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Chapter 1

Introduction

This thesis is about the use of functional programming languages for the imple-
mentation of Internet applications and, in particular, the use of interpreters for
client-side processing. This chapter gives an overview of the scope and the topics of
the research. After a discussion about what makes Internet application development
difficult and how modern functional programming can help to ease this development,
a detailed description of the contents of this thesis and the contributions of the au-
thor is given.

1.1 Internet Applications

During the last decade the Internet has become the prominent platform for the
deployment of computer applications and web-browsers are an important interface
for a large class of computer applications, such as e-mail applications, on-line shops
and banking applications. Furthermore, they are used as the default communication
interface between customers and companies like governmental institutions, insurance
companies, etc.

An important advantage of using web-browsers to interface with applications is
that they do not require installation of application related software on a computer
to use them. It is even possible to run the same web application on a large number
of different platforms and operating systems, including PDA’s, smart phones, etc.

Despite this popularity and convenience for the user, for a software engineer the
development of web application is a difficult job. There are several reasons for this.
First, web browsers were originally designed for browsing through HyperText docu-
ments (displaying text and links between pages). Although the use of web browsers
has changed significantly, their design is adapted only just enough to accommodate
the new requirements. This complicates the development of desktop like applica-
tions which make use of a web browser for their interface instead. Second, Internet
applications follow the client-server paradigm and consequently have a more com-
plex structure than desktop applications. Applications have hardly any control over
clients. Clients have usually very limited privileges on the machine executing them.
The client can become active (again) after an arbitrary delay. The browser adds
behavior to the client (e.g. by back and forward buttons and cloning of pages). The

1
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Figure 1.1: The traditional architecture of an Internet Application

quality, delay and bandwidth of the connection between client and server varies
enormously.

Fig. 1.1 shows the typical architecture of a traditional Internet application. The
client browser (left from the dashed line) only displays the Html generated by the
(web)application running on the web server (right from the dashed line). The user
can fill in web forms that are sent to the server and processed there (as post data).
As a result the server produces a new web page that is displayed at the client side.
The (web)application can read /write information from/to data bases or files residing
at the server side. These data bases and files are used to maintain information like
the user login name or the purchase the user made. An important issue that has to
be dealt with is maintaining the state of a transaction. The application has to keep
track of this state. As said before, a complicating factor is that the user can move
away from a web-page at any moment and come back to the web page at a later
moment (using the back and forward buttons) or clone web-pages and continue a
transaction in a page that is in a different state. As a consequence the state of an
application must also take the currently used web-page into consideration.

1.1.1 Client-side Processing using the Ajax Paradigm

In the classical setting the web server processes a web form filled in by the user and
produces a new Html page. A drawback of this approach is that the system as a whole
becomes less responsive because large amounts of data need to be (re)transmitted
after each user action. To overcome this, local processing at the client side is neces-
sary, e.g. for checking the format of user input in text fields. But it is no valid option
to execute native code that is part of the Internet application, at the client side for
two reasons. First, the client platform is unknown beforehand. So one should have
code available for all possible execution platforms. Second, executing native code



1.1 Internet Applications

at the client side causes great security risks. Malicious client-side code may eas-
ily harm the client computer. Therefore, interpreters for programming languages
are used for client-side processing. In contrast to a compiler an interpreter does
not translate (compiles) a program to executable code, but directly executes (inter-
prets) this code. This has a number of advantages. First, the interpreted program
cannot harm the computer it is running on because it runs within the interpreter
environment (also called a sandbox) and the interpreter takes care that no harm
can be done. Second, if an interpreter for a certain platform is available, it can run
arbitrary programs written in the interpreted language. Therefore, it is not neces-
sary any more to compile the programs for each platform separately. The price to
pay is that interpreted programs run slower than compiled programs. Furthermore,
the interpreter must be made available for all platforms one wants to run client-side
code. An interpreter platform especially made for web-browsers is JavaScript which
is integrated in all modern web browsers. JavaScript programs can be integrated
within Html descriptions of web-pages and such programs have access to the con-
tent of the web page (can process user input in web forms and make updates to
the page). JavaScript offers the web-programmer a light-weight platform for doing
client-side processing for which no information residing at the server side is needed.
Typical use cases for JavaScript are to perform sanity checks on user input or to
adapt the layout of information in a web page. To further enhance the performance
of web applications it is even possible to make asynchronous requests to the server
from within JavaScript. The results of these requests can be used to update the web
page. This technique is known under the name Ajax (Asynchronous JavaScript And
XML) [Gar05]. Here XML is often (but not necessarily) used for encoding data in
a Ajax request. Using Ajax in general leads to less data being sent back and forth
between server and client, which can enhance the responsiveness of web applications
considerably. An important class of web applications that work in this way are
the so-called Web 2.0 applications. These are applications that support interactive
information sharing, user editing and collaboration. Examples are social networks,
wikis, blogs and mash-ups. Fig. 1.2 shows the architecture of web applications using
the Ajax paradigm. Google extensively uses this technique in applications like GMail,
GoogleDocs and GoogleMaps to speed up their performance and make them more
interactive.

1.1.2 Client-side Processing using Java

An alternative client-side processing platform is Java. Java combines an interpreted
and compiled approach in a single formalism. Java programs are executed using a
virtual machine. They are compiled to Java byte code instructions that can run
on (are interpreted by) the Java virtual machine (JVM). Almost all popular web-
browsers have a JVM plug-in available. As a consequence a web developer only has
to write and compile a single Java application that can then run on a large number
of platforms. Much effort has been spent to make the JVM virtual machine as fast as
possible. An important technique to achieve this is the use of a Just-In-Time (JIT)
compiler. When executing byte code instructions they are translated (compiled)
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Figure 1.2: The architecture of an Internet Application using the Ajax paradigm

on-the-fly to native code for the platform the virtual machine is running on. When
the code is executed a second time the native code can be used. This has resulted in
Java applications that run at speeds comparable to their machine coded equivalents.
Because native code is generated in a controlled environment, one can enforce the
safety of a purely interpreted implementation. Java virtual machines including JIT
compilation are available for a large variety of platforms.

Using Java at the client side of web-application does not offer the ease of use that
JavaScript offers. JavaScript is an integral part of the web-browser (does not require
the loading of a plug-in) and has easier/better access to the contents of web-pages.
Nowadays also JavaScript uses JIT compilation techniques to speed-up its processing.
Nevertheless, through its portability and speed Java is still an attractive option for
fast processing at the client side of web applications.

1.1.3 The Complexity of Internet Application Development

When developing web applications with client-side processing, the developer has to
deal with several formalisms: server-side programming languages like Java, C(++)
or PHP; server-side data-base access languages like SQL; client-side programming
languages like JavaScript, Java or VBScript using Ajax calls for information exchange
with the server application; Html for the contents of web pages. Program parts
made in these different formalisms have to collaborate smoothly to achieve the de-
sired result. For example, data conversion between the formats used at client and
server side is necessary. This all complicates software development for the Internet
considerably.

Many frameworks for developing web-applications using a variety of program-
ming platforms are available. Basically three approaches are used. In the first one
a programming environment (Integrated Development Environment or IDE) auto-
matically generates a framework that must be complemented with user written code
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using the different programming formalisms for client and server code. In the sec-
ond approach a Domain Specific Language (DSL) is designed for describing web
applications. A specially designed compiler is used to compile these descriptions
to (a collection of ) programs in the server and client-side programming formalisms.
All extra code that is necessary for communication between server and client, in-
cluding data conversion code is generated too. In the third approach a graphical
formalism is used for describing the generic structure of a web-application. From
this generic structure application framework programs are generated in server and
client-side formalisms that often must be complemented with user written code. All
these approaches have their pro’s and con’s. Using the DSL approach one has to
deal with only one formalism, which simplifies the development and maintenance of
the software. Graphical formalisms allow for the rapid development of applications,
without the need for the developer to learn complicated formalisms. A disadvantage
of the DSL approach is that DSL’s are always restricted formalisms. They do not
offer the programming power of a general purpose programming language. As a
consequence the generated code often must be adapted or complemented with code
that could not be expressed in the DSL. Graphical formalisms are also restricted
in the constructs that can be expressed. As a consequence only a limited set of
applications can be expressed, and again one has to resort to adding supplementary
code in the generated formalisms.

1.2 Internet Applications and Functional Program-
ming

In this thesis we advocate an approach which uses a general purpose functional
programming language for the realisation of web applications. In this approach all
web form (Html) generation and all communication between server and client is
handled automatically or with an absolute minimum of explicitly written code. The
reasons to use functional programming languages as implementation platform are
the high expressiveness of these languages with the possibility:

e to define higher order combinators that enable a high level of compositional
programming where irrelevant details can be hidden for the developer;

e to use generic (type driven) programming techniques for automatic generation
and handling of web forms, interaction with data sources and server-client
communication of data types.

Especially the use of generic programming techniques offers important advantages
that functional languages provide above other programming formalisms. In the next
subsection we say more about this. By using combinators one can extend a functional
language to an embedded DSL without getting the disadvantages mentioned above.
The full programming power of the host language remains available in the DSL.
There are a number of challenges one has to deal with when using (functional)
programming formalisms for both server and client-side processing. First, one should
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have a sufficiently fast execution platform for both sides. For the client side this
means the availability of a fast interpreter. Second, it should be possible to switch
execution between server and client in a smooth way, with a minimum of burden for
the application developer. Both issues are research topics for this thesis.

1.2.1 Generic Programming

Generic or polytypic programming makes it possible to define functions for a whole
class of algebraic data types (ADT’s). Algebraic data types are constructed from
primitive types (integer, booleans, etc) and previously defined ADT’s using simple
composition mechanisms like sums (alternatives) and products (records). A generic
function is defined on the generic structure of an ADT by just specifying its result
for the primitive types and by giving an inductive recipe how to compose the result
for sums and products from (the results of) the types they have been constructed
from. The compiler is now capable of generating instantiations of this function for
concrete types from the generic version. It is always possible for a programmer to
overrule the generic implementation of a function for a concrete type by giving a
specific implementation for this type. Generic programming is possible in languages
like Clean [PEO1] and Haskell [PJ03].

1.2.2 Existing Functional Programming Approaches to Web
Programming

In the functional programming community there are already several research activi-
ties that focus on tooling for the development of web applications. Examples that use
functional languages at the server side and that generate complete web-applications
are WASH [Thi02]| and iData [PAP05]. Both approaches generate Html web forms.
iData generates Html web-forms from Clean data structures and handles user up-
dates for them automatically by using the above mentioned generic programming
techniques. With iData it is possible to implement spreadsheet-like applications with
relatively little effort. iData and WASH use the traditional Internet model, where
all processing is done at the server side.

For realizing applications with client-side processing and Ajax interaction be-
tween client and server one can either generate client-side JavaScript from a func-
tional programming based specification, or include a dedicated interpreter for a func-
tional formalism as a plug-in at the client side. Curry [Han07] and Hop [SGL06, LS07|
both use the first approach and generate JavaScript from specifications made in Curry
and Scheme respectively. Links [CLWY06] and its extension formlets [CLWYO07] is
another example of the first approach. Links compiles to JavaScript for the generation
of HTML pages, and SQL to communicate with a back-end database. HaskellScript
IMLLH99| uses the second approach by supplying a Haskell interpreter plug-in at the
client side.
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1.2.3 The iTask Dynamic Workflow System

With the iData tool-kit it is possible to generate web forms from data types and
to handle user changes in these forms automatically. As a result only single user
and rather static web applications, containing a single web form, are easy to realize.
Many web-applications are more dynamic: a user has to go through a number of
web forms for making a purchase; many users are involved to accomplish something.
In such applications both a flow of control and a flow of information must be main-
tained. Implementing these issues using iData is tedious. To overcome this iTask
[PAKO7| was developed. The iTask system (itasks.cs.ru.nl) is a declarative domain
specific workflow language embedded in Clean, enabling the creation of dynamic
workflow systems. In the iTask system a workflow consists of a combination of
tasks to be performed by humans and /or automated processes. A workflow speci-
fication made in iTask results in a complete workflow application that runs on the
web. The system is based on open web-standards and can therefore be accessed by
anyone who has access to Internet via a number of web services, nowadays including
many mobile devices.

The iTask system is built upon a few simple concepts. The main concept is that
of a typed task. A task is a unit of work to be performed by a worker or computer
(or a combination of both) that produces a result of a certain type. The result of
one task can be used as the input for subsequent tasks, and therefore these new
tasks are dynamically dependent on results of previously executed task components.
iTask allows for data dependent sequential and parallel execution of tasks, with
information being automatically transported between tasks.

The original version of the iTask system was a pure server-side based application,
using the model from Fig. 1.1. The realization of a version of iTask supporting client
side processing and using the Ajax paradigm is one of the main topics of this thesis.
More details about the iTask system itself can be found in chapters 5 and 6.

1.3 Scope and Contents of this Thesis

This thesis consists of seven papers, which were all published in the open literature
or have been submitted for publication. The main object of study for this research
is the realization of client-side processing for iTask using a functional programming
formalism and an initial investigation of applications of the iTask toolkit in the
domains of crisiss-management and military operations. The research of this thesis
can be divided into three parts:

e The first part (chapters 2, 3 and 4) investigates the realisation of efficient
interpreters that can be used at the client side of web applications. For this,
one can choose between either using an existing client-side processing platform
like JavaScript as target language, or for adding a dedicated interpreter plug-in
at the client side. We have opted for the second approach. In this part we
also investigate the formalism of the interpreter and investigate whether the
techniques that were used for the implementation of the interpreter can also



Introduction

be used for the realisation of an efficient compiler. Papers upon which this
part is based are:

— J. Jansen, R. Plasmeijer, and P. Koopman. Functional Pearl: Com-
prehensive Encoding of Data Types and Algorithms in the A-Calculus.
Journal of Functional Programming, Submitted for publication, 2010.

— J. Jansen, P. Koopman, and R. Plasmeijer. Efficient interpretation by
transforming data types and patterns to functions. In H. Nilsson, editor,
Selected Papers of the Tth Symposium on Trends in Functional Program-
ming, TEFP’06, volume 7, pages 73-90, Nottingham, UK, 2006. Intellect
Books.

— J. Jansen, P. Koopman, and R. Plasmeijer. From interpretation to com-
pilation. In Z. Horvath, editor, Proceedings of the 2nd Central European
Functional Programming School, CEFP’07, volume 5161 of LNCS, pages
286-301, Cluj Napoca, Romania, 23-30, June 2008. Springer-Verlag.

e The second part (chapters 5, 6 and 7) discusses how client-side processing
can be integrated into the iTask system with a minimum of disruption for
the application programmer. We start with giving an overview of the iTask
system and discuss our experience in developing applications with it. Next the
technical realisation of Ajax and client-side processing using local and client
side task-tree rewriting is described. Finally, we describe how arbitrary web
plug-ins can be integrated into iTask applications. Papers upon which this
part is based are:

— J. Jansen, R. Plasmeijer, P. Achten, and P. Koopman. Embedding a
web-based workflow management system in a functional language. In
C. Brabrand and P.-E. Moreau, editors, Proceedings 10th Workshop on
Language Descriptions Tools and Applications, LDTA’10, pages 79-93,
Paphos Cyprus, March 27-28 2010.

— R. Plasmeijer, J. Jansen, P. Koopman, and P. Achten. Declarative Ajax
and client-side evaluation of workflows using iTasks. Proceedings of the
10th International Conference on Principles and Practice of Declarative
Programming, PPDP’08, pages 56-66, Valencia, Spain, 15-17, July 2008.

— J. Jansen, R. Plasmeijer, and P. Koopman. iEditors: extending iTask
with interactive plug-ins. In S.-B. Scholz, editor, Selected Papers of the
20th International Symposium on the Implementation and Application of
Functional Languages, IFL’08, 2009. To appear in Springer LNCS 5836.

e The third part (chapter 8) focuses on application areas for the iTask system.
The focus is on crisis-management and military operations as a first object of
study, because these are demanding application areas that are hard to support
by existing workHlow tooling and because of the author’s affiliation. The work
in this section is based on the paper:
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— J. Jansen, B. Lijnse, R. Plasmeijer and T. Grant. Web Based Dynamic
Workflow Systems for C2 of Military Operations. Proceedings of the In-
ternational Command and Control Research and Technology Symposium
(ICCRTS) 2010, Santa Monica, USA.

This paper is an extended version of:

— J. Jansen, B. Lijnse and R. Plasmeijer. Towards dynamic workflows
for crisis management. In Mark Haselkorn and Simon French, editors,
Proceedings of the 7th International Conference on Information Systems
for Crisis Response and Management’10, Seattle, WA, USA, May 2010.

Another paper by the author describing possible applications in the military
domain, but not added as a chapter in this thesis is:

— J. Jansen, P. Koopman and R. Plasmeijer. Web based dynamic workflow
systems and applications in the military domain. In Theo Hupkens and
Herman Monsuur, editors, Netherlands Annual Review of Military Studies
- Sensors, Weapons, C41 and Operations Research, pages 43-59, 2008.

This paper is a precursor of the two papers mentioned above.

In the next subsections a short overview of each of the above mentioned papers is
given.

1.3.1 Comprehensive Encoding of Data Types and Algo-
rithms in the A-Calculus

In order to describe an interpreter one should first say something about the lan-
guage for which it provides a semantics. The language of the interpreter described
in this thesis is an intermediate language. This means that the language is not
intended to be used as a programming language directly, but that programs written
in other languages are translated to this language. The intermediate language uses
a minimal number of concepts, which simplifies the construction of an interpreter
but it is high level enough to allow for a straightforward and easy transformation
of programs written in state-of-the-art languages like Clean or Haskell to it. The
language is at the same level of abstraction as the Core languages used for Clean
and Haskell. This language is suitable for direct interpretation and does not require
transformation to another, more low level (byte-code like) formalism. The repre-
sentation of Algebraic Data Structures (ADT’s) is an interesting and distinguishing
feature of this intermediate language. During a discussion with Dick Bruin [Brua]
in 1999 we discovered that it is possible to make an elegant representation of ADT’s
using pure functions only. Later on, it became clear that this way of representing
ADT’s was not new, but earlier discovered by Scott but never officially published by
him (see also [CHS72]).

This paper investigates how this representation of ADT’s can be used to express
algorithms in the A-calculus. It also compares various ways to represent ADT’s in
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the A-calculus. The A-calculus is a universal functional programming language and
it forms the foundation of all modern functional programming languages. Unfor-
tunately, A-calculus based programs are not always easy to comprehend. We show
that this qualification is not correct and caused by the traditional choice for the
representation of data types in the A-calculus: the Church encoding. We show that
if we use a representation of ADT’s based on the representation used in the interme-
diate language, we can express functional programs, resembling equivalent programs
written in languages like Clean or Haskell. The only drawback is that the resulting
representation cannot be typed using standard Hindley-Milner type inference as it
is used for Haskell and Clean. For expressing algorithms, we also use an alternative
way to express recursion without the use of a fixed-point combinator. Finally, we
compare the Scott and the Church encoding and show that the connecting element
between them is the fold function.

This paper was written by the author of this thesis under supervision of the
co-authors.

1.3.2 Efficient Interpretation by Transforming Data Types
and Patterns to Functions

This paper forms the core of the work on interpreters. It introduces the Simple
Application Programming Language (Sapl). In Sapl the Scott encoding, as de-
scribed in Chapter 2, is used for representing values by functions. A Sapl program
consists of (pure) function definitions only. In fact, the essential difference be-
tween Sapl and the formalism of chaper 2 is the use of named functions instead of
anonymous A-expressions. Only constant let expressions are added to enable us to
express sharing and build cyclic data definitions. Due to the encoding of instances
of ADT’s by functions the one-and-only basic operation in Sapl is function applica-
tion (f-reduction). The operational effect of a function application consists of the
replacement of a function call by the right-hand-side of the function definition with
all parameters replaced by the corresponding arguments. This makes it possible to
define an elegant and minimal interpreter for Sapl based on pure graph reduction
only. Graph reduction is a well known and straightforward implementation tech-
nique for lazy functional languages (see also [Tur79], [PvE93|,[PJL92| and [PJ87]).
By adding integers and their associated operators to Sapl and its interpreter one
obtains a practically usable programming language. The interpreter implements a
basic lazy functional programming language efficiently. Due to its high abstraction
level it is easy to compile any higher-level lazy functional language like Haskell and
Clean to Sapl. Due to its conciseness it is is also suited for educational purposes.

