single stability profile, the

‘‘shape’’ of this cloud of points summarizes the pattern of stability

across language families and holds important information

concerning the existence of universal tendencies in structural

stability. If the language families are randomly scattered then there is

no universal, cross-language family component, supporting the

view that stability is purely an idiosyncratic, language family-

specific property. If they are more clumped (clustered) than expected,

this would strongly suggest a universal component manifested as a

tendency of structural features to have the same stability across

families. If they are more dispersed, this would suggest a regular

patterning of stability across families. We used two methods

inspired from the analysis of point-patterns [38] to investigate the

clustering, dispersion or randomness of the distribution of

language families in the stability hyper-cube.

The first method involves generating 10,000 independent

random sets of M points in the stability hyper-cube using a

uniform distribution between 0.0 and 1.0 to generate the N

coordinates for each of the M points, and comparing these random

sets to the actually observed set of stability profiles. We used the

distance to the nearest-neighbor and the mean distance between points

as summary statistics for each set of M points (including the

actually observed ones). We then compared the summary statistics

of the observed set of stability profiles to the distribution of

summary statistics for the 10,000 randomly generated sets to assess

the clumping or dispersion of the actual data compared to the

expected values. More precisely, we obtained an empirical p-value

representing the proportion of random sets with smaller nearest-

neighbor or mean distances than the actually observed set of stability

profiles (Materials S1).

For the second method we generalized Ripley’s K function [39]

to Nw2 dimensions as follows. Given a set of points in a space,

Ripley’s K is the average number of points within a radius rw0
from a randomly chosen center divided by the density l (the

number of points per unit volume). An estimator of K for a multi-

dimensional point pattern is:

K̂K(r)~l̂l{1
X

i

X
j=i

w(li,lj)
{1 I(dijvr)

M
:

where l̂l is the estimated density (l̂l~M=1N~M in our case),

w(li,lj) is a weight function implementing the edge correction (set

to 1 here; see below), I(:) is the indicator function (I(x)~1 if x

holds, 0 otherwise), and dij is the distance between points i and j.

For the radius r we used 100 equal steps (or lags) between 0 and

the maximum possible distance
ffiffiffiffiffi
N
p

. The edge correction

(accounting for space ‘‘lost’’ due to the intersection between the

spheres of radius r centered on the points and the stability hyper-

cube’s limits) and the expected values of K(r) are not trivial to

compute given the multi-dimensionality of the stability hyper-

cube. Therefore, we estimated Ripley’s K̂K(r) for 10,000 random

Poisson processes in the same stability N-dimensional hyper-cube

with the same number M of points, and we then compared the

observed K̂K(r) for the actual stability profiles to the distribution of

these simulated K̂K(r)’s in order to assess the deviation of the

actually observed data from the expected distribution under spatial
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randomness. This procedure results in empirical p-values (and

confidence intervals) at each lag 0ƒrƒ
ffiffiffiffiffi
N
p

allowing the

quantification of the deviation of the observed pattern from

randomness (Materials S1).

Comparing Structural Stability Across Methods
The question of the stability of structural features is an

important one for historical linguistics and especially for linguistic

typology and several approaches have been proposed in the

literature. However, given the complexity of the processes affecting

language change, there are many ways to conceptualize and

operationalize stability. In order to understand these approaches

and their relationships with each other, the first author together

with Michael Cysouw (Dediu, D. & Cysouw, M. in preparation,

Some Structural Aspects of Language are More Stable than

Others: A Comparison of Seven Methods) are currently working

on a systematic survey and comparison of 7 diverse methods from

the linguistic typological literature.

The methods compared are:

N Cysouw and colleagues [19] consider the consistency of the

cross-linguistic distribution of an individual feature with the

pattern generated by multiple features, and they propose three

quantifications of this measure based on Mantel’s correlation,

a coherence and a rank method [19];

N Parkvall [20] proposes to distinguish features that tend to be

vertically transmitted from those that are easily borrowable,

quantified using the Herfindahl-Hirschman index (or Gini

coefficient) computed across genealogical and areal units;

N Wichmann and colleagues, and especially Wichmann and

Holman [22] have a predominantly phylogenetic conception

of stability where a stable feature tends to be shared among

related but not among unrelated languages;

N Maslova [21] proposes a relatively similar method based on

estimating the probability of transitions between feature values;

N finally, the method described here [9] is a fully phylogenetic

Bayesian approach to estimating the stability of structural

features.

Interestingly, despite different concepts of stability and im-

plementational approaches, these methods agree unexpectedly

well (the first principal component of the feature rankings explains

almost 50% of the variance and represents the agreement between

methods). Thus, the stability captured by our method here seems

supported by other approaches motivated from different perspec-

tives.