It turns out that our interpreter can easily be optimized using a few straightfor-
ward transformations, like reducing the size of the graphs in the implementation,
the inlining of function calls and by making use of a simple annotation to Sapl
programs. When comparing our approach with several other interpreters and com-
pilers for functional languages using a set of representative benchmarks, it turns out
that our implementation has a competitive performance. It is at least twice as fast
as Amanda, [Brub|, Helium, [Sof|, Hugs [Hug] and GHCi [GHC| and in a number
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cases, e.g. for programs involving mostly higher order functions, it is even compet-
itive with compilers like Clean and GHC. This demonstrates that for interpreters a
high-level graph-reduction based implementation in general leads to better results
than the use of more low level formalisms like byte code interpreters. It also shows
that keeping things simple and overhead to a minimum is the way to go to obtain
efficient interpreters.

The encoding of ADT’s used for Sapl has also been used for an FPGA implemen-
tation of graph reduction in [NROS| (more details in chapter 9).

This paper was written by the author of this thesis under supervision of the
co-authors.

1.3.3 From Interpretation to Compilation

The Sapl interpreter described in chapter 3 has in some cases a performance com-
parable to that of compilers. This made us curious about whether it is possible to
apply the techniques used for the Sapl interpreter in the construction of an efficient
compiler. The construction of such a compiler is the focus of this paper.

Because the interpreter was implemented in C(4+4), this language was also chosen
as the target language for the compiler. This approach is not uncommon, GHC also
uses C as target language. The analysis starts with the construction of a straight-
forward version of a compiler that only differs from the interpreter at the following
points: graph instantiation is hard coded (instead of tree traversal by a recursive
function); the generic control structure of compiled functions is hard coded instead
of interpreted. The actual reduction of graphs does not differ from that of the
interpreter. This version is used for a benchmark comparison with the Clean and
GHC compilers. For this comparison the same benchmark programs were used as
for the interpreter comparison in chapter 3. It turns out that for a number of
benchmark programs the Sapl compiler already has similar performance, while for
other benchmark programs the performance is much worse (3-30 times slower). A
detailed analysis of the latter benchmark programs reveals that they often make
heavy use of purely numeric functions, tail recursive functions or a combination of
them. We therefore added tail recursion detection and detection of numeric func-
tions and (sub)expressions to the compiler. In the code generation phase we generate
a loop for tail recursive calls. In the loop memory cells are reused. This saves al-
location and garbage collection of cells. In the best case this led to a speed-up of
a factor of 7. Purely numeric functions and (sub)expressions are replaced by their
C++ equivalents. The speed-up obtained with this optimization can be a factor of
40 for purely numeric functions. These optimizations are rather straightforward to
implement and result in an acceptable performance in almost all cases (less than
2-4 slower than GHC -O and Clean). This study demonstrates that with relatively
little effort an excellent performance can be obtained for a large numbers of cases
(80-20 rule). Unfortunately, much more effort has to be put in when trying to get a
better performance for the remaining cases.

This paper was written by the author of this thesis under supervision of the
co-authors.
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1.3.4 Embedding a Web-Based Workflow Management Sys-
tem in a Functional Language

Extending the iTask system with client-side processing is an important object of
study for this thesis. This paper gives an overview of the experiences in developing
the iTask system and shows which techniques are used in implementing it.

Workflow Management Systems (WFMS) are computer applications that coor-
dinate, generate, and monitor tasks performed by human workers and computers.
Workflow specification plays a dominant role in WFMSs: the work that needs to
be done to achieve a certain goal is specified as a structured and ordered collection
of tasks that are assigned to available resources at run-time. In many WFMSs, the
workflow specification only provides an execution environment framework for the
workflow that has to be complemented with custom code in a different program-
ming formalism. In other WFMSs one has to provide much detail in the workflow
specification itself. In both approaches substantial coding is required to complete
the workflow application. In general, this results in complex distributed and hetero-
geneous applications that are hard to maintain.

The iTask system is developed to overcome these and other issues. The iTask
system is a domain specific language that is embedded in the general purpose pro-
gramming language Clean as a workflow specification language. This approach has
a number of important advantages. In particular, these are the availability of the
strong type system, of higher-order functions, of lazy and strict evaluation, and of
the module system. All computational and algorithmic concerns can be dealt with
in the Clean language. The domain specific language inherits these features from
the embedding language. Adding these features to a stand-alone domain specific
language would be a huge effort.

The iTask system is built on a single, powerful, concept: the task. The system
uses combinators to combine tasks into new tasks. With combinators tasks can be
executed sequentially or in parallel using or-, and- and ad-hoc parallelism. In a
workflow specification a task is seen as a black-box unit: something that has to be
done. It does not matter how it is executed, but if it is finished you can use its
result (in other tasks). iTask has a number of predefined primitive tasks, but, if
necessary, it is also possible to add new primitive tasks to the system. Examples of
such tasks are: exchanging information with web-services or relational data bases;
displaying information like charts or maps, etc. In this way the iTask system can also
be considered a web-coordination language and therefore as a significant extension
of the host language Clean.

iTask can also be considered as a declarative language. The user only has to spec-
ify the data types involved and the control of the information flow. All boilerplate
code generation is taken care of as much as possible. As an example, interactive
web-forms for user data acquisition are generated automatically from algebraic data
types, and also the handling of data entered by the user is done automatically. This
is realized by the use of generic functions [Hin00]. Generic functions are also used
for many other issues like the storage of information by the server application. iTask
can therefore also be seen as an advanced example of the use generic programming
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techniques. The iTask concept was originally developed by Plasmeijer et al [PAKO7).
This paper was a combined collaborative effort of all authors.

1.3.5 Declarative Ajax and Client-Side Evaluation of Work-
flows using iTasks

The original iTask system was a thin client application (see Fig. 1.1). This means
that all processing is done at the server side of the application and that every user
action on the client leads to a complete client-server round trip and to the generation
of a completely new web-page. This results in less responsive applications. The Ajax
paradigm offers two ways to tackle this problem (see Fig. 1.2): client-side processing
and partial updates of web-pages. This paper describes how this is realized in the
context of the iTask system. An important condition for this implementation is
that the highly declarative nature of the iTask system and the generation of the
complete application from a single source in Clean should be maintained. As a
consequence of this, all client-side processing is to be realized by either generic or
generated JavaScript or done using a Clean platform at the client side. We have
chosen a combination of a client-side Clean platform with generic JavaScript code to
glue everything together.

To implement a client-side Clean platform a Java Applet version of the Sapl in-
terpreter was created together with a Core Clean to Sapl compiler (integrated in the
back-end of the Clean compiler). Core Clean is the intermediate language used by
the Clean compiler. Java Applet execution is available for all popular web-browsers
thus offering an easy accessible platform for client-side processing.

The implementation of the iTask system is based on the repetitive rewriting of
a task tree which represents the current state of the iTask application. The nodes
in a task tree correspond to iTask combinators, whereas the leaves correspond to
primitive tasks. Nodes in the task tree are overwritten by their result as soon as the
corresponding task is finished. In the original implementation of iTask the entire task
tree for an application is reconstructed after each user event. For this, information
about the current state of the task tree is maintained in a combination of server and
client-side (web-page) storage. An iTask application finishes after processing each
user event and is re-executed for each new event. For Ajax and client-side processing
we implemented (client-side) local task-tree rewriting. Instead of rewriting the entire
task tree, only that part of the task tree corresponding to the current (sub)task is
rewritten. With the result a (partial) update of the web page is created. This
saves the time needed to reconstruct the entire task tree and in case of client-side
processing also a client-server round trip.

To realize local task-tree rewriting we need the function that is capable of han-
dling events for the specific subtree. This can be realized in Clean with the use of
Dynamics. By using Dynamics, instances of any type, including function types, can
be stored and even be exchanged between independently programmed Clean appli-
cations [Pil99, Wee07], while keeping the advantages provided by a strongly typed
programming environment. Here we use Dynamics to serialize functions that can
handle events for subtrees and to store them in a table. Events are encoded in such
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a way that they can easily be used to retrieve the correct task handling function
from this table. For client-side local task-tree rewriting we extended Clean Dynamics
with a Sapl variant of it: Clean-Sapl Dynamics. Using this variant one can serialize
an arbitrary Clean function (actually a closure or partial function application) in a
Clean application to a string value, transport this string to the corresponding Sapl
version of the application, and use the function there to handle task events.

By default, tasks that are assigned to a specific user are always implemented
using local (server-side) task-tree rewriting. Client-side rewriting can be enforced
by attaching the OnClient annotation to a task. If for some reason the task cannot
be executed at the client side, for example because server-side stored information is
needed, the system automatically falls back to server-side task rewriting.

The writing of this paper was a combined collaborative effort of all authors. For
the technical part the author of this thesis realized: the Java Applet version of the
Sapl interpreter; the Core Clean to Sapl compiler; the Sapl generation part of the
Clean-Sapl Dynamics.

1.3.6 iEditors: Extending iTask with Interactive Plug-ins

Plug-ins are used to extend internet applications with functionality that is not offered
by standard Html elements. FExamples of plug-ins are media players that are used
to play video, sound and animations, rich text editors for the creation of Html, etc.
Another example are Java Applets that are used to embed Java applications in web-
pages. In this paper we show how we can extend iTask applications with plug-ins.
Although we focus on Java Applet plug-ins, many of the ideas used for incorporating
them in iTask applications also apply to plug-ins written in other languages.

The natural way to look at a plug-in from an iTask point of view is that of a
primitive task. A plug-in is used to perform some work: to play a video; to edit a
text, etc. Of course, it should be possible to supply the plug-in with data generated
by other tasks and to use data generated by the plug-in in subsequent tasks.

What are the technical issues to be dealt with when incorporating a plug-in in
an ilask application? First of all a plug-in should be loaded into the web browser.
The more challenging issue is the exchange of information with a plug-in. If we use
a plug-in to edit a text, we should supply the plug-in with the text to be edited
(maybe generated by a previous task) and, after editing is finished, we have to be
able to get access to the edited text (and to use it in subsequent tasks).

i Task uses generic functions to generate forms from data types and to process user
data entered in these forms. By specializing these functions for certain types one
can obtain dedicated behavior, e.g. a dedicated form. This is exactly what we need
for including plug-ins in iTask. By using a plug-in wrapper type and specializing
the generic form generation function for this type, the correct Html or JavaScript
representation for the plug-in can be generated and the plug-in can be supplied
with correctly formed input data. By specializing the generic function that handles
form data for this type, the data edited in the plug-in can be converted back to the
corresponding Clean type.

Sometimes, a plug-in needs specific further processing for generating the correct
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result. An example of such a plug-in is a graphical (diagram) editor. Depending on
the kind of editor made, the editor should react in a specific way on mouse (up, down
and drag) events. The standard way to realize this, is to make a dedicated editor
plug-in for each kind of data one needs to edit. In this paper we demonstrate that it
is also possible to make a generic kind of editor and to do all specific processing in
Clean. This is realized by attaching call-back functions in Clean for handling specific
events to the plug-in. The call-back function is used to process events and generate
new data for the plug-in. It is even possible to handle events at the client side by
using the Sapl interpreter and the Clean to Sapl compiler. Again Clean-Sapl Dynamics
[Pil99, Wee07] is used to serialize the call-back function and to transport it from
server to client. In this way it is even possible to create sophisticated graphical
editors, where all specific processing is done in Clean at the client side.

This paper was written by the author of this thesis under supervision of the
co-authors.

1.3.7 Web Based Dynamic Workflow Systems for C2 of Mi-
litary Operations

Military and crisis-management operations involve cooperation and collaboration
between a large number of diverse organizations. Activities in these operations are
highly dynamic and situation dependent. To cooperate and collaborate, activities
performed by diverse organizations must be synchronized (or at least de-conflicted).
A dynamic workflow tool-kit can therefore be helpful in the development of appli-
cations for the military and crisiss-management domain.

This paper presents an initial discussion on the suitability of dynamic workflow
specifications, and its implementation in the iTask system, for military and crisis-
management operations. The discussion is based on five key design requirements for
response technology [Jul07]: suitability for just in time learning; response drivenness;
support for co-operation between parties involved; adaptability and flexibility; and
robustness against failure.

In the paper it is shown that the iTask system already meets important aspects
of these requirements, and can be trivially extended to meet even more. Especially
with respect to adaptability and flexibility the iTask shows great potential. For ex-
ample, iTask can deal with dynamic behavior in several ways. First, iTask workflows
are data driven, so new tasks can dynamically depend on the results of previous
tasks. Second, iTask supports an exception mechanism that makes it possible to
stop running workflows in case an unexpected situation occurs. Third, iTask can
replace a task by another task in a running workflow and in this way can cope with
chancing circumstances.

However, the evaluation also gives insight in the research challenges that need
to be addressed to fully optimize the iTask system for supporting military and crisis
response operations. The areas we identified are: better support for collaboration
between different parties involved; obtaining information about the current state
of a workflow to be able to adapt the workflow; the creation of domain specific
frameworks to enable the rapid development of workflow applications. Although
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some of the strengths, weaknesses and challenges discussed apply only to the iTask
system, most apply to workflow management systems in general.

This paper was written by the first two authors under supervision of the third
and fourth author.

1.3.8 Conclusions and Discussion

In this chapter we reflect on our work, look at related work, discuss a number of
issues that came up after the papers presented in the previous chapters were finished
and sketch future research for (applications of) the iTask system.

We start with a more extensive discussion on the efficiency of the Sapl interpreter
and give some suggestions how this efficiency can be improved even further. We
argue that standard compiler optimizations techniques based on strictness analysis
and tail recursion do not give much benefit for interpreters. Instead, using the
Sapl compiler to compile frequently used functions (e.g. standard libraries) and add
them as C++ code to the interpreter, can result in significant speed-ups for many
programs.

The second issue for discussion is the use of Clean as a platform to embed other
domain specific languages in. Modern functional programming languages like Haskell
and Clean are more than just programming languages. In fact they are tool building
languages that allow for the quick development of new programming formalisms.

The third issue for discussion is the use of Java as implementation platform for
the client-side version of the Sapl interpreter. We discuss whether JavaScript is a
useful alternative for Java.

The fourth discussion is about iTask as a programming platform. We argue that
iTask is more than just a dynamic workflow language, but can also be used as a web
integration tool.

The last discussion is about alternative application areas for iTask.



Chapter 2

Comprehensive Encoding of Data
Types and Algorithms in the
A-Calculus

L Abstract The A-calculus is a well known basic universal programming language, but is
not considered as a realistic option for expressing algorithms in a comprehensive way. In
this paper we show that this poor reputation is mainly caused by the choice of the Church
encoding for the representation of Algebraic Data Types. We show that, using a different
encoding attributed to Scott, and with a little aid of a clever lay-out scheme, functional
programs, like those written in languages like Clean or Haskell, can be expressed using
comprehensive and concise A-expressions resembling their Haskell and Clean counterparts.
For this purpose, we also use an alternative way to express recursion without the use of
a fixed-point combinator. The resulting formalism not only allows for comprehensive and
readable code, but also allows for an efficient implementation.

2.1 Introduction

Although the A-calculus is considered to be the mother of all (functional) program-
ming languages, programming in it is not considered to be very practical. Every
course or textbook on A-calculus (e.g. [Bar84]) spends some time on showing how
the well-known programming constructs can be represented in the A-calculus. It
commonly starts by explaining how to represent data types like natural numbers in
the A-calculus and how to define operations on them. In almost all cases the Church
numerals are chosen as leading example. The definition of Church numerals and
operations on them shows that it is possible to use the A-calculus for all kinds of
computations and that it is indeed a universal programming language. The Church
encoding can be generalized for the encoding of general Algebraic Data Types (see
[Bar97]). This encoding allows for a straightforward implementation of iterative
(primitive recursive) or fold-like functions on data structures, but needs complex
and inefficient constructions for expressing general recursion. In this way one ends

!Submitted as [JPK10]
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up with an encoding that works in theory but is also quite unreadable (and ineffi-
cient).

It is less commonly known that there exist alternative encodings of numbers
in the A-calculus. In [JKPO06] (chapter 3) we already introduced an alternative
encoding for Algebraic Data Types and showed that this encoding allows for an
efficient implementation of interpreters for functional languages with data types
based on this encoding. While in our previous work the focus was on obtaining an
efficient interpreter for an intermediate functional language, here we have an entirely
different goal. We look at the A-calculus from a programmers perspective and want
to show that the use of this encoding also makes it possible to obtain comprehensible
A-expressions for the realization of data structures and algorithms.

Another issue to be dealt with when using the A-calculus as a programming
language is the representation of recursive functions. Because A-expressions are
nameless, they cannot refer to themselves, and a special construction is needed to
express recursion. The standard way to do this is the use of a fixed point combi-
nator. Here we show that we can express recursion without the use of fixed point
combinators, with as only price a small change in the way recursive functions are
called. A further gain of this representation of recursion is that it results in a more
efficient implementation using fewer reduction steps than when using a fixed point
combinator.

This paper is organized as follows: We start with describing the Scott encoding in
Section 2.2. In Section 2.3 we sketch how recursion can be expressed without using
a fixed-point combinator. In Section 2.4 we show how we can use the techniques
from the previous sections to express complete programs as a single A-expression.
We make a comparison of the Scott and Church encodings in Section 2.5 and end
with some conclusions in Section 2.6.

2.2 Alternative Encoding of Algebraic Data Types

The encoding we use is relatively unknown, and independently (re)discovered by
several authors (e.g. [SM89, Mog94, Stu08] and the first author), but originally
attributed to Scott in an unpublished lecture which is cited in Curry, Hindley and
Seldin ([CHST72|, page 504) as: Dana Scott, A system of functional abstraction.
Lectures delivered at University of California, Berkeley, Cal., 1962/63. Photocopy
of a preliminary version, issued by Stanford University, September 19653, furnished
by author in 19682 We will therefore call it the Scott encoding. The encoding
results in a representation that is very close to algebraic data types as they are used
in most functional programming languages. We illustrate this with some examples
of well-known data types.

2We would like to thank Matthew Naylor for pointing us to this reference.



2.2 Alternative Encoding of Algebraic Data Types

2.2.1 The Nature of Algebraic Data Types

Consider Algebraic Data Type (ADT) definitions in languages like Clean or Haskell
such as tuples, booleans, temperature, maybe, natural (Peano) numbers, and lists:

data Boolean = True | False

data Tuple ab = Tupleab

data Temperature — Fahrenheit Int | Celsius Int
data Maybe a = Nothing | Just a

data Nat = Zero | Suc Nat

data List t = Nil | Cons t (list t)

A type consists of one or more alternatives. Each alternative consist of a name,
possibly followed by a number of arguments. Algebraic Data Types are used for
several purposes:

e to make enumerations, like in Boolean;
e to package data, like in Tuple;
e to unite things of different kind in one type, like in MayBe and Temperature;

e to make recursive structures like in Nat and List (in fact to construct new types
with an infinite number of elements).

The power of the ADT construction in modern functional programming languages
is that one formalism can be used for all these purposes. Imperative formalisms
like C and Java need several constructs (like enumeration types, records, pointers
and inheritance) for achieving this. Algebraic Data Types also have a meaning in
untyped and dynamically typed formalisms like Lisp. But in that case the packaging
concept is the most important one. The packaging construct is needed for the
assembly of composed results for functions and for the construction of arbitrary size
data containers. Lisp uses the list as a kind of generic packaging construct.

If we analyse the construction of ADT’s more carefully, we see that constructor
names are used for two purposes. First, they are used to distinguish the different
cases in a single type definition (like True and False in Boolean and Fahrenheit and
Celsius in Temperature). Second, we need them for recognizing them as being part of
a type and making type inferencing possible. Therefore, all constructor names must
be different in a single functional program (module). For distinguishing the different
cases in a function definition, pattern matching on constructor names is used.

In the next three subsections we show how ADT’s can be expressed as A-expressions
in a natural way, staying close to their original definitions.

2.2.2 Named M-expressions

First, some remarks about the notation of A-expressions. We will always give a
A-expression representing an ADT or a function a name:

True = MXab . a
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In this way it is possible to refer to this A\-expression. If in a A-expression a name is
in italics, then it refers to another A-expression having this name. This is done for
readability and for saving space. For example:

True M g.fg (Mg.gt)
Should be read as:
(Aab.a) (Mg.fg) (Mg.gt)

By introducing an additional A-abstraction and using the fact that (Atrue . true y z) x
reduces to x y z, we can also write:

(Mrue . true M g .fg) Mg.gf)) (lab. a)

The last example shows a well known alternative way of introducing explicit names
in A-expressions (see also Section 2.4).

Named A-expressions are only introduced for notational convenience. These def-
initions behave like macro definitions. The names are replaced by the corresponding
body before any reduction is done. This implies that these definitions cannot be
recursive.

2.2.3 Expressing Enumerations Types in the A-calculus

The simplest example of such a type is Boolean. We already noted that we use pat-
tern matching for recognizing the different cases (constructors). So we are actually
looking for an alternative for pattern matching using A-expressions. The simplest
example of using a pattern match for booleans is the if-then-else construction:

ifte True ab—=a
ifte False ab=>b

But the same effect can easily be achieved by making True and False functions,
selecting the left or right argument respectively and by making ifte the identity
function. Therefore, the A-calculus solution for this is straightforward:

True = Mab . a
False =MXab.b
ifte =X .t

This is also the standard (Church) encoding used for booleans in A-calculus courses
and text books. So far we learned nothing new yet!

2.2.4 Expressing a Simple Container Type in the A-calculus

Tuple is the simplest example of a pure container type. If we group data into a
container type, we also need constructions to get data out of the container (so-
called projection functions). For Tuple this can be realized by pattern matching
or by using the selection functions fst and snd. These functions can be defined in
Haskell using pattern matching:

fst (Tuple a b) = a

snd (Tuple a b) =b
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Containers can be expressed in the A-calculus by using closures (partial applications).
For Tuple the standard way to do this is:

Tuple =Xabf.fab

A tuple is a function that takes 3 arguments. If we supply only two, we have a
closure. This closure can take a third argument, which should be a 2 argument
function. This function is then applied to the first two arguments. The third
argument is therefore called a continuation (the function with which the computation
continues). It is now easy to find out what the definitions of £st and snd should be:

fst =X .t (Aab. a)
snd =M .t (A\ab.b)

If applied to a tuple, they apply the tuple to a two argument function, that selects
either the first (£st) or second (snd) argument.

Again, this definition of tuples is the one that can be found in A-calculus text
books and courses. So again, we learned nothing new.

2.2.5 Expressing General Multi Case Types in the A-calculus

It is now a simple step to come up with a solution for arbitrary ADT’s. Just combine
the two solutions from above. Let us look at the definition of the function warm that
takes a Temperature as an argument:

warm :: Temperature — Boolean
warm (Fahrenheit f) =f > 90
warm (Celsius ¢) =c¢ > 30

We have to find encodings for (Fahrenmheit f) and (Celsius c¢). The first solution
tells that we should make a A-expression with 2 arguments that returns the first
argument for Fahrenheit and the second argument for Celsius. The second solution
tells that we should feed the argument of Fahrenheit or Celsius to a continuation
function. Combining these two solutions we learn that Fahrenheit and Celsius should
both have 3 arguments. The first one to be used for the closure and the second
and third as continuation arguments. Fahrenheit should choose the first continuation
argument and apply it to its first argument and Celsius should do the same with the
second continuation argument. So their definitions now become:

Fahrenheit =M foc. . fo i

Celsius =AM foec. . c. i

The definition of warm now becomes:
warm =AMt .t (M . £>90) (A\c . ¢ > 30)

If we apply this strategy to the types Nat and List we obtain the following defi-
nitions for the constructors:

Zero = XZ. sc . Ze
Suc = MXz.s8. .8:.n

Nil =M. c. . n.
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Cons = XX X8 1n. ¢, . C. X X8

Note that in these definitions the fact that these data types are recursive is of no
influence. Functions like predecessor, head and tail can now easily be defined:

pred = Xn . n undef (Am . m)
head = dxs . xs undef (Ax xs . x)
tail = Xxs . xs undef (Ax xs . xs)

pred and tail are here constant time functions, while in the Church encoding their
definitions are linear in the size of n or xs (see Sec. 2.5). In partial functions like head,
pred and tail we use undef to indicate the part of the function that is not defined.

2.2.6 The General Case

In general the mapping of an ADT to A-expressions is defined as follows. Given the
following ADT definition in Haskell or Clean:

data type_name t; ... tpy =Cy ti1 ...ty | oo | G Tt - or T
Then this type definition with m constructors can be mapped to m A-expressions:

i = )\Vl,l e Vimg fr ..o £ o 1 Vi1 -+ Vimg

Cro = N1l - Vi, 1 oo T o £ Vit - o0 Vi,

Consider the (multi-case) pattern-based function £ in Haskell or Clean defined on
this type:

f (Cl vi,p .- Vl,nl) :body1

£ (Cn Vi1 -+ Vmn,) = bodyp,
This function is converted to the following A-expression using the Scott encoding of
data types:

f=X.x
()\Vl,l cee Vipg - bodyl)

(A1 -« Vi, - bodym)

This completes the description of the Scott encoding of data types. In section 2.5
we compare the Scott representation with the widely used Church encoding of data

types.

2.3 Defining Recursive functions

Now we know how to represent ADT’s we can concentrate on functions. We already
gave some examples of them above (ifte, fst, snd, head, tail, pred, warm). The more
interesting examples are the recursive functions. The standard technique for defining
a recursive function in the A-calculus is with the use of a fixed point operator. Let
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us look for example at the addition operator for Peano numbers. In Haskell or Clean
we express this by:

add Zero m—m
add (Suc n) m = Suc (add n m)

Using the Scott encoding and recursion in the definition, this becomes:

addo = nm . nm (A . Suc (addo n m))

This definition is illegal because it uses a reference to the macro addy itself. With
the use of the Y fixed point combinator to eliminate recursion this becomes:

addy
Y

Y daddnm . nm (M . Suc (add n m)))
M. (& . h(xx)) (A .h(xx))

There is, however, another way to represent recursion. Instead of using a fixed point
operator we can also give the recursive function itself as an argument (like this is
done in the argument of Y in addy ):

add =X addnm . nm (M . Suc (add add n m))

The price to pay is that each call of add should have add as an argument, as can been
seen in the definition of add. The gain is that we do not need the fixed point operator
any-more and that we can recognize recursive calls on the spot. This definition is also
more efficient than the one with the fixed-point combinator, because it uses fewer
reduction steps for evaluation when using normal order reduction. The following
example shows how add can be used to add one to one:

(Aadd . add add (Suc Zero) (Suc Zero)) add

2.3.1 Mutually Recursive functions

In case of mutually recursive functions, we have to add all mutually recursive func-
tions as arguments for each function in the mutual recursion. An example to clarify
this (we start with the Haskell definitions):

is0dd Zero — False
is0dd (Suc n) = isEven n
isEven Zero = True

isEven (Suc n) = is0dd n

This can be represented by A-expressions as:

isOdd = Mis0dd isEven n . n False (A . isEven is0Odd isEven n)
isBven = A\isOdd isEvenn . n True (M . isOdd isOdd isEven n)

All mutually recursive functions are now an argument of all functions in the defini-
tion as well as in each applied occurrence.
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2.4 Converting Clean and Haskell Programs to \-
calculus

We now have all ingredients ready for converting complete programs. The last step
to be made is combining everything into a single A-expression. For example, if we
take the add 1 1 example from above, and substitute all macros, we obtain:

(Aadd . add add ((\n £ g.gn) (XM g.f)) (A £ g.gn) (M g.f)))
(Aaddnm .nm (M . (\n f g.gn) (add add n m)))

Using ordinary S-reductions this reduces to a term equivalent to Suc (Suc Zero) that
represents the desired value 2. As said before, we can introduce explicit names for
zero and suc by abstracting out their definitions and obtain a more comprehensive
definition:

(Azero suc .

(Aadd

add add (suc zero) (suc zero))

(Aaddnm . nm (A . suc (add add n m)))
(Af g.f) (\n £ g.gn)
Here we applied a kind of inverted A-lifting (see Sec. 2.4.2). We have used some
smart indentation to make the expression better readable. The main expression is
indented most. Definitions are introduced by variable names before they are used.
Their implementations are indented as much as the line where their names were
introduced. Note the nesting in this definition: the definition of add is inside the
scope of the variables suc and zero, because its definition depends on the definition
of them. In this way the macro reference Suc in the definition of add can be replaced
by a variable suc.

As another example, the right hand side of the Haskell function:

main = is0dd (Suc (Suc (Suc Zero)))

can be written as:

(A\isOdd isEven . is0dd is0dd isEven (Suc (Suc (Suc Zero)))) isOdd isEven
and after substituting all macro definitions and applying inverted A-lifting:

(Atrue false zero suc .
(A\is0dd isEven .
is0dd is0dd isEven (suc (suc (suc zero))))
(A\is0dd isEven n . n false (An . isEven is0dd isEven n))
(A\isOdd isEven n . n true (An . is0dd isOdd isEven n)))
(Aa b.a) (Aab.b) (M g.f) (\n f g.gn)

The conversion yields small A-terms in which the original functional version of the

definition is easily recognizable.

2.4.1 Some Remarks on the Evaluation of Expressions

We use normal order reduction for the A-expressions to achieve lazy evaluation simi-
lar to lazy functional languages like Haskell and Clean. In order to obtain recognizable
results we treat A-expressions like:
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M1 X3 ... Xp . €

not as an abbreviation of:

Mg . (Axe . (b Xxy e L)

as usually in the A-calculus. In contrast we have a special reduction rule for each n:
A1 ... %y . e)a ..oa, = (e [xr=a1])...) [x=ay]

That is, only if the Ad-expression has all its arguments, it is reduced as an ordinary -
expression. Without the proper number of arguments no reduction steps are applied
(exactly the reduction behavior of Clean and GHC).

As a consequence, (An £ g . gn) (AMf g . f), representing Suc Zero, is not consid-
ered to be a redex and will therefore not be reduced to AMf g . g (Mf g . ).

2.4.2 Formalizing Inverted \-lifting

Above we mentioned the operation of inverted A-lifting. Here we make more precise
what we mean by this. The conversion of a functional program from Clean or Haskell
into a A-expression proceeds in a number of steps:

1. Remove all syntactic sugar (list notation, zf-expressions, where and let ex-
pressions, etc.).

2. Eliminate all algebraic data type definitions by converting them to functions
using the Scott encoding.

3. Convert pattern-based function definitions to normal functions using the Scott
encoding of algebraic data types (see Sect. 2.2.6).

4. Remove (mutually) recursion by the introduction of extra variables (as ex-
plained in Sec. 2.3).

5. Make a dependency sort of all functions, resulting in an ordered collection of
sets (strongly connected components). So the first set contains the functions
that do not depend on other functions (e.g. the Scott encoded ADT’s). The
second set contains the functions that only depend on the functions in the first
set, etc. Hereby, a group of mutually recursive functions is treated as a single
function and thus all functions in it must belong to the same dependency set.
Note that we can do this because all possible cycles are already removed in
the previous step.

6. Construct the resulting A\-expression by nesting the definitions from the differ-
ent dependency sets. The outermost expression consists of an application of
a A-expression with as variables the names of the functions from the first de-
pendency set and as arguments the A-definitions of these functions. The body
of this expression is obtained by repeating this procedure for the remainder
dependency sets. The innermost expression is the main expression.

The result of this process is:
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(Munction_names_first_set .
(Munction_names_second_set .

(Munction_names_last_set .
main_expression)
function_definitions_last_set)

function_definitions_second_set)

function_definitions_first_set

2.4.3 A More Complex Example

As a last, more interesting example, consider the following Haskell version of the
Eratosthenes prime sieve program:

data Nat = Zero | Suc Nat

data Inflist t = Cons t (Inflist t)

nats n = Cons n (nats (Suc n))

sieve (Cons Zero xs) = sieve xs

sieve (Cons (Suc k) xs) = Cons (Suc k) (sieve (rem k k xs))
rem p Zero  (Cons x xs) = Cons Zero (rem p p xs))

rem p (Suc k) (Cons x xs) =Cons x  (rem p k xs)

main = sieve (nats (Suc (Suc Zero)))

Here we use infinite lists for the storage of numbers and the resulting primes. sieve
filters out the zero’s in a list and calls rem to set multiples of prime numbers to zero.
Applying the first four steps of the conversion procedure results in:

Zero = XM g . f
Suc =Mfg .gn
Cons = Xxxsg.gxxs
nats = dnats n . Cons n (nats nats (Suc n))
sieve = Xsieve 1s . 1s (Ax xs . x (sieve sieve xs)

(Xk . Cons x (sieve sieve (rem rem k k xs))))
rem = rempkls . 1ls (Ax xs . k (Cons Zero (rem rem p p xs))

(Ak . Cons x (rem rem p k xs)))

main = sieve sieve (nats nats (Suc (Suc Zero)))

The dependency sort results in:
[{zero,suc,cons},{rem,nats},{sieve},{main}]
Putting everything together in a single A-expression yields:

(Azero suc cons .
(Arem nats
(Asieve
sieve sieve (nats nats (suc (suc zero))))
sieve)
rem nats)
Zero Suc Cons
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And after substituting the A-definitions for all macros:

(Azero suc cons .
(Arem nats
(Asieve
sieve sieve (nats nats (suc (suc zero))))
(Asieve 1s . 1s (Mx xs . x (sieve sieve xs)
(Xk . cons x (sieve sieve (rem rem k k xs))))))
(remp k 1s . 1s (A&x xs . k (cons zero (rem rem p p xs))
(Xk . cons x (rem rem p k xs))))
(Mats n . cons n (nats nats (suc n))))
(Mg.f)(Mmfg.gn) (xxsg.gxxs)

Which is probably the most compact, completely self-contained, definition of a prime
number generator. Even shorter (143 characters) using one letter identifiers:

(Azsc.(Arf.(Ae.ee(ff(s(sz))))(Ael.IAht.h(eet) Ak.ch(ee(rrkkt))))
(Arpkl.IAht.k(cz(rrppt)) Ak.ch(rrpkt))(Afn.cn(ff(sn))))(Afg.f)(Anfg.gn)( Ahtg.ght)

2.5 Comparing the Church and Scott encoding

We already indicated that the Church and Scott encoding overlap for simple enu-
merations and simple (non-recursive) packaging types. They only differ for recursive
types. Let us have a look at the Church definition of natural numbers:

Zero, = M x . x
Suce =mfx.f(nfx)

As a reminder, above we had for the Scott encoding:

Zerog =X g . f
Sucs, =mfg.gn

The functions Zero. and Zerog are both selection functions, but the definition of
Suc, is completely different from Sucs. Instead of feeding only n to the continuation
function £ the result of of n £ x is fed to the continuation function £. This is exactly
the same thing as what happens in the fold function. Using the Scott encoding
for natural numbers fold can be defined as (the recursion can be removed with the
technique used earlier):

foldNat =X zn .nz (A . £ (foldNat £ z n))

In [Hin05] Hinze states that Church numerals are actually folds in disguise. As a
consequence only primitive recursive functions on numbers can be easily expressed
using the Church encoding. An example of such a function is addition:

add; = m . n Suc.m
Which is comparable to the following Scott version using foldNat:

adds =X m . foldNat Sucs nm
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For functions that need general recursion (or functions for which the result for suc n
cannot be expressed using the result for n) we run into troubles. Church himself
was not able to solve this problem but Kleene found a way out (as described in
[Bar97]). A nice example of his solution is the predecessor function, which can be
easily expressed using the Scott encoding, as we saw earlier:

preds = A . n undef (Am . m)

To define it using the Church encoding Kleene used a construction with pairs.
pred. = M . snd(n (\p . pair (Suc. (fst p)) (fst p)) (pair Zero. Zero.))

Each pair combines the result of the recursive call with the previous element. A
disadvantage of this solution, besides that it is hard to comprehend, is that pred. n
has complexity O(n) while that of preds nis O(1). From a programmers point of
view this is a serious drawback.

It is straightforward to convert Church and Scott encoded numbers into each
other:

toChurch = M £ x . foldNat £ x n
toScott = dn . n Sucs Zerog

This again, shows that the difference between the Church and Scott encoding is a
fold!

2.5.1 Comparing the Scott and Church encoding for lists

The Church encoding for lists together with the functions sum and tail are given by:

Nil, = X x . X
Consc = tfx.fh(tfx)

sum. = Xxs . xs add. Zero,.
tail. = Xxs . snd (xs (Ax rs . pair (Cons. x (fst rs)) (fst rs)) (pair Nil. Nil.))

Also here the definition of Cons behaves like a fold (a foldr actually). Again, we
need the pair construction for the non-primitive recursive function tail. The Scott
version of foldr for lists and its application in the sum function are:

foldList =X dxs . xsd (At . fh (foldList £ 4 t))
SUMg = Mxs . foldList adds; Zeros xs

The conversions between the Church and Scott encoding for lists are given by:

toChurchList = s £ d . foldList £ d xs
toScottList = Xxs . xs Conss Nil,

Note that these definitions are completely equivalent to those for the conversion
of numbers. They only use a different fold function in toChurchList and different
constructors in toScottList.
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2.5.2 Discussion

We already indicated that the Scott encoding just combines the techniques used
for encoding booleans and tuples in the Church encoding as described in standard
A-calculus text books and courses. The Scott and Church encodings only differ
for recursive types. A Church encoded type just defines how functions should be
folded over an element of the type. A fold can be characterized as a function that
replaces constructors by functions. The Scott encoding just packages information
into a closure. Recursiveness of the type is not visible at this level. Of course, this
is also the case for ADT’s in functional languages, where recursiveness is only visible
at the type level and not at the element level.

The representation achieved using the Scott encoding is equivalent to that of
ADT definitions in modern functional programming languages and allows for an
similar realization of functions defined on ADT’s. Also the complexity (efficiency) of
these functions is similar to their equivalents in functional programming languages.
This in contrast to their counterparts using the Church encoding that sometimes
have a much worse complexity. Therefore, from a programmers perspective the Scott
encoding is better than the Church encoding.

A disadvantage of the Scott encoding of ADT’s is that the resulting functions
cannot be typed using standard HM type systems, while Church encoded ADT’s
can be neatly typed. The encoding of recursive functions in combination with the
absence of ordinary combinators is too complicated for the standard HM type sys-
tems.

An interesting question now is: Why did it took so long before the Scott encod-
ing was discovered and why is this encoding still relatively unknown? The encoding
is simpler than the Church encoding and allows for a straightforward implementa-
tion of functions acting on data types. Of course, the way ADT’s are represented in
modern functional programming languages is rather new and dates from languages
like ISWIM [Lan66], HOPE [BMS80] and SASL [Tur79] and this was long after the
Church numerals were invented. Furthermore, ADT’s are needed and defined by
programmers, who needed an efficient way to define new types, which is rather irrel-
evant for mathematicians who are less concerned with an efficient implementation
of algorithms.