Geographic Distances between Language Families
Given two language families L1 and L2, we computed the

geographic distances between all pairs of languages from these

families d(li,lj), with li[L1 and lj[L2 using great circle distances on

Earth and forcing the paths to pass through way points between

broad geographic regions. These way points are: ‘‘Syria’’ (lat:

34:880, long: 39:190; connecting Africa and Eurasia), ‘‘Bering Sea’’

(65:690, {168:920, connecting North America and Eurasia),

‘‘Mexico’’ (20:960, {100:540, connecting North America and

Central America), ‘‘Panama’’ (7:580,{77:250, connecting South

America and Central America), ‘‘Singapore’’ (1:310, 103:860,
connecting Eurasia and Oceania & Papua-New Guinea), ‘‘Badu

Island’’ ({10:090, 142:160, connecting Australia and Oceania &

Papua-New Guinea).

Thus, for each pair of language families (L1,L2) we obtained a

set of geographic distances between all possible pairs of languages

chosen from the two families. We summarized these using their

mean d12~d(L1,L2)~meanfd(l1,l2)Dl1[L1 ^ l2[L2g and took d12

as the geographic distance between language families L1 and L2.

There are very high correlations between various summaries of

these sets of distances between pairs of languages, d(li,lj), as shown

by the Mantel correlations between them (we used 10,000

permutations when computing the p-values and all pv10{4):

summarizing by the minimum and maximum distances between

pairs of languages, rmin{max~0:88; by minimum and mean,

rmin{mean~0:98; by minimum and median, rmin{median~0:98; by

maximum and mean, rmax{mean~0:94; by maximum and median,

rmax{median~0:94; and by mean and median, rmean{median~0:99).

Thus, this justifies our choice of mean as a language-family level

summary for geographic distances.

Features Maximizing the Correlation between Stability
and Geographic Distances

We searched for those subsets of features which maximize the

Mantel correlation between stability and geographical distances, as

follows. Let us consider N features F~fF1,F2 . . . FNg and M
language families, L~fL1,L2 . . . LMg. For any subset of K

features F
0
(F we computed the ‘‘restricted’’ stability profiles of

the M language families in the restricted stability hyper-cube

defined by these K features, and the restricted stability distances

between them. Then, we computed the Mantel correlation, rF
0 ,

between the restricted stability distances and the geographical

distances, as described above for the whole set of features F .

We used a genetic algorithm (as implemented in the R package

genalg 0.1.1) to search for the subsets F
0
that maximize the Mantel

correlation rF
0 between stability and geographic distances. The

genomes are binary of size N and one such genome represents a

subset of features F
0

through its indicator function; thus ‘‘gene’’ i

in this genome is 1 if and only if feature Fi[F
0

and 0 otherwise.

The search used a population of 200 binary genomes, and was run

for 500 generations. To insure generalizability, we replicated each

search 5 times independently.

The search results in a set of 500 populations of 200 genomes

(one population per generation), each of these 100,000 genomes

having associated a value of the fitness function, in this case the

Mantel correlation rF
0 determined by the corresponding subset of

features F
0
. We defined a genome (subset of features) as being

optimal if its fitness was equal to the maximum fitness for that

particular run of the genetic algorithm; thus, in effect, an optimal

subset is composed of features that maximize the Mantel

correlation between stability and geographical distances. For each

feature Fi, we defined its involvement as the proportion of times it

appears in the set of optimal subsets; this varies between 0 (the

feature does not appear in any optimal subset) to 1 (the feature

belongs to all optimal subsets).

In general, the search process was very fast, reaching the

optimal value of the Mantel correlation rF
0 within the first 50

generations, after which it remained relatively stable. Within

datasets, the 5 replicated runs produced remarkably similar results,

as shown by the large first principal component (PC1 explains

more than 73% of the variance in each dataset; see Materials S1)

expressing the agreement between the feature involvements across

the runs.

Combining p-values from Non-independent Experiments
Our 12 datasets represent different combinations of software

packages, codings and linguistic genealogical classifications, but

they do not represent statistically independent experiments due to

dependencies at several levels:
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N the structural features and their values come form a single

source, namely the WALS;

N the polymorphic and binary codings are meaningfully related;

N two of the genealogical linguistic classifications are not

independent, as WALS was explicitly inspired by Ethnologue;

N the two software packages use the same fundamental

mathematical and statistical apparatus (Bayesian phylogenetic

inference).

Therefore, the information provided by these experiments is

partly but not completely redundant.

There are several well-established methods for combining

significance (p-value) and effect size information from independent

tests of the same null hypothesis H0, especially developed for meta-

analyzes, such as:

(a) Fisher’s classic method [45], and the more recent

(b) Z-transform [46],

but a priori they are not appropriate to our case due to the

mentioned non-independence.

Methods for combining dependent p-values, however, are not as

well developed and have various assumptions which are not easily

checked in real situations. Nevertheless, we selected three such

methods from the literature and implemented them in R [67] (see

Materials S1 for the R code implementing them):

(a) Hartung’s [72] method assumes constant correlations

across the tests and it also provides an estimate of this

correlation;

(b) Makambi’s [73] is an extension of Fisher’s method for

positively correlated dependent cases and assumes the

homogeneity of the inter-test correlations; it also provides

an estimate of this correlation; and

(c) Simes’ [74] approach is robust to dependence but it does

not compute a combined p-value, instead testing if the null

hypothesis can be rejected for a given a-level by the

combined information contained in the individual tests.