In [JKPO6] (chapter 3) we showed that this representation of functional pro-
grams can be used to construct very efficient, simple and small interpreters for
lazy functional programming languages. These interpreters only have to implement
[J-reduction and no constructors nor pattern matching.

Altogether, we argue that the Scott encoding also should have its place in A-
calculus textbooks and courses.

2.6 Conclusions

In this paper we showed how the A-calculus can be used to express algorithms and
Algebraic Data Types in a way that is close to the way this is done in functional
programming languages. To achieve this, we used a rather unfamiliar encoding of
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ADT’s attributed to Scott. We showed that this encoding can be considered as
a logical combination of the way how enumerations (like booleans) and containers
(like tuples) are normally encoded in the A-calculus. The encoding differs from the
Church encoding and the connecting element between them is the fold function.

For recursive functions we did not use the standard fixed-point combinators,
but instead used a simple technique where an expression representing a recursive
function is given (a reference to) itself as an argument. In this way the recursion
is made more explicit and this also results in a more efficient implementation using
fewer reduction steps.

We also sketched a systematic method for converting Haskell or Clean like pro-
grams to A-expressions.

Altogether we have shown that it is possible to express a functional program in a
concise way as a A-expression that is clearer than the standard Church representation
of the functional program.



Chapter 3

Efficient Interpretation by
Transforming Data Types and
Patterns to Functions

L Abstract This paper describes an efficient interpreter for lazy functional languages like
Haskell and Clean. The interpreter is based on the elimination of algebraic data types
and pattern-based function definitions by mapping them to functions using a new efficient
variant of the Church encoding. The transformation is simple and yields concise code.
We illustrate the concepts by showing how to map Haskell and Clean programs to the
intermediate language Sapl (Simple Application Programming Language) consisting of
pure functions only.

An interpreter is described for Sapl, based on straightforward graph-reduction tech-
niques. This interpreter can be kept small and elegant because function application is the
only operation in Sapl. The application of a few easy to realize optimisations turns this
interpreter into an efficient one. The resulting performance turns out to be competitive
in a comparison with other interpreters like Hugs, Helium, GHCi and Amanda for a large
number of benchmarks.

3.1 Introduction

In this paper we present an implementation technique for lazy functional languages
like Haskell [PJO03] and Clean [PEO1] based on the representation of data types by
functions. Although it is well known that it is possible to represent algebraic data
types as functions by using the Church encoding or variants of it (Berarducci and
Bohm ([BB93] and [BB85]) and Barendregt [Bar97|), these representations have
never been used in implementations for efficiency reasons. Therefore, intermediate
languages always contain special constructs for data types and pattern matching
(see e.g. Peyton Jones [PJ87] and Kluge [Klu04]). In this paper we present a new
variant of the Church encoding for algebraic data types. This variant uses named
functions and explicit recursion instead of lambda expressions for the conversion. We

'Originally published as [JKPO06]
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show how to convert a pattern-based function definition to a single function without
patterns using this encoding. The encoding results in a program in the intermediate
language Sapl consisting of pure functions only. The encoding we use has important
advantages over the Church encoding because it allows for destructor functions with
complexity O(1), instead of proportional to the size of the data structure (list, tree,
ete.).

In the second half of this paper an interpreter is described that can handle the
functions that are the result of this transformation. The interpreter is based on
straightforward graph-reduction techniques. To optimise the performance of the
interpreter two types of function annotations are introduced. The first annotation
enables an optimal instantiation of function bodies that are the result of translating
pattern-based function definitions, and the second annotation enables the inline
execution of certain local function definitions. The annotations can easily be added
during the translation of a Haskell or Clean program to Sapl. It is also possible to
add them during a static analysis of the translated programs without knowledge of
the original data types and pattern definitions.

Summarizing, the contributions of this paper are:

e We introduce a new encoding scheme that transforms algebraic data types
to simple function definitions in the intermediate language Sapl. The encod-
ing uses named functions and explicit recursion which simplify the encoding
considerably in comparison with known encodings.

e We show how to transform a pattern-based function definition to a single
function without patterns using this encoding.

e We describe how an efficient interpreter can be realized for lazy functional
programming languages using minimal and elementary effort. The interpreter
takes as input the result of the transformation mentioned above. The im-
plementation of the interpreter is considerably shorter than that of byte-code
based interpreters like Helium, Hugs and GHCi with a better performance.
The better performance of the interpreter can be attributed to the simplicity
of the intermediate formalism enabling a high-level abstract machine having
large atomic actions with minimal interpretation overhead.

The structure of this paper is as follows. In Section 3.2 we introduce a new
encoding of algebraic data types by functions and we compare this encoding with
two existing encodings. In Section 3.3 we introduce the intermediate functional
programming language Sapl. Sapl has, besides integers and their operations, no
data types. Sapl is similar to the pure functional kernel of languages like Haskell
and Clean. We show how to transform complex pattern-based function definitions
to Sapl based on the representation of data types from Section 3.2. In Section 3.4
we define an interpreter for this language based on straightforward graph-rewriting
techniques. We show how the interpreter can be optimised by using two simple
annotations that can be added to Sapl programs. The performance of the optimised
interpreter is compared with other implementations in Section 3.5. In Section 3.6
we give some conclusions and discuss further research possibilities.
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3.2 Representation of Data Types by functions

In the lambda calculus several representations of algebraic data types by functions
(or lambda expressions) exist. In this section we introduce a new representation
and compare it with the two most important existing representations. We use two
examples to demonstrate the differences: the Peano representation of natural num-
bers with the addition and predecessor operations and lists with the length and tail
operations. We use Haskell syntax for all definitions, although some functions cannot
be typed.

3.2.1 A New Representation of Data Types by Functions

Consider the following algebraic data type definition in Haskell or Clean:
typename ty ..ty = Cylig o tig || Cm bt - by,
We map this type definition with m constructors to m functions:

01 U1 - Vm - )\fl .. fm — f1 U1 - Vm

Cm Um,1 - Umyng, — )\fl .. fm — fm Um,1 - Um,np,

Each constructor is represented by a function with the same name. Now consider
the Haskell (multi-case) function fwith as argument an element of this data type:

F(Cyvy. ) = body

f (Cm Um,l . Um,nm) — bOdym

This function is converted to the following function without patterns:

fel = el
()\ U1 - Vg — bOdyl)

(A U1 - Uy, — bOdy,)

The body of each case is turned into a lambda expression that is placed as an
argument of the data type element. The actual data type argument will select
the correct lambda expression and apply it to the arguments of the constructor.
Therefore we call a function corresponding to a constructor a selector function. The
result of the transformation of recursive functions on recursive data types cannot be
typed by Hindley-Milner type inference (see examples in the next section). This is
not a problem because the functions can be typed before the transformation.

3.2.2 Examples

The Haskell definitions for the examples are (note that we defined tail Nil as Nil
and pred Zero as Zero in order to have total functions):
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data Nat = Zero | Suc Nat

add n Zero =n

add n (Suc m) = Suc (add n m)

pred Zero = Zero

pred (Suc n) =n

data List t = Nil | Cons t (List t)
length Nil =0

length (Cons x xs) = 1 + length xs

tail Nil = Nil

tail (Cons x xs) = xs

Using the transformation to functions this becomes:

Zero =Afg—f

Sucn =Afg — gn

addnm = mn(Apm — Suc (add n pm))
pred n = n Zero (Apn — n)

Nil =ANfg—>f

Consxaxs= Afg — gruxs
length ys = ys0 Az xs — 1 + length xs)
tailys = ys Nil (Ax xs — ws)

pred and tail both have complexity O(1). The functions Zero, Suc, Nil, Cons, pred
and tail can be typed, but add and length cannot be typed using Hindley-Milner
type inferencing. In general, the encoding of recursive functions on recursive data
types cannot be typed. The definitions of add and length are explicitly recursive.
In general, to encode recursive functions over recursive data structures, we need
explicit recursion. This is not a problem since we use named functions instead of
lambda expressions in our encoding. The notation is easy to read and close to the
original Haskell data type and function definitions.

3.2.3 Church Encoding

For this encoding we need pairs with the selection functions fst and snd. They can
be represented by functions as follows:

patrxy = ANf — fxy

fst p =pAzy — )
sndp = pAzy — y)

The Church encoding is a generalization of the Church numerals. The representation
described here is based on Berarducci and Bohm [BB93| and Barendregt [Bar97].
For comparison reasons we use a slightly different notation than is generally used
for describing Church numerals:
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Zero =ANfg—f
Suc n =Afg—=g9nfg
add nm = mn(Arpm — Suc rpm)
pred n = snd (n (pair Zero Zero) (A p — pair (Suc (fst p)) (fst p)))
Nil =Afg—f

Conszas= ANfg— gz(zsfyg)
length ys = ysO0 Az res — 1 + rzs)
tailzs = snd (xs (pair Nil Nil)
(A x prs — pair (Cons x (fst pxs)) (fst pzs)))

In the add definition add n (Suc m) can be defined using the result of add nm
(represented by rpm). The same holds for length. But in predecessor pred (Suc n)
cannot be expressed in terms of pred n. Instead we need access to nin Suc n (we
need to destruct Suc n). Kleene ([Bar84]) found a way to overcome this by the use
of pairs. In such a pair n is combined with the result of the recursive call, so access
to n is also possible. For tail we also need this pair construction. Through this
construction pred n has complexity O(n) and tail xs has complexity O(length xs). In
this encoding the recursion is put into the data structures. Therefore, functions on
data structures do not have to be recursive themselves. A disadvantage is that this
encoding only works fine for iterative and primitive recursive functions (see [BB85]).
For destructor functions we need the pair construction. In the Church encoding
data types and functions acting on them can be typed using Hindley-Milner type
inference.

3.2.4 Representation according to Berarducci and Bohm

Another representation is described in Berarducci and Bohm [BB85] and Barendregt
[Bar97]. Again we adapted the notation to make a comparison with the other
representations possible.

Zero =ANg—=[ffyg

Sucn = Afg = gnfyg

addnm = mAfzfs — n)(Apm fzfs — Suc(pm [z [s))
predn = n(Afzfs — Zero) (Apn fz fs — pn)

Nil =Afg—=1[[yg

Consxaxs= ANfg— grasfyg
length ys = ys(Afnfc — 0)(Azzsfnfc — 1 + zsfnfc)
tailys = ys (A fn fc — Nil) (Az xs fn fc — xs)

The basic idea in this representation is that the functions handling the different
cases are propagated by the functions representing the data structures. Therefore,
functions on data structures do not have to be recursive themselves. Here pred n
and tail xs have complexity O(1). In general, destructor functions have complexity
O(1), making this representation more powerful than the Church encoding. In this
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representation Zero, Suc, Nil and Cons, as well as the functions acting on them
cannot be typed by Hindley-Milner type inference.

3.2.5 Conclusions

Our representation is more efficient than the Church encoding, because it realizes
destructor functions with O(1). Although this also holds for the representation of
Berarducci and Bohm, the use of named functions and explicit recursion in our
representation result in a simpler representation, which is suitable for an efficient
implementation (see Section 3.4).

3.3 Sapl: An intermediate Functional Language

Sapl is an intermediate language that can be used for the compilation and inter-
pretation of functional programming languages like Haskell and Clean. The main
difference between Sapl and the intermediate formalisms normally used is the ab-
sence of algebraic data types and constructs for pattern matching in Sapl. This
makes Sapl a compact and simple language. In Section 3.4 we show that it is possi-
ble to make an efficient implementation for Sapl. Sapl is described by the following
syntax:

function = identifier {identifier} * =" expr

expr == application | 'N {identifier} + '—' expr
application === factor { factor}x

factor == ddentifier | integer | (" expr'y

A function has a name followed by zero or more variable names. An expression is
either an application or a lambda expression. In an expression only variable names,
integers and other function names may occur. Sapl function definitions start in the
first column and can extend over several lines (as long as these are indented). Sapl
is un-typed. The language has the usual lazy rewrite semantics (see Section 3.4).
For efficiency we added integers and their basic operations to the language. In Sapl
it is common that a curried application of a function is the result of a computation.
This result will be presented as the application of the function name to the evaluated
arguments.

Sapl’s main difference with the lambda calculus is the use of explicitly named
functions (enabling explicit recursion) which makes Sapl usable as a basic functional
programming language and suitable for an efficient implementation.

For the use of Sapl as an intermediate language for implementing lazy functional
languages like Haskell and Clean we must translate constructs from these languages
to Sapl functions. Constructions like list-comprehensions, where and let(rec) expres-
sions can be converted to functions with standard techniques as described in [PJ87]
and [PvE93]. Algebraic data types and simple pattern-based functions are treated
specially using the translation scheme from Section 3.2. In the next subsection the
transformation of complex pattern-based functions is sketched.
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3.3.1 Compiling Complex Pattern Definitions to Functions

In the implementations of Haskell and Clean pattern-based definitions are tradi-
tionally compiled to dedicated structures in a special pattern formalism that can
be used to generate pattern-matching code (Augustsson [Aug85] and Peyton Jones
[PJ87]). Here we transform a pattern-based function definition from Clean or Haskell
to a single Sapl function without patterns. This function is capable of handling an
actual call for the original pattern-based function. The conversion to a single func-
tion can be obtained using techniques similar to those used for the generation of
pattern-matching code (see [Aug85] and [PJ87]). We use three examples to illus-
trate this conversion: mappair (zip With), samelength and compler. Note that the
pattern compiler introduces a name for every constructor (e.g. as in mappair) and
uses existing names whenever possible (e.g. ps and ¢s in samelength).

mappair f Nil 28 = Nil
mappair [ (Cons © xs) Nil = Nil
mappair [ (Cons x xs) (Cons y ys) = Cons (f = y) (mappair [ xs ys)

samelength Nil Nil = True
samelength (Cons © xs) (Cons y ys) = samelength xs ys
samelength ps qs = Fulse

complex (Cons a (Cons b (Cons ¢ Nil))) = a + b + ¢

complex (Cons a (Cons b Nil)) =2xa+b
complex (Cons a Nil) = 3xa
complex xs =0

The translation to Sapl results in:
mappair [ as zs = as Nil (Axzs — zs Nil (Ayys —

Cons (f x y) (mappair [ zs ys)))

samelength ps qs = ps (qs True (A y ys — False))
(Az xs — qs False (A y ys — samelength xs ys))

compler s = xs0 (A a pl — pl (mult 3 a) (A bp2 —
p2  (add (mult 2 a) b)
(A cp3 = p3(add (add a b) ¢) (A pd p5 — 0))))

3.4 An Interpreter for Sapl

The only operations in Sapl programs are function application and a number of
(built-in) integer operations. Therefore an interpreter can be kept small and elegant.
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The interpreter is implemented in C and is based on straightforward graph-reduction
techniques as described in Peyton Jones [PJ87, PJL92], Plasmeijer and van Fekelen
[PvE93] and Kluge [Klu04]. We assume that a pre-compiler has eliminated all alge-
braic data types and pattern definitions (as described earlier) and all let(rec)- and
where- clauses and lifted all lambda expressions to the global level. The interpreter
is only capable of executing function rewriting and the basic operations on integers.
The most important features of the interpreter are:

e [t uses 4 types of memory Cells. A Cell corresponds to a node in the syntax
tree and is either an: Integer, (Binary) Application, Variable or Function Call.
To keep memory management simple, all Cells have the same size. A type byte
in the Cell distinguishes between the different types. Each Cell uses 12 bytes
of memory.

e The memory heap consists only of Cells. The heap has a fixed size, definable
at start-up. We use a mark and (implicit) sweep garbage collection. Cells are
not recollected, but the dirty bit is inverted after every mark.

e [t uses a single argument stack containing only references to Cells. The C
(function) stack is used as the dump for keeping intermediate results when
evaluating strict functions (numeric operations only) and for administration
overhead during the marking phase of garbage collection.

e The state of the interpreter consists of the stack, the heap, the dump, an array
of function definitions and a reference to the node to be evaluated next. In
each state the next step to be taken depends on the type of the current node:
either an application node or a function node.

e [t reduces an expression to head-normal-form. The printing routine causes
further reduction. This is only necessary for arguments of curried functions.

The interpreter is based on the following ‘executable specification’ (without integers
and their operations):

data Expr = App Expr Expr | Func Int Int | Var Int

The first Int in Func Int Int denotes the number of arguments of the function, the

second Int the position of the function definition in the list of definitions. The Int

in Var Int indicates the position on the stack where the argument can be found.
The interpreter consists of three functions:

instantiate (App L r) es = App  (instantiate | es) (instantiate r es)

instantiate (Var n) es = es!ln
instantiate x es =
rebuild e (] = e

rebuild e (x : xs) = rebuild(App e x) xs
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eval 2 FEzpr — |Fopr| — |[Fxpr] — Expr
eval (Applr)yesfs = eval [ (r : es) fs
eval (Func na fn) es fs

= if  lengthes > na
then eval (instantiate (fs ! fn) es) (drop na es) fs
else rebuild (Func na fn) es

Here es represents the stack and fs the list of function body definitions. One
of the benchmarks in Section 3.5 is a Sapl version of the interpreter (including in-
tegers and their operations), which is the translation to Sapl of the Haskell version
of the interpreter (a meta-circular implementation for Sapl). The C versions (in-
cluding integers and operations on them) of eval and instantiate are straightforward
implementations of this specification and fit on less than one page.

3.4.1 Optimising the Sapl Interpreter

For data-type-free programs the interpreter from the previous subsection has a per-
formance comparable to Helium, GHCi and Amanda. But for programs involving
algebraic data types the performance is worse. The difference depends on the num-
ber of alternatives and the complexity of the data type definition and varies from
30% slower for programs involving only if-then-else constructs, to several hundreds
of times slower for programs involving complex data types and pattern matching
(see section 3.5). This is not surprising because a pattern definition is converted
to one large function containing all different cases. Instantiation of such a function
is therefore relatively expensive, particularly because only a small part of the body
will actually be used in a call for the function.

For optimising the Sapl interpreter we used both general optimisation techniques,
commonly used for implementing functional languages, as well as techniques that
are more specific for the way Sapl handles data types and pattern definitions.

General Optimisations

We use a more efficient memory representation for function calls with one or two
arguments. For these function applications A PP nodes are removed. This reduces
the size of the bodies of functions and consequently copying overhead.

In the interpreter curried function calls are rebuilt. This can be prevented by
keeping a reference to the top node of the application. If the number of arguments
for a function call can be computed at compile time, the top node of a curried
call can be marked. In this way an attempt to reduce a curried call can even be
prevented.

Applying these two optimisations results in an average speed-up of 60% (see
section 3.5). This speed-up is high since many functions have only 1 or 2 arguments
and because Sapl programs contain many curried functions (due to the representation
of data types by functions).
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Specific Optimisations

We applied two specific optimisations. The first one addresses the instantiation
problem for functions that are the result of the translation of pattern-based func-
tion definitions. The second one optimises the use of lambda expressions in these
functions. Although the speed-up realized by these optimisations is significant, the
implementation of them requires only small changes in the interpreter.

Selective Instantiation of Function Bodies The body of a transformed pattern-
based definition consists of the application of a so-called selector function (see Sec-
tion 3.3) to a number of arguments consisting of anonymous local function defini-
tions. The selector function will select one of these local function definitions and
apply it to the arguments of the corresponding constructor. All other arguments of
the selector function will be ignored. In the mappair example below we have tagged
the applications of selector functions with the keyword select.

mappair [ as 28 =
select as Nil (Ax xs =
select zs Nil (Ay ys = Cons (f = y) (mappair [ zs ys)))

The interpreter uses the select (semantically equivalent to the identity function) tag
to optimise the instantiation of the body of mappair. Instead of copying the entire
body, at first only the selector function part is instantiated (as) and depending on
the result (Nilor Cons x xs), the correct remainder is instantiated. This is similar to
evaluating the condition of an if expression before we decide to build the then part
or the else part (but not both). In fact, in Sapl True and False are also implemented
as selector functions. The optimisation is applied recursively to the bodies of all local
definitions.

The optimisation realised in this way is significant. Varying from 30% faster
for programs involving only if-then-else constructs, to up to 500 times faster for
programs involving complex data type definitions like interpreters etc.

We can add the select tag during the transformation of the pattern-based function
definition to Sapl, but it is also possible to infer the application of selector functions
by a compile time analysis of a Sapl program. Selector functions must be recognized
and the propagation of arguments and results of functions that are selector functions
must be inferred. In this way this optimisation is a generic one and can even be
used for the efficient reduction of lambda expressions.

Inlining of Local Definitions As a last optimisation we again consider the bodies
of transformed pattern-based definitions. They contain local function definitions
corresponding to the different cases. Normally these definitions are lambda lifted
to the global level. During this lifting extra arguments are added to the function,
causing extra stack operations at run-time. These local functions can also be reduced
in the context of the reduction of the surrounding function call. This means that
the local function is called (reduced) while the arguments of the main function are
still on the stack and that at the end all arguments together are cleared from the
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stack. This can only be done because the reduction to head-normal-form of the
local function call is necessary for the reduction to head-normal-form of the original
function call, which is indeed the case for these transformed pattern-based functions.
This optimisation results in an extra speed-up of about 10 to 25% for programs
involving transformed pattern-based functions (see section 3.5). The optimisation
is implemented by replacing — by = in the local definition as a signal for the
interpreter not to lambda lift this local function (see example in 3.4.1).

Again this optimisation can be applied not only for local definitions in translated
pattern-based functions, but for all local function calls that must be reduced to head-
normal-form while reducing the surrounding function call. But the gain for Sapl
programs will be higher than for applying this optimisation for other functional
languages, because Sapl programs, due to the translation scheme for pattern-based
functions, contain more local function definitions.

3.5 Benchmarks

In this section we present the results of several benchmark tests for Sapl and a
comparison of Sapl with other implementations. We ran the benchmarks on a 2.66
Ghz Pentium 4 computer with 512Mb of memory under Windows XP. Sapl was
implemented using the Microsoft Visual C++ compiler using the -O2 option. The
benchmark programs we used for the comparison are:

1. Prime Sieve The prime number sieve program, calculating the 5000th prime
number.

2. Symbolic Primes Symbolic prime number sieve using Peano numbers, cal-
culating the 280th prime number.

3. Interpreter An interpreter for Sapl, as described in Section 3.4 (including
integers). As an example we coded the prime number sieve for this interpreter
and calculated the 100th prime number.

4. Fibonacci The (naive) Fibonacci function, calculating fib 35.

5. Match Nested pattern matching (5 levels deep) like the complex function from
section 3.3.1, repeated 2000000 times.

6. Hamming The generation of the list of Hamming numbers (a cyclic definition)
and taking the 1000th Hamming number, repeated 4000 times.

7. Twice A higher order function (twice twice twice twice (add 1) 0), repeated
400 times.

8. Sorting Tree Sort (6000 elements), Quick Sort (6000 elements), Merge Sort
(40000 elements, merge sort is much faster) and Insertion Sort (6000 elements).

9. Queens Number of placements of 11 Queens on a 11 * 11 chess board.
10. Knights Finding a Knights tour on a 5 * 5 chess board.

11. Parser Combinators A parser for Prolog programs based on Parser Combi-
nators parsing a 17000 lines Prolog program.
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Table 3.1: SAPL with/without Selective Instantiation (Time in seconds)
Pri Sym Inter Fib Match Twi Sort Qns Kns Parse Plog
With 114 6.0 22 116 147 11.0 1.0 105 4.0 8.0 02
Without |21.5 107.0 53.0 19.2 23.0 109 17.8 16.0 6.1 16.0 106.0

12. Prolog A small Prolog interpreter based on unification only (no arithmetic
operations), calculating ancestors in a four generation family tree, repeated
500 times.

For sorting a list of size n we used a source list consisting of numbers 1 to n. The
elements that are 0 modulo 10 are put before those that are 1 modulo 10, etc.

Three of the benchmarks (Interpreter, Prolog and Parser Combinators) are re-
alistic programs, the others are typical benchmark programs that are often used for
comparing implementations. They cover a wide range of aspects of functional pro-
gramming (lists, laziness, deep recursion, higher order functions, cyclic definitions,
pattern matching, heavy calculations, heavy memory usage). All times are machine
measured. The programs where chosen in such a way that they ran for at least
several seconds (interpreters only). Therefore start-up times can be neglected. The
output was always converted to a single number (e.g. by summing the elements of
a list) to eliminate the influence of slow output routines.

The input for the Sapl interpreter is code generated by an experimental data type
and pattern compiler from sources equivalent to the Haskell and Clean programs (only
minor syntactic differences). This compiler also generates the annotations needed
for the optimisations. The inline optimisation is only applied for the lambda expres-
sions that are the result of encoding a pattern- based definition. The benchmarks
programs can be found in [SAP].

3.5.1 Optimisations for Sapl

In table 3.1 we first compare Sapl with and without the selective instantiation op-
timisation. In this comparison the other optimisation are not applied. Hamming is
missing because the version of the interpreter without selective instantiation does not
support cyclic definitions. We conclude that the selective instantiation optimisation
is essential. Because Sapl also uses selective instantiation to optimise the if- then-else
construct there is a speed-up for all benchmarks except twice (the only benchmarks
without if-then-else and data structures). In the other examples the speed-up varies
from around 1.5 times (Primes, Fibonacci, Match, Queens, Knights), around 20
times (Symbolic Primes, Interpreter, Sorting) to more than 500 times for Prolog
(due to the complicated unification function).
Table 3.2 shows the results of applying the other optimisations.

e Full The fully optimised interpreter (Select, Mem and Inline).

e Select The interpreter using only the selective instantiation optimisation.



3.5 Benchmarks

43

Table 3.2: Comparison Versions of SAPL (Time in seconds)

Pri Sym Inter Fib Match Ham Twi Sort Qns Kns Parse Plog
Full 6.1 176 7.8 7.3 85 64 79 59 65 20 44 47
Select |11.4 37.6 14.3 11.6 14.7 11.3 11.0 94 106 4.0 80 104
Mem | 6.2 280 9.3 7.5 90 80 79 64 70 27 49 6.7
Inline |11.4 244 129 11.5 144 92 11.0 87 100 33 75 7.8

Table 3.3: Different Memory Configurations (Time sec, Heap/Stack kB)
Pri Sym Inter Fib Match Ham Twi Sort Qns Kns Parse Plog
Heap (223 47 2350 12 101 105 785 2350 43 18 9700 150
Stack 270 35 1100 1 1 1 1 200 1 1 200 4
10.8 Mb

Time 6.7 17.1 13.0 8.0 92 69 91 67 70 21 170 52
% GC 15 12 46 13 18 14 18 21 17 14 76 17
nr GCs| 87 204 150 117 157 100 120 83 114 32 190 83
24 Mb

Time 6.4 175 88 7.8 91 67 88 65 70 2.1 6.0 5.1
% GC 13 10 24 13 18 15 15 15 14 14 38 16
nr GCs| 38 91 61 53 70 45 52 37 51 15 40 37
60 Mb

Time 6.4 186 83 7.6 91 66 85 65 69 2.1 50 5.1
% GC 13 10 18 13 16 15 13 16 14 14 24 16
nr GCs| 15 36 24 28 28 18 21 15 21 6 14 15

e Mem The interpreter using selective instantiation and the efficient represen-
tation of functions with 1 or 2 arguments.

e Inline The interpreter using selective instantiation and inlining of lambda
expressions in encoded pattern-based functions.

From this comparison we learn that the fully optimised version is about 1.8 times
faster than the version using only selective instantiation, 1.2 times faster than the
version with selective instantiation and memory optimisation and 1.6 times faster
than the version with selective instantiation and inlining. The benefit from the
inline optimisation is modest, but the implementation of it in the run-time system
consists of only moving a stack pop operation to another line. The more efficient
memory representation gives a significant speed-up.

In table 3.3 we compare the behavior of Sapl for a number of memory configu-
rations: 10.8 Mb (90000 Cells), 24 Mb (2000000 Cells) and 60 Mb (5000000 Cells).
900000 Cells is the minimal heap size needed to run all benchmarks. We also give
peak heap and stack usage in Kb and percentage of time spent in GC and number
of GCs. Because heap and stack usage are only measured at GC the actual maxi-
mum values can be (slightly) higher than those measured. For these tests we used a
garbage collector with an explicit sweep phase instead of the implicit sweep (during
memory allocation). This is done to make it possible to give meaningful figures
about time spent in garbage collection. The price to be paid is a small performance



44

Efficient Interpretation by Transforming Data Types to Functions

Table 3.4: Run-Times (in seconds) for different Implementations

Pri Sym Inter Fib Match Ham Twi Sort Qns Kns Parse Plog
SAPL 6.1 176 7.8 7.3 85 64 79 59 65 20 44 47
Helium [13,6 17,6 16,3 12,2 174 128 232 104 97 34 84 7.1

Amanda |18.0 33.0 - 88 172 140 - 125 77 24 109 85
GHCi 18.0 19.5 250 386 353 235 193 138 240 7.0 87 119
Hugs 440 26.0 - 1200  66.0 36.0 - 540 42,0 13.0 104 16.2

GHC 1.8 15 82 40 41 38 66 16 37 09 23 13
GHC-O0| 09 15 18 0.2 10 14 01 11 04 02 16 04
Clean 09 08 06 02 09 14 24 07 04 02 49 06

penalty (< 10%) and the use of an administration array for the collected free cells.

We conclude that if the peak heap memory stays under 30% of the total heap
size execution times do not differ too much. If peak heap usage rises above 50% of
total memory, performance drops radically and the amount of time spent in garbage
collection grows rapidly. Because Sapl has a fixed heap, the memory management
overhead is lower than in implementations with a flexible heap. Sapl uses relatively
few GC cycles, because Sapl has a fixed heap and only starts garbage collection if
there are less than 1000 free cells left.

The stack usage of Sapl is modest. Note, however, that Sapl also uses the C
stack. The maximum amount of C stack for Sapl is 8Mb.

3.5.2 Comparison with other Implementations

In this subsection we compare Sapl with several other interpreters: Amanda V2.03
[Brub], Helium 1.5 [Sof], Hugs 20050113 [Hug| and GHCi V6.4 [GHC] and with the
GHC V6.4 and Clean V2.1 compilers. We used the same amount of (fixed or maximal)
heap space (64 Mb) and stack space (8 Mb) for all examples whenever this was
possible (for Amanda the stack size cannot be set). For Interpreter and Twice the
Amanda results are missing because of a stack overflow. Hugs also could not run
these examples (C stack overflow).

Run-Time Comparison

The run-time results can be found in table 3.4. The results show us that the Sapl
interpreter is almost 2 times faster than Amanda and Helium, about 3 times faster
than GHCi and between 1.5 and 15 times faster than Hugs.

For the compilers there is more variation in the results due to the different
optimisations applied by them. Comparing Sapl with GHC, the average speed-up
of GHC is less than 3 times. The speed-ups of GHC -O and Clean vary between 1.1
(Parser Combinators in Clean) and 80 ( Twice in GHC -O).
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Table 3.5: Comparison Max Heap (kB) usage (upper) and GC time (%) (lower)
Pri  Sym Inter Fib Mch Ham Twi Sort Qns Kns Parse Plog
SAPL 223 47 2344 12 101 107 762 2344 43 17 9700 150
Helium 774 16000 3000 258 774 516 1800 9000 258 256 10700 500
GHC 140 21 1800 6 46 50 800 1600 7 6 7000 50
SAPL 13 10 24 13 18 15 15 15 14 14 38 16
Helium 47 7 45 5 25 25 59 7 12 46 47 17
GHC def | 18 1 87 1 22 16 67 5 1 45 70 25
GHC 24M| 1 1 23 1 1 1 4 1 1 5 59 1

Comparison of Heap Usage

In table 3.5 we compare the memory usage and the time spent in garbage collection
of Sapl (24 Mb heap) with that of Helium (standard heap) and the GHC compiler
(standard and 24Mb initial heap). For Hugs, GHCi and Amanda no meaningful
figures about memory usage can be given. We do not include a stack size comparison
because Sapl also uses an unknown part of the C stack.

We conclude that GHC and Sapl use roughly the same amount of heap but that
Helium uses more heap. The difference between Sapl and GHC can be explained by
the fixed Cell size of 12 bytes used by Sapl. The unexpected high value of Helium
for Symbolic Primes is probably a memory leak.

The amount of time spent in garbage collection of Sapl is mostly slightly lower
than that of Helium and lower than that of GHC (default heap) for memory intensive
programs like Interpreter and Parser. Variations of the (initial) heap size have only
a small effect on the Sapl and Helium performance, but have a big impact on the
performance of GHC. Setting the initial heap to 24Mb gives an almost 3-time speed-
up for Interpreter and Twice, but halves the speed of almost all other benchmarks.

3.5.3 Discussion about Interpreter Comparison

What is the source of the good performance of Sapl compared with GHCi, Helium,
Hugs and Amanda? The simplified memory management contributes to this better
performance, but cannot be the only source (see table 3.5). Helium performs an
overflow check on integer operations, which slows down integer intensive programs.
If we compare Sapl with Amanda we see that for (almost) data type free programs
there is not much difference in performance (Fibonacci, Queens and Knights). The
difference in performance appears for programs using data types and pattern match-
ing. Amanda uses a similar implementation of graph reduction as Sapl, but has a
less sophisticated implementation of pattern matching using case-by-case match-
ing [Brual. If we compare the performance of Sapl with that of GHCi, Helium and
Hugs we see that Sapl already has a better performance for data type free programs
(Twice, Fibonacci). This increase in speed remains about the same for programs
using data types and pattern matching. Helium uses techniques based on the STG
machine to generate LVM byte code [Lei03]. This byte code is interpreted. GHCi
also compiles to byte code and is based on the GHC compiler that also uses the STG
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machine [PJ92]. The Hugs implementation is based on byte code interpretation too.
The Sapl interpreter is based on graph rewriting only and has no special constructs
for data types and pattern matching. This enables a simple, high- level abstract
machine with few, relatively large, atomic operations. There is no need for a more
low level intermediate (byte code) formalism. The main difference between an inter-
preter and a compiler is that an interpreter has to check what to do next at every
step. Keeping this overhead as small as possible is important for the construction
of efficient interpreters. The easiest way to keep this overhead small is to use large
atomic steps in the interpreter. Byte code instructions are mostly quite small. Sapl
has a simple structure and uses large atomic steps. As a result the interpretation
overhead for Sapl is lower than that for byte code based interpreters. The atomic
operations in the Sapl interpreter are:

o Push a reference on the stack.

¢ Instantiate a function body, clear its arguments from the stack and place the
result at the top application node.

e (Call a built-in function, clear arguments from stack and place result at top
application node.

e For a function call with as body a selector function application: Partly instan-
tiate the body, recursively call eval for this instantiation and use the result to
select and instantiate the appropriate other part of the body.

Except for the push operation these are all relatively large operations. The only
benchmark for which the Sapl interpreter is not significant faster than Helium and
GHCi, is Symbolic Primes. For this example the bodies of the (local) functions are
mostly very small. Therefore the interpretation overhead will be much higher and
comparable to the overhead of GHCi, Helium and Hugs.

Benefits of the Functional Encoding for the Interpreter Performance

First of all, we already concluded that the selective instantiation optimisation is
essential for an efficient implementation of pattern-based function definitions using
this encoding. It is therefore useless to try to run a Sapl program using another
interpreter or compiler that doesn’t uses the selective instantiation optimisation.
Furthermore, in the previous subsection we concluded that the extra efficiency of
the Sapl interpreter is not a result of the functional encoding and its implementation,
but is a result of the simpler structure of the interpreter using a high level abstract
machine with minimal interpretation overhead. The functional encoding enables this
simple structure. It is possible to implement a traditional pattern matcher along the
same lines as the functional pattern matcher with comparable performance, because
both are based on the same techniques for encoding the pattern-based definition
(see section 3.3.1).

We conclude that the most important benefit of the functional encoding is that
it enables an elegant implementation of algebraic data types and pattern matching
entirely within a pure functional domain and that this implementation can be made
efficient by applying generic optimisations to a basic graph- rewriting interpreter.
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3.6 Conclusions and further Research

In this paper we have defined the minimal (intermediate) functional programming
language Sapl and an interpreter for it, based on a new variant of the Church encod-
ing for algebraic data types. Sapl consists of pure functions only and has, besides
integers, no other data types. For Sapl we have achieved the following results:

e The representation of data structures as functions in Sapl is more efficient
than the Church encoding and the encoding of Berarducci and Bohm. The use
of explicitly named functions (enabling explicit recursion) instead of lambda
expressions enables an efficient implementation of this representation. We also
showed how to translate pattern-based function definitions to Sapl. This makes
Sapl usable as an intermediate language for interpretation of programs written
in languages like Clean or Haskell.

e We described an efficient interpreter for Sapl based on straightforward graph
rewriting techniques. The basic version of the interpreter is an ideal subject
for educational purposes and for experimenting with implementation issues
for functional languages. After applying two optimisations to speed up the
execution of functions that are the result of the translation of pattern-based
function definitions, the interpreter turns out to be competitive in a compar-
ison with other interpreters. The results show us that for interpretation a
high-level abstract machine with large atomic operations yields better results
than low-level byte code interpreters based on techniques used for compilers.

3.6.1 Future Work

We plan to investigate the following issues for Sapl:

e We want to investigate whether the techniques used for implementing Sapl
are also usable for realizing a compiler. We did some small experiments for
this. We hand compiled the internal Sapl data structures to C code for a few
benchmarks. This eliminates interpretation overhead and makes it possible to
hard code the instantiation of functions (instead of a recursive copy). Speed-
ups of 2 to 3 times seem possible, but more experiments are needed.

e We want to extend Sapl with 1O features for creating interactive programs.
Because Sapl is an interpreter it is also possible to use Sapl only as a calculation
engine for another environment that does the 10.

e We want to investigate applications of Sapl. For example, Sapl can be used
at the client side of Internet browsers as a plug-in, or inside a spreadsheet
application.
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Chapter 4

From Interpretation to
Compilation

1 Abstract In this paper we sketch some experiments with the construction of a simple
compiler for a high level intermediate lazy functional language, with C++4 as target lan-
guage. Because the compiler is intended for educational and experimental use, simplicity
and clearness of construction are considered to be more important than efficiency. Start-
ing point for the construction is a simple interpreter. In a first step this interpreter is
turned into a simple compiler in a straightforward manner. The performance of a number
of compiled benchmarks is analysed in a comparison with the interpreter and the Clean
and GHC compilers. This analysis leads to some suggestions for optimisations. Of these
optimisations tail recursion optimisation and optimisation of numerical functions and nu-
merical (sub)expressions in functions are implemented. It turns out that in many cases
these optimisations suffice to obtain a competitive performance.

4.1 Introduction

The construction of efficient compilers for lazy functional programming languages
like Clean [PEO1]| and Haskell [PJ03] is a complex task. Compilers like GHC [GHC]
and Clean are large complicated systems that are too complex for study in introduc-
tory courses on the implementation of functional programming languages. There-
fore, there is a need for simple compilers for educational purposes. Our main goal
is to give the reader some insight in what kind of optimisations are important for
obtaining an efficient implementation of lazy functional languages.