Using these five methods (a) – (e), we combined the one-sided p-

values resulting from testing the same null hypothesis H0 in the

different datasets. As described in the main text and below, the

null hypothesis specifically tested here concerns the stronger

clustering of groups of language families as compared to an

expected distribution derived by permutations.

All five methods agree very well on rejecting or not the null

hypothesis at a conventional a-level of 0:05, and the combined p-

values (where available) correlate at over 0:90 (Materials S1).

The inter-dataset correlations estimated by Hartung and

Makambi tend to be small to moderate (for Hartung:

{0:17ƒrƒ0:91, median(r)~0:32, mean(r)~0:30, sd(r)~0:33;

and for Makambi: 0ƒrƒ0:92, median(r)~0:00,

mean(r)~0:20, sd(r)~0:32) and strongly correlated between

Hartung and Makambi (r~0:54, p~5:48:10{5). Thus, these

estimates suggest that despite our justified a priori concerns, the

dependencies between these 12 datasets are in fact small.

Nevertheless, we will take a conservative stance and report as the

combined p-value the largest of the 4 p-values given by Fisher, Z-
transform, Hartung and Makambi. Please note that this

procedure, while guarding against false positives, does result in

counterintuitive effects, such as the apparently dramatic lowering

of the p-values when controlling for geography in some cases (for

example, for America; see Table 2). However, these are artifacts

due to the different assumptions of the methods for combining p-

values, as can be clearly seen in Materials S1. Finally, given that

we take this very conservative stance in combining the 12 datasets,

we have decided to not correct for multiple comparisons. But even

using an extremely conservative Bonferroni correction across all

tested groups (see below) still results in, for example, the Americas

forming a coherent group when controlling for geography

(p~5:69:10{7), with Siberia still gravitating towards it for both

the uncorrected (p~0:008) and geography-corrected (p~0:02)

cases.

Testing the Robustness of Groups of Language Families
In general, let us consider a subset of P language families taken

from the full set of families in the dataset,

A~fLa1
,La2

. . . LaP
g(L (thus, the indexes

a1=a2= . . .=aP[1::M ). Such a subset A could be an a priori

motivated grouping, such as a suggested macro-family, or a set

defined a posteriori following some exploratory analyzes (such as

from the analysis of the MDS and networks discussed previously),

or it could simply be a random assortment of language families.

We tested the coherence of such a subset A using a randomization

approach as follows: we compared the observed geographic and

stability distances between the language families in A to those of

random subsets of language families from L of the same size as A
(namely, of size P).

More precisely, we considered the raw (i.e., uncorrected) and

geographically-corrected mean stability distance between the

language families. We generated 10,000 random subsets of

language families R~fLr1
,Lr2

. . . LrP
g(L of the same length as

A, and we computed the proportion of such random subsets more

extreme than A, namely, having a smaller raw mean stability

distance. This proportion represents the empirical p-value of the

hypothesis that the language families in A form a group with

stability profiles more similar to each other than expected by

chance among the full set L of language families considered.

Next, we took the randomly generated subsets R and used them

to infer what the mean stability distance between the families in A

should have been if A were just another random subset of language

families. More precisely, we regressed linearly the mean stability

distance on the geographical distance between the language

families in the random subsets (each random subset R represents a

single data point in this regression) and we predicted the value of

the mean stability distance given the observed geographical

distance between the families in A. This tells us how the stability

profiles in A should be related to each other for a set of families

separated by the given geographical distance. Then we used the

prediction 95% confidence interval of this regression to test the

hypothesis (and derive a corresponding p-value) that the language

families in A are more compact than expected by chance in L

when controlling for geography.

Thus, the uncorrected (raw) mean stability distance tests the hypothesis

that the language families in A have very similar stability profiles

relative to the whole set of families, while the corrected version takes

also into account the geographical distances between them. In

most cases, the uncorrected p-values are smaller than the corrected

ones (see Materials S1): the paired t-tests between the

uncorrected and geography-corrected p-values are negative

except, interestingly, for South, Central and North America

versus America, in which case correcting for geography helps

highlight the similarity within these areas against the background

of the general similarity of the American families. However, it is

not clear if the raw or corrected measures are more appropriate for

our study, as they represent slightly different concepts of clustering

in the stability space. More specifically, given that both areal

(horizontal) phenomena (borrowing, language shift, etc.) and
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vertical genealogical relationships usually involve geographically

neighboring populations, controlling for geographical distance

might in fact remove an essential causal factor and not just a

nuisance. Therefore, we have tested and reported both cases.

A main limitation of this method is its small power to test large

subsets A from L, as there are few possible random subsets R

equivalent to A. Therefore, we cannot test the coherence of larger

sets of language families covering, for example, Eurasia and the

Americas.
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information about the primary data and its coding
(Tables S1, S3, S4 and S15), about the stability profiles
(Tables S2 and S5, and Figures S1–S14), the involvement
of features in the correlation between stability and
geographic distances (Tables S6–S13), the combined p-

values (Tables S14 and S16) and the R code implement-
ing these methods (Table S17), and more results
concerning the punctuated evolution of structural fea-
tures (Tables S18 and S19, and Figures S15–S18).
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