In [JKPO06] (chapter 3) we constructed a simple but efficient interpreter for the
lazy functional language Sapl. Sapl can be used as an intermediate language for
the interpretation of languages like Clean and Haskell. We already constructed a
Clean to Sapl translator. Several versions of the Sapl interpreter exist. One of these
versions is a Java applet implementation that can be loaded into Internet Browsers
and which makes it possible to run Clean programs at the client side of Internet
applications ([PAKO7] and [PJKAOS| (chapter 6)).

'Originally published as [JKP08a]
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From Interpretation to Compilation

In this paper we investigate how we can extend the Sapl interpreter to a Sapl
compiler with a reasonable performance. We use C++ as target language. The
construction is made in two steps. In the first step we convert the interpreter into a
straightforward but naive compiler. We then use a number of benchmarks to anal-
yse the performance of the generated code in a comparison with the Clean and GHC
compiler. It turns out that in some cases the performance is already quite good but
that in other cases the performance is still very bad (more than 30 times slower).
In an analysis of the characteristic of the poor performing benchmarks, it turns
out that they often have some commonalities like the (heavy) use of tail recursive
functions and the presence of many purely numeric functions or sub-expressions.
Therefore, in the second step, we focus on improving the performance of the com-
piler by optimising tail recursions and numeric functions and sub-expressions. The
resulting compiler is again compared with Clean and Haskell and the basic compiler
using the same set of benchmarks. It turns out that the resulting performance is
now acceptable in almost all cases.

Summarising, the contributions of this study are the stepwise construction of a
simple compiler for a lazy (intermediate) functional programming language with the
following characteristics:

e The compilers translates to concise and readable C++ functions (for a func-
tional programmer knowing C++) that are in 1-1 correspondence with the
original functions. The C4++ functions give the programmer clear insight into
how constructs from functional programming language are implemented.

e [t gives the reader insight into what kind of optimisations are important for
obtaining an efficient implementation of lazy functional languages.

e The user can easily add functions to the generated code and can modify gen-
erated functions to experiment with alternative optimisations.

e The performance of the resulting programs is in many cases competitive with
that of Clean and Haskell.

The structure of this paper is as follows. In Section 4.2 we introduce the intermediate
functional programming language Sapl. In Section 4.3 we sketch an interpreter for
Sapl. This interpreter is the starting point for the construction of the compiler. The
compiler is described in Section 4.4. We describe the compiler in a number of steps.
First a basic version of the compiler is introduced that is a straightforward and simple
extension of the interpreter. The performance of a set of benchmarks compiled with
this compiler and the Clean and GHC compiler is used to make a comparison. The
results of this comparison are analysed and this leads to the proposal of a number
of candidate optimisations that are implemented. In the last section we give some
conclusions.

4.2 The Sapl programming language

Sapl stands for Simple Application Programming Language. The basic version of
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Sapl has function application as only operation. Sapl is a simple functional program-
ming language that can be used as an intermediate formalism for the interpretation
of functional programming languages like Haskell and Clean. The main difference
between Sapl and the intermediate formalisms normally used for these languages
is the absence of algebraic data types and constructs for pattern matching in Sapl.
This makes Sapl a compact and simple language. More details about Sapl can be
found in [JKPO6] (chapter 3).

In chapter 3 we also showed how to represent data types and pattern-based
function definitions in Sapl. Here we shortly repeat the definition of the list data
type together with the length function.

Nil =ANfg—=f
Consxaxs= Nfg — gras
length ys = ys0 Az xs — 1 + length xs)

Now consider a pattern based Haskell function like mappair.

mappair f Nil 28 = Nil
mappair [ (Cons © xs) Nil = Nil
mappair [ (Cons x xs) (Cons y ys) = Cons (f = y) (mappair [ xs ys)

This definition can be transformed to the following Sapl function (using the above
definitions of Nil and Cons).

mappair [ as zs = as Nil (Axzs — zs Nil (Ayys —
Cons (f = y) (mappair [ zs ys)))

4.3 An Interpreter for Sapl

The only operations in Sapl programs are function application and a number of
(built-in) integer operations. Therefore, an interpreter can be kept small and elegant.
The interpreter is based on straightforward graph-reduction techniques as described
in Peyton Jones [PJ87], Plasmeijer and van Eekelen [PvE93| and Kluge [Klu04|.
We assume that a pre-compiler has eliminated all algebraic data types and pattern
definitions (as described earlier), removed all let(rec)- and where- clauses and lifted
all lambda expressions to the global level. Only constant let-expressions are allowed
to enable sharing and cyclic expressions. The interpreter is only capable of executing
function rewriting and the basic operations on integers. The most important features
of the interpreter are:

e [t uses 4 types of memory Cells. A Cell corresponds to a node in the syntax
tree and is either an: Integer, (Binary) Application, Variable or Function Call.
To keep memory management simple, all Cells have the same size. A type byte
in the Cell distinguishes between the different types. Each Cell uses 12 bytes
of memory.
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e The memory heap consists only of Cells. The heap has a fixed size, definable
at start-up. We use mark and sweep garbage collection.

e [t uses a single argument stack containing only references to Cells. The C
(function) stack is used as the dump for keeping intermediate results when
evaluating strict functions (numeric operations only).

e The state of the interpreter consists of the stack, the heap, the dump, an array
of function definitions and a reference to the node to be evaluated next. In
each state the next step to be taken depends on the type of the current node:
either an application node or a function node.

e [t reduces an expression to head-normal-form. The printing routine causes
further reduction. This is only necessary for arguments of curried functions.

The interpreter pushes arguments on the stack until a function call is met. In that
case the function body is instantiated while the arguments are substituted, the top
application node is overwritten and evaluation continues with the new expression
until we arrive at a curried call or an integer value.

4.3.1 Optimisations in the Interpreter

The interpreter can be optimised in several ways. Simple optimisations are the use
of a more efficient memory representations of function calls with 1 or 2 arguments
and the marking of curried calls (if possible) to avoid the useless evaluation of them.
Applying these optimisations result in speed-ups up to 50%.

A more significant optimisation can be realized by marking the application of
a function representing an algebraic data type element to its arguments by the
keyword select (semantically equivalent to the identity function). This triggers the
interpreter not to instantiate the entire function body at once, but first to evaluate
the data type and only select and instantiate the relevant part of the remainder
expression (more details can be found in [JKP06]) (chapter 3).

As a last optimisation, anonymous functions that are the argument of a select
are not lifted to the global level, but are called inline (see chapter 3).

As an example we show how the select optimisation is applied in the mappair
function (the lambda expressions in this example are not lifted to the global level).

mappair [ as 28 =
select as Nil (A z xs —
select zs Nil (Ay ys — Cons ([ z y) (mappair [ xs ys)))

The select optimisation is essential and may result in speed-ups of more than 100
times. Normally the select annotations are added while translating Haskell or Clean
programs to Sapl, but it is possible to add the select annotations during a compile
time analysis of a Sapl program. During this analysis it is determined where ap-
plications of data type functions to other arguments occur. This analysis can only
be performed in case of complete programs and not for separately compiled files
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(modules). For example, if we consider the definition of mappair in isolation it is
not clear that as and zs are selectors. One needs an example of the usage of mappair
to determine that.

4.3.2 Considerations

The interpreter without the select optimisation and the integer operations is a pure
graph reductor. The only operations are graph reduction (push arguments on the
stack until a function call is met) and graph instantiation (copy a function body
and meanwhile substitute the arguments from the stack).

Numeric operations are strict in the sense that the arguments have to be evalu-
ated before the operation can be performed. The same holds for the select optimi-
sation. Also in this case the first argument of select has to be evaluated before the
operation (selection of the appropriate argument) can take place. The optimisation
prevents the instantiation of large graphs. In the remainder of this paper we show
that many of the optimisations we implement in the compiler involve the use of
strictness to prevent the instantiation of unnecessary graphs.

4.4 A Sapl Compiler

We present two versions of the compiler: a basic version and an optimised version.
The optimisations are a result of an analyses of the performance of the basic version
for a number of benchmarks.

The benchmarks we use for the comparison are the same we used for comparing
the Sapl interpreter with several other interpreters and compilers in [JKPO06] (chapter
3). We briefly repeat the description of the benchmarks (their code can be found in
[SAP]):

1. Prime Sieve The prime number sieve program (primes !! 5000).

2. Symbolic Primes Prime sieve using Peano numbers (sprimes !/ p280).

3. Interpreter A small Sapl interpreter. As an example we coded the prime
number sieve for this interpreter and calculated the 100th prime number.

4. Fibonacci The (naive) Fibonacci function, calculating fib 35.
5. Match Nested pattern matching (5 levels deep), repeated 2000000 times.

6. Hamming The generation of the list of Hamming numbers (a cyclic definition)
and taking the 1000th Hamming number, repeated 10000 times.

7. Twice A higher order function (twice twice twice twice (add 1) 0), repeated
400 times.

8. Queens Number of placements of 11 Queens on a 11 * 11 chess board.
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9. Knights Finding all Knight tours on a 5 * 5 chess board.

10. Parser Combinators A parser for Prolog programs based on Parser Combi-
nators parsing a 17000 lines Prolog program.

11. Prolog A small Prolog interpreter based on unification only (no arithmetic
operations), calculating all descendants in a six generations family tree.

12. Sorting Quick Sort (20000 elements), Merge Sort (200000 elements) and In-
sertion Sort (10000 elements).

Three of the benchmarks (Interpreter, Prolog and Parser Combinators) are realis-
tic programs, the others are typical benchmark programs that are often used for
comparing implementations.

We use C++ as a target language for our compiler. We do not use the object ori-
ented properties of C++ (classes and member functions). But we use some specific
features of C++ like reference variables. In all versions of the compiler there is a
one-to-one correspondence between Sapl and C(++) functions. Because we want to
use the compiler for educational purposes we strive at readable and understandable
generated code.

The generic structure of a translated function is:

int funcname(Reduct t) { instantiate_body; return eval_body; }

Here funcname is the name of the translated Sapl function. We assume that all
arguments of a function are already on the stack when the function is called. The
argument ¢ of the function is a reference to the top node of the call for this function.
To enable sharing we have to overwrite this top node with the result of the function.
The function returns an integer. This is because functions that result in an alge-
braic data type have to return the selection number needed in a select construction.
Because we want to use the same type signature for all functions, all functions have
to return an integer. Note that we cannot give the C function the same arguments
as the original function because we can make curried calls to a function which is, of
course, not possible in C.

4.4.1 A Basic Sapl Compiler

If we take a closer look at the Sapl interpreter, the most obvious candidate for
compilation is the instantiation of function bodies. The interpreter uses a recursive
function instantiate to copy the body and substitute the arguments. It is straight-
forward to generate C++ code that does this instantiation directly.

Due to the select optimisation the body of a function containing a select is not
copied at once but in parts. Therefore, in the translation to C++, we add the control
structure (using if or switch/case statements) to enable this copying in parts. Also
the generation of this control structure is entirely straightforward.
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Examples

As an example consider the translation of the functions sieve and el from the prime
number sieve program.

sieve xs =cons (hd xs) (sieve (filter (nmz (hd xs)) (tl zs)))
el nxs =select xs error (A a as — if (eqn0) a (el (subn 1) as))

The translation of sieve results in:

int sieve(Reduct t) {
testmem() ;
setCell(t,SELB,newR (OPFUNC,get (0),0,9) ,newR (0FUNC,
newR (BPFUNC,newR (OPFUNC,newR (OPFUNC, get (0) ,0,9),0,7),
newR (OPFUNC,get (0),0,10),3),0,5),2);
pop(1);
return eval(t);

}

testmem() checks if garbage collection is necessary. This check is done before every
body instantiation. setCell(t,...) overwrites t. Although the setCell call looks quite
complicated the only thing that is happening here is the allocation of a new graph
in memory. Due to the memory optimisations for applications with one and two
arguments and the marking of curried applications there are a large number of cell
types (SELB, OPFUNC, etc.). get(i) returns a reference to the i-th element on the
stack. pop(i) removes i elements from the stack. In the last line eval(t) recursively
starts evaluating the resulting expression. The only thing the eval function does is
pushing arguments on the stack and calling the resulting function.
The translation of el results in:

int el(Reduct t) {
Reduct res = get(1);
if(eval(res)) {
pushs(res->r); pushs(res->1);
testmem() ;
res = newR(BINOPER,get (2) ,newR (NUM,Reduct(0),0),5);
if(eval(res)) {
testmem() ;
setCell (t,BPFUNC,newR (BINOPER,get (2),
newR (NUM,Reduct(1),0),1) ,get (1) ,4);
pop(4);
}
else {overwrite(t,get(0)); pop(4);}
}
else {setCell (t,SFUNC,0,Reduct(0),0); pop(2);}
return eval(t);

}

In this example we see that the control structure of the original function is clearly
reflected in the C++4 function. In the first line zs is assigned to res. res is evaluated.
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Table 4.1: Comparison Speed of Basic Compiler (Time in seconds)
Pri|Sym | Inter | Fiib | Match | Ham | Twi | Qns | Kns | Parse | Plog | Qsort | Isort | Msort
SAPL Int |6.1]17.6 |7.8 |7.3 |85 157 (7.9 |65 (471|144 |40 |164 |94 |44
SAPL Bas|4.3]13.2 |60 |6.5 |59 9.8 |56 |51 |38.3(3.8 |26 |10.1 |6.7 |26
GHC 2017 |82 [4.014,1 84 |66 3.7 |17.7(2.8 0.7 |44 2.3 |32
GHC-O (09|15 |18 |0.2 (1.0 4.0 |0.1 |04 |57 |1.9 (04 |32 |19 |1.0
Clean 0.9(0.8 |08 (02|14 24 |24 |04 |30 (45 |04 |16 [1.0 (0.6

In case the result is a cons (returns 1) the arguments of cons are pushed on the stack.
Next the expression eq n 0 is instantiated and evaluated. If n /= 0 the expression el
(sub n 1) xs is instantiated and the stack is cleared. In case n == 0, ¢ is overwritten
with z. Also in this case the stack is cleared. The last else handles the case that
the list was nil.

We conclude that the basic compiler results in concise code that clearly reflects
how the graph-reduction process is conducted. For a function acting on a data struc-
ture with 3 or more cases a C++ switch statement is generated. The adaptations
to the interpreter needed to generate the C++ functions are modest. An interesting
aspect is that the resulting C+4++ functions are integrated in the interpreter envi-
ronment. The only difference for the user is the increase in speed (and an extra
compilation round before starting the interpreter).

Although the Basic Compiler compiles to C++, it is essentially still an inter-
preter. The way graphs are reduced is the same as in the original interpreter.

In the remainder of this paper we sometimes abbreviate the instantiation of
graphs with: instantiate(‘expression’) or overwrite(t, ‘expression’).

4.4.2 Performance of the Basic Compiler

In Table 4.1 we compare the performance of the basic compiler with that of the
interpreter and of the GHC and Clean compilers. If we compare the basic compiler
with the interpreter we see that the basic compiler is about 40% faster (speed-ups
between 10 and 60%).

If we compare the basic compiler with GHC (without optimiser) we see that in
three cases (Interpreter, Mergesort and Twice) the basic Sapl compiler is already
faster. In the other cases GHC is mostly less than 2 times faster. Relatively slow
Sapl benchmarks are Symbolic Primes (7 times) and Prolog (3.7 times).

Comparing the basic compiler with GHC -O and Clean we measure large differ-
ences in performance, varying from 10% faster (compared to Parser Combinators
in Clean) to more than 30 times slower (Fibonacci for Clean, GHC -O and Twice for

GHC -0).

4.4.3 Analysis of Basic Compiler

Compared with GHC (without optimiser) the Basic Compiler is already doing a
reasonable job. The only poor performing benchmark is Symbolic Primes. This
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is an atypical program, because there is no integer arithmetic in this example and
the functions bodies are all very small. For Sapl this means a lot of interpretation
overhead. More important, the performance dominating functions Mod and Subtract
are tail recursive. In the sequel we show that, using tail recursion optimisation, the
performance of this benchmark can be improved significantly.

If we take a closer look at the benchmarks for the comparison with GHC -O
and Clean, we see that there is only one benchmark that performs good in this
comparison: Parser Combinators. This is the most ‘functional’ of all benchmarks
in the sense that it manipulates mostly higher order functions. For a compiler
this means that a lot of closures must be maintained. Closures are represented
by structures comparable to the graphs in Sapl. Every compiler should analyse
(destruct) these closures at a certain moment in a way similar to the way the Basic
Sapl compiler does this.

The worst performing benchmarks are: Symbolic Primes, Fibonacci, Queens and
Twice.

¢ Symbolic Primes we already discussed above. It contains a number of tail
recursive functions for which Sapl does no optimisations yet.

e Fibonacci is a purely numeric function (numeric arguments and numeric op-
erations only). In Sapl every time the function is called in the recursion, a
complete instantiation of the function body is made (on the heap). The Clean
and GHC -O compilers optimise this function and do not use closures but
instead only use the stack to execute it.

e Queens has a number of numeric sub-expressions and has a (hidden) tail
recursion in the function safe. Also in this case Clean and GHC -0 use strictness
analysis to eliminate the building of many closures.

e Twice is a special case. GHC -O has a much better performance than both
Sapl and Clean. If we study the generated code for GHC -O we see that some
very specific inline optimisations are made. We did not make any special
optimisations for this example.

Conclusions and Plan for Optimisations

The basic compiler has already a nice performance for programs manipulating mostly
higher order functions. Therefore, we may expect that the poorer performance is
caused by the overhead involved in building instantiations (closures) that are not re-
ally necessary. The optimisations we apply are aimed at either preventing the build-
ing of closures or at building smaller closures. In the light of the discussion above
we focus on tail recursive functions and on numeric functions and (sub)expressions,
also because they can be recognized and optimised easily. But before that we look
at some straightforward optimisations.
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4.4.4 Reducing the size of closures and removal of interpre-
tation overhead

Consider the following function g:
gabcd = fa(hbe)d
In the basic compiler this is compiled to:

int g(Reduct t) {
testmem() ;
setCell(t,APP,newR (APP,newR (APP,newR(FUNC,0,0,2),get(0)),
newR (BFUNC,get (1) ,get(2),1)),get(3)) ;pop(4);
return eval(t);

}

In the body of ¢ a large instantiation is built for which eval is called immediately.
eval pushes the arguments of f on the stack and calls the function f But if we
already know this, we can explicitly code the pushing of the arguments and the call
to f. In this way we both save instantiation and interpretation overhead.

int g(Reduct t) {
testmem() ;
Reduct a0,al,a2;
a0 = get(0);
al = newR(BFUNC,get(1),get(2),1);
a2 = get(3);
pop(4);
pushs(a2) ;pushs(al) ;pushs(a0);
return f(t);
}

In this example the number of allocated nodes is reduced from 4 to 1!
We apply this optimisation whenever possible. This means that an, at compile
time, known function should be called with enough arguments.

4.4.5 Numerical Functions and Expressions

If a function has numeric arguments only and its body is a purely numerical ex-
pression we can avoid the creation of closures altogether. Consider for example the
Fibonacci function:

fibn = if (n < 2)1(fib(n — 1) + fib(n — 2))
The Basic Sapl compiler translates this to:

int fib(Reduct t) {
Reduct res;

testmem() ;
res = newR(BINOPER,newR (NUM,Reduct(2),0),get(0),7);
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if(eval(res)) {
testmem() ;
setCell (t,BINOPER,newR (OPFUNC,newR (BINOPER,get (0),
newR(NUM,Reduct(1),0),1),0,35),
newR (OPFUNC,newR (BINOPER, get (0),
newR (NUM,Reduct (2),0),1),0,35),0);
pop(1);
}
else {
setCell (t,NUM,Reduct(1),0);
pop(1);
}
return eval(t);

}

In the optimised translation fib is translated to:

int fibh(int n) {

if (n < 2) return 1;

else return fibh(n-1) + fibh(n-2);
}

int fib(Reduct t) {
eval (get (0));
setCell(t,NUM,Reduct (fibh(getNum(get(0)))),0);
pop(1);
return O;

}

fibh is a pure C++ function without any instantiations of cells and fib is a wrapper
function for calling fibh from a functional context. The speed-up obtained in this

way is more than 30 times. This version of fib now has a performance comparable
to that of Clean and GHC -O.

Numerical expressions with a Boolean result

A special case of numeric expressions are those with a Boolean result. They often
occur in the condition of an if statement. The el function we studied already before
is an example of such a function. Using the numeric expression optimisation the
compiled function becomes:

int el(Reduct t) {
Reduct res = get(1);
if (eval(res)) {
pushs(res->r); pushs(res->1);
eval(get(2));
if (getNum(get (2) == 0){overwrite(t,get(0)); pop(4);}
else {
testmem() ;
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setCell (t,BPFUNC,newR (BINOPER,get (2),
newR (NUM,Reduct(1),0),1),get (1) ,4);
pop(4);
}
}
else {setCell (t,SFUNC,0,Reduct(0),0); pop(2);}
return eval(t);

}

This saves allocation and interpretation overhead.

4.4.6 Optimising Tail Recursion Functions

Replacing tail recursions by while loops are a common optimisation also applied for
strict functional and imperative languages. In these cases the optimisation is used
to eliminate calling and stack overhead. But in the lazy functional context we have
an extra benefit. Also the building of a closure (and the destruction of it) for the
recursive call is prevented. Therefore, the speed-up is even higher.

Simple tail recursive functions have the form:

[ a arg =if (cond a) (default a arg) (f (dec a) (update a arg))

The recursion runs over a. For the sake of simplicity we assume that there is only
one other argument. The function contains a simple if construction at the top level.
In the else case the same function is called with an a argument that is in some way
smaller than the original argument. We compile this function to a C++ function
containing a while-loop.

int f(Reduct t) {

Reduct res = instantiate(‘cond a’);
Reduct &a = get(0);
Reduct &arg = get(1l);

while(eval(res)) {

arg = instantiate(‘update a arg’);
a = instantiate(‘dec a’);
res = instantiate(‘cond a’);

}

overwrite(t, ‘default a arg’); pop(2);
return eval(t);

}

Note that we use reference variables for a and arg, so they remain on the Sapl
stack, which is necessary for garbage collection purposes. In the while loop we
instantiate the new versions of the arguments and the condition. The while condition
determines if the recursion is finished. Because the arguments of the tail recursion
are maintained by variables we can easily optimise numeric or Boolean arguments
(see Subsection 4.4.5). As an example, consider the function length (note the use of
an accumulating parameter).
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length n xs = select xs n (A a as — length (n + 1) as)

This function is translated to:

int length(Reduct t) {

eval (get (0));

int n = getNum(get(0));

Reduct &xs = get(1l);

while(eval(xs)) {

n=n+1; Xs =Xxs ->r;

}

overwrite(t,newR(NUM,Reduct(n),0)); pop(2); return 0;
}

Here the argument n is numerical and therefore assigned to the int variable n.
The expression n+1 is not instantiated, but directly translated to C. This saves an
instantiation and a reduction. After the while loop we have to wrap the numeric
result in a cell.

Note that this function also does not build the large closure 0+1+1+1+.. that
is only evaluated at the end, which happens in the Sapl interpreter and the Basic
Compiler. In this way a basic form of strictness analysis is realized. Furthermore,
there is another optimisation. The arguments of Cons are not pushed onto the
stack, but can be found as the left and right child of zs. In the while loop of this
function no instantiations are made any more!

A tail recursion may also run over several arguments. In that case the condition is
a conjunction of all the conditions. As an example, consider the following definitions
of Zero and Suc and the tail recursive function Sub running over 2 arguments, all
occurring in the Symbolic Primes benchmark:

Zerof g = f
Sucnfg = gn
Submn = select n m (X pn — select m Zero (A pm — Sub pm pn))

Sub is translated to:

int Sub(Reduct t) {
Reduct &m = get(0);
Reduct &n = get(1);
while(eval(n) && eval(m)) {
m=m->1;
n=n->1;
}
if(eval(n)) {
overwrite(t, ‘Zero’) ;pop(2) ;return O;
}
else {
overwrite(t, ‘m’);pop(2);return eval(t);
}
}
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Note that after the while we have ‘to check’ why the loop stopped to return the
result of the right stopping case. Note also that we made use of the fact that the
&& operator in C++ is conditional (lazy). Again, no instantiations are made in the
while loop.

Tail recursion that run over 3 or more variables are handled in a similar way.

Hidden Tail Recursions

Sometimes a function can be easily converted to a tail recursion. For example, in
the safe function used in the Queens benchmark an and condition with a recursive
call to safe itself occurs.

safe xs d x =select xs True
Ay ys — and (and (neq x y) (neq (add = d) y))
(and (neq (sub x d) y) (safe ys (add d 1) z)))

safe is translated to:

int safe(Reduct t) {
Reduct xs = get(0);
eval(get(1)); eval(get(2));
int d = getNum(get(1));
int x = getNum(get(2));

int y;
while(eval(xs) && (eval(xs -> 1),y = getNum(xs -> 1),x != y) &&
x+d!'=y) & (x-4d!=y)) {
Xs = Xs -> r;
d=4d+ 1;
}
if (eval(xs)) {
setCell (t,FALSE,0,0);
pop(3);
return 1;
}
else {
setCell(t,TRUE,0,0);
pop(3);
return 0O;
}
}

Also in this case we make use of the conditionality of the && operator in C++.

4.4.7 Results and Discussion

Table 4.2 gives the results of the comparison of the optimised compiler with the
other compilers and the Interpreter. We see that the optimisations result in a
significant speed-up in almost all cases. We briefly discuss the speed-up obtained
for the benchmarks.
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Table 4.2: Comparison Speed of Optimized Compiler (Time in seconds)

Pri|Sym | Inter | Fib| Match | Ham | Twi | Qns | Kns | Parse | Plog | Qsort | Isort | Msort

SAPL Int [6.1]17.6 7.8 |7.3 |85 15.7 179 |65 (471|144 |40 |164 |94 |44

SAPL Bas [4.3]13.2 6.0 |6.5 5.9 9.8 [5.6 |5.1 |38.3]3.8 |26 |10.1 |6.7 |26

SAPL Opt |26 (1.8 [3.3 |0.2 3.1 5.9 (4.5 (0.9 |18.0(2.9 1.3 16.0 25 1.2

GHC 20(1.7 |82 (4.0 (4,1 84 6.6 |3.7 |17.7|2.8 07 (44 23 |32
GHC-O (0915 |1.8 (0.2 1.0 40 0.1 |04 |57 |19 04 (3.2 1.9 1.0
Clean 0908 (0.8 (02|14 24 124 104 3.0 |45 04 |16 1.0 (0.6

1. Prime Sieve Speed-up 1.65: numeric optimisations and a tail recursion in

10.

11.

12.

elem.

Symbolic Primes Speed-up 7.3: tail recursions in functions Mod, Gt, Neq
and Sub.

Interpreter Speed-up 1.82: tail recursions in length, drop and elem and sev-
eral small numeric optimisations.

Fibonacci Speed-up 33: purely numeric function.

Match Speed-up 1.9: numeric optimisations.

Hamming Speed-up 1.66: small numeric optimisations.

Twice Speed-up 1.24: small numeric optimisations.

Queens Speed-up 5.7: tail recursion in safe and several numeric optimisations.
Knights Speed-up 2.1: numeric optimisations.

Parser Combinators Speed-up 1.3: small numeric optimisations and minor
tail recursions.

Prolog Speed-up 2.0: tail recursions in several (minor) functions and some
numeric optimisations.

Sorting Quick Sort (1.7), Merge Sort (2.2) and Insertion Sort (2.7): numeric
optimisations.

Even for the higher order examples Twice and Parser Combinators there is a (small)
speed-up due to the numeric optimisations. The greatest speed-up is obtained for the
Fibonacci benchmark. An interesting speed-up is obtained for the Symbolic Primes
benchmark. This result could be obtained because the functions Mod and Sub are
tail recursive and dominate the performance of the benchmark. Also for Queens
a high speed-up is obtained because the tail recursive safe function dominates the
performance.

Compared with GHC the optimised compiler is faster in almost all cases. Only
for Primes, Prolog and QSort GHC is slightly faster. For Fibonacci, Interpreter,
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Queens and Mergesort the optimised Sapl compiler is much faster (more than 2.5
times).

Compared with GHC -O we see that only for Twice GHC -O is an order of
magnitude faster (45 times). The GHC -O optimiser recognizes the repetition in this
higher order function and replaces it with an iteration. Note that GHC -O is also
much faster than Clean in this case. In all other cases the difference is less than 3
times and in several cases Sapl is even competitive. On the average the difference
in performance stays within a factor of 2.

Compared with Clean we see that the greatest difference in performance stays
within a factor of 6 (Knights). On the average Clean is about 2.5 times faster. For
Parser Combinators the Sapl compiler is faster (1.5 times).

Considering only the more realistic applications (Interpreter, Parser Combina-
tors and Prolog) we see that for Parser Combinators the Sapl compiler has com-
petitive performance. For Interpreter the Sapl compiler is competitive with GHC
and GHC -O but is 4 times slower than Clean. In case of Prolog the Sapl compiler
is significant slower than all others. This is not surprising, because the performance
dominating function unify in Prolog cannot be optimised with the techniques used
in the Sapl compiler. Here more sophisticated optimisations based on strictness
analyses are needed.

4.5 Conclusions

In this paper we presented a compiler for lazy functional languages for educational
and experimental use, based on a straightforward interpreter. For optimising this
compiler we did not use the more sophisticated techniques normally used for com-
pilers but took a more opportunistic approach, applying only two easy to detect and
apply optimisations. This has as an advantage that the generated functions have a
simple structure. This makes it possible for the user to inspect how the optimisa-
tions are applied and it also enables the user to experiment with other (hand-made)
optimisations.

The compiler generates comprehensible C4++ code that gives the programmer
clear insight in how constructs from functional programming languages are imple-
mented. This in contrast with the GHC compiler that also uses C as an intermediate
language, but for which the generated C code is difficult to understand and looks
more like assembly than like an ordinary C program.

We have learned that sometimes applying simple optimisations result in signifi-
cant speed-ups (e.g Fibonacci and Symbolic Primes), but in other cases the optimi-
sations do not suffice. In these examples (e.g. Prolog) the difference with Clean and
GHC is still too big. We also learned that optimising a function always boils down
to trying to prevent the building of unnecessary graphs (closures). In our approach
this was always realized by replacing ‘functional code’ by ‘imperative code’ in the
generated C++ functions.

An interesting question is, if it is possible to extend the set of optimisations in
such a way that the performance becomes competitive to that of GHC and Clean in
all cases while maintaining readable and comprehensive generated code.



Chapter 5

Embedding a Web-Based
Workflow Management System in
a Functional Language

L Abstract Workflow management systems guide and monitor tasks performed by hu-
mans and computers. The workflow specifications are usually expressed in special pur-
pose (graphical) formalisms. These formalisms impose severe restrictions on what can be
expressed. Modern workflow management systems should handle intricate data depen-
dencies, offer a web-based interface, and should adapt to dynamically changing situations,
all based on a sound formalism. To address these challenges, we have developed the iTask
system, which is a novel workflow management system. We entirely embed the iTask
specification language in a modern general purpose functional language, and generate a
complete workflow application. In this paper we report our experiences in developing
the iTask system. It not only inherits state-of-the-art programming language concepts
such as generic programming and a hybrid static/dynamic type system from the host lan-
guage Clean, but also offers a number of novel concepts to generate complex, real-world,
multi-user, web based workflow applications.

5.1 Introduction

Workflow Management Systems (WFMS) are computer applications that coordi-
nate, generate, and monitor tasks performed by human workers and computers.
Workflow specification plays a dominant role in WEMSs: the work that needs to
be done to achieve a certain goal is specified as a structured and ordered collection
of tasks that are assigned to available resources at run-time. In many WEFMSs, the
workflow specification only determines the framework for the workflow application,
i.e. a partial workflow application. In other WFMSs one has to provide much details
in the workflow specification. In both approaches substantial coding is required to
complete the workflow application. In general, this results in complex distributed,
multi-user and heterogeneous applications that are hard to maintain.

!Originally published as [JPKA10)
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In this paper, we report on our experience in designing, building, and deploy-
ing the iTask system [PAKO7|, which is a novel WFMS based on state-of-the-art
programming language concepts with firm roots in functional programming. We
developed the iTask system, because of a number of perceived issues with contempo-
rary WEMSs. Their complex nature makes it very hard to correctly create a com-
plete application from the partial application that is generated by them. Further-
more, contemporary WEMSs use special purpose (mostly graphical) specification
languages to enable the rapid development of a workflow framework. Unfortunately,
these formalisms often offer limited expressiveness. First, recursive definitions are
commonly inexpressible, and there are only limited ways to make abstractions. Sec-
ond, workflow models usually only describe the flow of control. Data involved in
the workflow is mostly maintained in databases and is extracted or inserted when
needed. Consequently, workflow models cannot easily use this data to parametrize
the flow of work. This results in more or less pre-described workflows that cannot
be dynamically adapted. Third, these dedicated languages usually offer a fixed set
of workflow patterns [AHKBO02]. However, in the real world work can be arranged
in many ways. If it does not fit in a (combination of) pattern(s), then the workflow
specification language probably cannot cope with it either. Fourth, and related, is
the fact that functionality that is not directly related to the main purpose of the
special purpose language is hard to express. To overcome this limitation, one either
extends the special language or interfaces with code written in other formalisms. In
both cases one is better off with a well designed general purpose language.

For the above reasons, the iTask system is a domain specific language that is
embedded in a textual, formal general purpose programming language as a work-
flow specification language. This allows us to address all computational concerns
within the workflow specification and provides us with general recursion. We use a
functional language, because it offers a lot of expressive power in terms of modeling
domains, use of powerful types, and functional abstraction. We use the pure and
lazy functional programming language Clean, which is a state-of-the-art language
that offers fast compiler and interpreter technology, generic programming features
[AP02], a hybrid static/dynamic type system [VP03|, which are paramount for gen-
erating systems from models in a type-safe way. Workflows modeled in the iTask
system result in complete workflow applications that run on the web distributed
over server and client side [PJKAO8] (chapter 6). Clean and the iTask system can
be found at http://clean.cs.ru.nl/ and http://itask.cs.ru.nl.

The remainder of this paper is organized as follows. We present the iTask system
in Sect. 5.2 and give a case study in Sect. 5.3. We discuss our experience in Sect.
5.4 and 5.5. Related work is discussed in Sect. 5.6. We conclude in Sect. 5.7.

5.2 Overview of the iTask system

The iTask system is a scientific prototype of a WFMS. It is also a real-world applica-
tion that deploys and coordinates contemporary web technology. The main reason
for using web technology is that WFMSs are by nature distributed, multi-user, and
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heterogeneous software systems. The iTask system is a library made in the func-
tional programming language Clean. The specifications that serve as input to the
iTask system are expressed as a domain specific language embedded in Clean. We
have adopted the practice in the functional programming community to provide a
library offering a set of combinator functions and primitive functions to allow for
compositional, higher-order, parametrized model specifications.

In order to give an impression of the combinators that a workflow engineer can
use, Fig. 5.1 shows a few of the combinator functions and types that constitute
the iTask domain specific language (for reasons of presentation, the types have been
slightly simplified).

Task a // Task is an opaque, parameterized type constructor

// Sequential composition:
(>>=) infixl 1 :: (Task a) (a — Taskb) — Taskb | iTask a & iTask b
return it a — Task a | iTask a

// Splitting-joining any number of arbitrary tasks:
anyTask :: |Task a — Task a | iTask a
allTasks :: |Task a — Task |a] | iTask a

// Task assignment to workers:
class (@:) infix 3 w :: w (String,Task a) — Task a | iTask a
instance @: User, String

Figure 5.1: A snapshot of the iTask combinator functions.

A task is an expression of the opaque (hidden), parametrized type Task a. Here,
ais a type parameter that can be instantiated with any conceivable first order type.
It represents the type of the value that is produced by the task. Hence, a task
(expression) of type Task a is a task that, once it has been performed, produces a
value of type a.

Tasks can be combined sequentially. The infix combinator >>=and return function
are the standard monad combinators [PJW93|. Task t >>=£ first performs task t,
which eventually produces a value of type a. This value can be used by the function
argument £, which can compute any new kind of task expression based on that
information. The type demands that £ eventually produces a value of type b, which
is also the final result of t >>=£. The task return v only produces value v without
any effect.

Any number of tasks ts = [t; ...t,] (n > 0) can be performed in parallel
and synchronized (also known as splitting and joining of workflow expressions):
anyTasks ts and allTasks ts both perform all tasks ts simultaneously, but anyTasks
terminates as soon as one task of ts terminates and yields its value, whereas allTasks
waits for completion of all tasks and returns their values.

Tasks can be assigned to workers. The expression w @: (1,t) assigns task t to
worker w. Here 1 is a descriptive label (like the subject field in an e-mail message).
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The infix operator @: is overloaded in the identification value of the worker, which
can be a value of type User (a predefined iTask type), or by means of the user name
(String value).

A more detailed description of these combinators is out of scope of this paper,
but in Sect. 5.3 we give a complete example of a small, yet realistic and complex
workflow that uses many of the above combinators. The crucial points are that first,
all combinator functions are parametrized and statically type checked with the data
that flows along the tasks. Second, tasks can inspect this data and change the control
flow accordingly. Third, there is no limit on the type of the data that is passed
along, provided that suitable generic functions (see Sect. 5.5) are available. This
is expressed by means of the type class context restrictions (| iTask ...). Fourth,
several combinators to express iteration are included in the iTask library. However,
because the iTask system is a library embedded in Clean, the workflow engineer can
define new combinators and even define recursive workflows if desired.

In addition to combinators that combine task expressions in new ways, the work-
flow engineer also needs primitive iTask functions. Fig. 5.2 shows some.

// Worker interaction:

enterInformation :: question — Task a | html question & iTask a
updateInformation :: question a — Task a | html question & iTask a
showMessage :: message — Task Void | html message

chooseTask :: question [Task a| — Task a | html question & iTask a

// Worker administration:
chooseUsersWithRole: : question String — Task [User| | html question

Figure 5.2: A snapshot of the iTask primitive combinator functions.

The archetypical primitive iTask combinator is enterInformation q which, when
performed, presents the current worker with a form to create a new value of type
a. Here, q is a guiding prompt for the worker. Fig. 5.3 gives an example of a form
for the type Person. updateInformation q v is similar, except that the value v acts as

:: Person = { firstName :: String
, surname :: String
, dateOfBirth :: HtmlDate
, gender :: Gender
}

:: Gender — Male | Female

enterPerson :: Task Person
enterPerson — enterInformation "Enter Information"

Figure 5.3: A standard form editor generated for type Person.

initial content of the form. The showMessage combinator displays a message to the
user. With chooseTask the user can choose a task to be performed from a list of
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tasks. In order to dynamically delegate work to users in the system, a workflow
needs to have access to the worker administration. With the combinator function
chooseUsersWithRole the user is given a list of current workers, and she can make a
selection.

The overview of the iTask combinators here is just a selection enabling us to
present the example used in Sect. 5.3. There are many more combinators that we
cannot discuss here due to lack of space: combinators for the dynamic creation and
control of workflow processes, combinators to raise and handle exceptions (stop a
running workflow, inform all collaborators and start an alternative workflow), and
combinators which allow to change workflows at execution time (replace a workflow
on-the-fly by another workflow yielding a result of the same type). These features
are necessary to handle realistic workflow cases.

Finally, iTask is embedded in Clean. This provides the workflow engineer with
many abstraction techniques that are common practice in functional programming:
tasks can be polymorphic, use higher-order functions, can be parametrized, and
even higher-order workflows can be created (tasks that have tasks as parameter
or result). This yields a high degree of re-usability and customization. As a final
example, iTask provides a core combinator function, parallel that is used in the
system to define many other split-join combinators such as anyTask and allTasks that
were shown earlier. Its type signature is:

parallel :: (|a] — Bool) (|a] — b) (|a] — b) [Task a] — Task b | iTask a & iTask b

parallel c £ g ts performs all tasks within ts simultaneously and collects their re-
sults. However, as soon as the predicate ¢ holds for any current collection of results,
then the evaluation of parallel is terminated, and the result is determined by apply-
ing £ to the current list of results. If this never occurs, but all tasks within ts have
terminated, then parallel terminates also, and its result is determined by applying
g to the list of results.

5.3 Ordering example

To demonstrate the expressive power of iTask, we present an ordering example.
The code presented below is a complete, executable, iTask workflow. The workflow
has a recursive structure and monitors intermediate results in a parallel and-task.
This case study is hard to express in traditional workflow systems. The overall
structure contains the following steps (see getSupplies below): first, an inventory is
made to determine the required amount of goods (getAmount) (e.g. vaccines for a new
influenza virus); second, suppliers are asked in parallel how much they can supply
(inviteOffers); third, as soon as sufficient goods can be ordered, these orders are
booked at the respective suppliers (placeOrders).

getSupplies :: Task [Void| 1.
getSupplies = getAmount >>= inviteOffers >>= placelrders 2.

Determining the required amount of goods proceeds in a number of steps:

getAmount :: Task Amount 3.
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getAmount 4.
— chooseTask "Decide how much we need" 5.
["Decide yourself" @3> enterInformation "Enter the required amount" 6.

,"Let others decide" @>> determineOthers| 7,
determineOthers :: Task Amount 8.
determine(0thers 9.
= chooseUsersWithRole "Select institutes:" "Institute" 10.
>>= Jusers — allTasks | user @: ("Amount request", getAmount) 11.
\\ user < users 12.

] 13.

>>= \others — updateInformation "Enter required amount" (sum others) 14.

First, with chooseTask the user can choose to enter the amount herself or to ask
others to determine this amount. @ is used to give a task a (displayable) label.
In determineOthers, with the task chooseUsersWithRole (line 10) a set of users (of type
User) which fulfil a certain role, in this case institutes, is selected by the user. Each
of the selected institutes on their turn may enquire other institutes recursively in
parallel (using the allTasks combinator) how many goods they need (lines 11-13).
The recursive call getAmount has as effect that each of the chosen institutes can ask
other institutes for the same thing, and so on. Given the amount determined by
others, an institute may alter the final amount it wants to have (line 14). Amount is
a non-negative Int:

:: Amount :==1Int 15.

Once the amount of goods is established, the workflow can continue by inviting
offers from a collection of candidate suppliers:

inviteOffers :: Amount — Task [(Supplier,Amount)] 16.
inviteOffers needed 17.
= chooseUsersWithRole "Select suppliers:" "Supplier" 18.
>>= A\sups — parallel enough (maximum needed) id 10,
[sup @:("Order request", updateInformation prompt needed 20.

>>= \a — return (sup,a)) 21.

\\ sup <+ sups 22.

] 23.

where enough as = sum (map snd as) > needed 24.
prompt = "Request for delivery, how much can you deliver?" 25.

This collection is determined first (line 18). Each supplier can provide an amount
(line 20). This is again done in parallel (line 19-23). The termination criterion is
the enough predicate which is satisfied as soon as the sum of provided offers exceeds
the requested amount (line 24). The function maximm is discussed below. Hence, the
result of this task is a list of offers. Each offer is a pair of a supplier and the amount
of goods that it offers to deliver. A supplier is just a user:

:: Supplier :=="User 26.

The total number of offered goods can differ from the required number of goods.
The function maximum makes sure that not too many goods are ordered.
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maximum :: Amount |(Supplier,Amount)| — [(Supplier,Amount)] 27.
maximum needed offers = [(sup,exact) : rest| 28.
where 20.
[(sup,_) : rest] = sortBy (A(_,al) (_,a2) — al > a2) offers 30.
exact = needed - sum (map snd rest) al.

With the correct list of offerings, we can place an order for each supplier. This can
be expressed directly with allTasks:

placeOrders :: [(Supplier,Amount)| — Task [Void] 32.
placeOrders offers 33.
= allTasks [sup @: ("Order placement", showMessage ("Please deliver " <+ a)) 34,

\\ (sup,a) < offers 3s.

] 36.

The overloaded infix operator <+ converts its right-hand argument to a string and
glues it to the given left-hand argument. It is part of the iTask system.

In order to complete the case study, the getSupplies workflow needs to be passed
to the iTask run-time system as a workflow that returns void:

Start :: *World — *World 37.
Start world = startEngine |[workflow| world 3s.
where 39.
workflow = { name = "Ordering example" 40.

, label = "Collect ordering info and make the order" 41.

, roles = |] 42,

, mainTask = getSupplies >>= A_ — return Void 43,

} 44.

5.4 Experience with the iTask language

iTask is a prototype language. We have investigated its expressiveness by means
of constructing examples as well as larger case studies, for instance a conference
management system [PAK1T08b]. The next step is to investigate its use in demand-
ing environments that concern crisis-management situations, in a project with the
Netherlands Defense Academy. In this section we report on our experience in using
the iTask specification language.

5.4.1 iTask is built on a single, powerful, concept

In iTask, everything is constructed as (a combination of) a task. The notion of a
task and the combinators we use have a clear semantics [KPA09]. A task represents
work that needs to be performed, and abstracts over the way the task is composed
out of sub-tasks and the order in which these sub-tasks are being evaluated. No
matter how complex a task may be, for the programmer a task remains a unit of
work returning a value of type (Task a) once the task as a whole is terminated. The
result of a task can be used as input for other tasks. The coordination of tasks is
defined by means of combinators.



72

Embedding a Web-Based Workflow Management System in a Functional Language

A task represents work that needs to be performed. This work can be anything
that is required by the workflow case, such as connecting to a legacy information
system, calling a web service, or arbitrary foreign code. For instance, for access to
information stored in standard information systems, we have developed a systematic
conversion between an information model defined in e.g. ORM (Object Role Model)
and Clean data type definitions. This enables the automatic conversion between
values of these types and the corresponding values stored in a relational database
[LP09a], without the need for explicit SQL programming. As another example, for

Figure 5.4: An iTask for manipulating a map

the type GoogleMap, the basic task enterInformation will show a standard Google Map
in which the end user can scroll and place markers (Fig. 5.4). User manipulations
of the map are automatically kept track of and are reflected in the GoogleMap data
structure. No extra effort is needed in the workflow specification other than using
the type.

In this way, everything can be considered to be a task. An iTask specification
uses combinators to coordinate tasks, and hence one can use the iTask language as
a web coordination language as well.

5.4.2 iTask is a declarative language

We want the specification of a workflow to be declarative and hence to abstract
from details as much as possible. Given an iTask workflow specification, the iTask
system automatically generates all required web forms, handles all user data entry,
storage of intermediate results, task distribution to specified workers, and handles
all coordination. Also the precise way information is displayed in the browser is not
specified in the workflow, but delegated to the client. To further enable abstraction
over lay-out, we offer several primitives in the iTask library for basic interaction
steps. For instance, in addition to enterInformation, there are basic primitives like
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enterChoice and enterMultipleChoice. The advantage of having different primitives for
such basic interaction steps is that the workflow specification becomes more readable
while the representation and lay-out can again be delegated to the client. Due to
abstraction, the workflow engineer can concentrate on specifying the workflow. This
promotes rapid prototyping of workflow applications.

5.4.3 iTask is more than Clean

iTask is an embedded domain specific language and inherits all language aspects
of its host Clean. In particular, these are the strong type system, higher-order
functions, lazy and strict evaluation, and the module system. All computational
and algorithmic concerns can be dealt with in the Clean language. iTask is also
more than Clean because workflows are inherently sequential, distributed, multi-user,
concurrent systems and the Clean standard supports none of those characteristics.
Also, to model realistic workflow cases, one needs to address exceptions and dynamic
change. Again, these concepts are absent in native Clean (see also Sec. 5.5). Each
of the required concepts of the embedded language are challenging to add to native
Clean. Nevertheless, this experiment shows that it is possible to embed a workflow
language in a host that offers entirely different concepts.

5.4.4 iTask has higher-order tasks

A task in Clean of type Task a | iTask a effectively works for all first order types a.
In particular, it works for the type Task itself, which means that tasks can be higher
order: the result of a task might be a task which can be dynamically and interactively
constructed. In this way meta programming (doing tasks that have as goal to define
new tasks) can be accomplished. A task thus created can be given as argument to
other tasks which can decide to evaluate it or to use it in the construction of an
even more complex task. It is very unlikely that an ad-hoc domain specific workflow
language has the ability to deal with advanced notions such as higher functions
and tasks, and this feature is therefore missing in all commercial workflow systems.
Embedding a workflow language in a language like Clean really pays off here.

5.5 Experience with Clean as host language

In this section we focus on our experience with using Clean as host language and
implementation vehicle to embed iTask. An iTask specification results in a web
application. The architecture of this web application is given in Fig. 5.5.

5.5.1 Smart combinators

iTask is a workflow language and is hence inherently sequential, distributed, multi-
user, and concurrent. It needs to handle exceptional situations and dynamically
changing workflows. The host language Clean offers no native support for these con-
cepts. When developing such a language in the traditional way, one would develop
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Figure 5.5: The architecture of an iTask application

a grammar, semantic rules, perhaps a type system, a compiler and/or interpreter,
code generator, and so on. This is a huge amount of work. In this project we have
taken a different route: when designing a language, one needs to define the semantic
rules. Semantic rules can be represented in a natural way by means of functions.
If one takes care in designing these rules in a compositional way, then these form
a set of smart combinator functions. In this way one can obtain a compositional
language implementation almost for free. This decreases the implementation effort
of a new language significantly.

The combinators have several obligations in the iTask system. First, the combi-
nators yield the current status (and hence GUI) at any moment during execution.
For example, the iTask system can evaluate the expression t >>=f even if task t is not
finished yet. The iTask system does this by creating a default value of the proper
type for the whole expression t >>= £. In this way the status of all tasks defined
in a workflow can be inspected, but only the values of the finished tasks are taken
into account. Second, a new workflow is calculated by the combinators given the
finished tasks. Third, each combinator stores its current state in memory and uses
it for handling the next event from the participating workers.

5.5.2 Smart tasks

The iTask language is a declarative language. This implies that we want to generate
as much boilerplate code as can be possibly done from an iTask specification. In iTask
this has been realized by using the generic programming features of Clean [AP02].
Tasks require the availability of a collection of generic (kind indexed, type driven)
functions. These generic functions are used to generate all kinds of functionality
automatically, such as the generation of web forms, the handling of user updates
of such forms, the storage and retrieval of information, the serialization and de-
serialization of data and functions. The generic functions are predefined in the iTask



5.5 Experience with Clean as host language

75

library. To use them for a certain type, however, one needs instances for that type
for all the generic functions being used. As a result a task can be applied to values
of any type, as long as instances for this type have been defined for all generic
functions the task is depending on. The Clean compiler is able to generate instances
for these generic functions for (almost) any (non opaque) type fully automatically.
Clean is special in this respect. In Haskell e.g. generic functions can be constructed
using special pre-processors like template Haskell [SP02].

It should be noted that a great deal of the facilities for which we have used gener-
ics in our project can be done in a programming language that offers introspection
and code generation facilities. One significant advantage of using generics is its firm
integration with the static type system of Clean.

5.5.3 Smart serialization

An iTask application is a web application that runs on the server side. This appli-
cation must handle every possible user request from any possible web browser that
connects with the application. After an event is handled, the web application ter-
minates and is started all over again by the web server when new user events arrive.
Hence, an iTask application needs to fully recover its previous state to compute the
proper response. Conceptually, this amounts to reconstructing the task tree that
reflects the current state of computation of the workflow. The nodes of a task tree
are formed by the combinators in the task that is being computed, and the leaves of
a task tree are the primitive tasks. Evaluation of a workflow boils down to rewriting
this task tree as dictated by the combinators. The task tree can become very large.
Hence, a naive implementation of task-tree rewriting for iTask applications is not
realistic. Instead, we have incorporated a number of optimizations to obtain an
efficient and scalable implementation. We briefly discuss two of the most important
optimizations.

The first optimization is based on the observation that most rewrites affect only
a local part of the task tree. Hence, for these rewrites it is not necessary to recon-
struct the entire task tree, but only the subtask tree that is affected. Because an
iTask application terminates after handling an event, we need to be able to store
and read any subtree that is currently being rewritten. Tasks and combinators are
implemented as state transition functions, hence we need to be able to store func-
tions. Clean offers a hybrid type system, and statically typed expressions can be
turned into a dynamically typed expression (of static type Dynamic) and the other
way around. Dynamics can be stored to disk and it is even possible to read in a
dynamic stored by some other Clean application.

The second optimization is based on the observation that many computations do
not have to be done at the server side, but can also be done on the web client side.
Hence, clients need to be able to run tasks, which amounts to running Clean code.
To implement this, the Clean compiler generates two executable instances from a
single source. The first instance is a Clean executable that runs on the server, and
the second instance is a Sapl program to be executed by the Sapl interpreter [JKPO6]
(chapter 3) that is running as a Java applet at the client side. At run-time it can be
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decided where to execute what. Any function or task can be shifted from server to
client. For this purpose we again use dynamics in Clean to serialize functions and
expressions as Sapl programs at the server side and interpret them at the client side.
For details we refer to [PJKAOS8| (chapter 6).

5.6 Related work

The WebWorkFlow project [HVV08] shares our point of view that a workflow specifi-
cation is regarded as a web application. WebWorkFlow is an object oriented workflow
modeling language. Objects accumulate the progress made in a workflow. Proce-
dures define the actual workflow. Their specification is broken down into clauses
that individually control who can perform when, what the view is, what should be
done when the workflow procedure is applied, and what further workflow procedures
should be processed afterwards. Like in iTask, one can derive a GUI from a workflow
object. The main difference is that iTask is embedded in a functional language, but
this has significant consequences: iTask supports higher-order functions in both the
data models and the workflow specifications; arbitrary recursive workflows can be
defined; reasoning about the evaluation of an iTask program is reasoning about the
combinators instead of the collection of clauses.

Brambilla et al[BCC07] enrich a domain model (specified as UML entities) with
a workflow model (specified as BPMN) by modeling the workflow activities as addi-
tional UML entities and use OCL to capture the constraints imposed by the workflow.
The similarity with iTask is to model the problem domain separately. However, in
iTask a workflow is a function that can manipulate the model values in a natural
way, which enables us to express functional properties seamlessly (Sect. 5.3). This
connection is ignored in [BCCO7| and can only be done ad-hoc.

Pesi¢ and van der Aalst [PA06a] base an entire formalism, ConDec, on linear
temporal logic (LTL) constraints. Frequently occurring constraint patterns are rep-
resented graphically. This approach has resulted in the DECLARE tool [Pes08]. In
iTask a workflow can use the rich facilities of the host language for computations
and data declarations — such facilities are currently absent in DECLARE.

Andersson et al|ABE05] distinguish high level business models (value transfers
between agents), low level process models (workflows in BPMN), and medium level
activity dependency models (activities for value transfers of business models). Ac-
tivities are value transfer, assigning an agent to a value transfer, value production,
and coordination of mutual value transfers and activities. Activities are modelled as
nodes in a directed graph. The edges relate activities in a way similar to [BCCO07|
and [PAO6a): they capture the workflow, but now at a conceptual level. A con-
formance relation is specified between a process model and an activity dependency
model. Currently, there is no tool support for their approach. The activity depen-
dency models provide a declarative foundation to bridge the gap between business
models and process models. One of the goals of the iTask project is to provide a
formalism that has sufficient abstraction to accommodate both business models and
process models.
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Vanderfeesten et al[VRAOS| have been inspired by the Bill-of-Material concept
from manufacturing, recasted as Product Data Model (PDM). A PDM is a directed
graph. Nodes are product data items, and arcs connect at least one node to one
target node, using a functional style computation to determine the value of the
target. A tool can inspect which product data items are available, and hence, which
arcs can be computed to produce next candidate nodes. This allows for flexible
scheduling of tasks. Similarities with the iTask approach are the focus on tasks that
yield a data item and the functional connection from source nodes to target node.
We expect that we can handle PDM in a similar way in iTask. iTask adds to such an
approach strong typing of product data items (and hence type correct assembly) as
well as the functions to connect them.

5.7 Conclusions

In this paper we report on our experience in using the lazy, pure, functional lan-
guage Clean as embedding language to specify and create web-based workflow iTask
applications. Although the iTask combinator language is embedded as a library in
Clean, it is by no means a shallow embedding, i.e. the meaning of the embedded
language is not a straightforward extension of the host language. The result is a
new language for defining workflow applications. This new language provides the
workflow engineer with concepts to seamlessly merge data flow with control flow
(exemplified by the >>= combinator), use higher-order tasks (tasks that can create,
manipulate, and pass around tasks), in a compositional way. The evaluation order
of the workflow is controlled by the iTask combinators and dictated by the needs of
the workflow engineer (by using sequential and generalized parallel split-join pat-
terns as well as recursion). It is important to observe that this evaluation order is
very different from the lazy evaluation order of the host language and that one can
add new combinators within iTask to capture other evaluation orders when needed.
The iTask system is very general and serves as a coordination language to control
and unify all tools that are used to realize the system. Specifications inherit the
terseness of their host language.

We have used many state-of-the-art programming language techniques to ob-
tain this result: generic programming to handle boilerplate code generation (in-
cluding foreign code) in a type-directed way, dynamic types to handle arbitrary
(higher-order) data structures which origin need not be the source program itself,
and higher-order functions which permeate through the entire design, implementa-
tion, and resulting language. The entire system is statically typed. Although the
boilerplate code generation aspects can be realized in other programming languages
that support some form of inspection, we have shown in this project that the task
of embedding a language (however alien) is one that fits functional programming
languages like a glove.
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Chapter 6

Declarative Ajax and Client-Side
Evaluation of Workflows using
iTasks

L Abstract Workflow systems coordinate tasks of humans and computers. The iTask
system is a recently developed tool-kit with which workflows can be defined declaratively on
a very high level of abstraction. It offers functionality which cannot be found in commercial
workflow systems: workflows are constructed dynamically depending on the outcome of
earlier work, workflows are strongly typed, and they can be of higher order. From the
specification, a web-based multi-user workflow system is generated. Up until now we could
only generate thin clients. All information produced by a worker triggers a round trip to
the server. For real world workflows this is unsatisfactory. Modern Ajax web technology to
update part of a web page is required, as well as the ability to execute tasks on clients. The
architecture of any system that supports such features is complex: it manages distributed
computing on clients and server which generally involves the collaboration of applications
written in different programming languages. The contribution of this paper is that we
integrate partial updates of web pages and client-side task evaluation within the iTask
system, while retaining its approach of a single language and declarative nature. The
workflow designer uses light-weight annotations to control the run-time behavior of work.
The iTask implementation takes care of all the hard work under the hood. Arbitrary
tasks (functional programs) can be evaluated at web clients. When such a task cannot be
evaluated on the client for some reason, the system switches to server-side evaluation. All
communication and synchronization issues are handled by the extended iTask system.

6.1 Introduction

A workflow system is a computer system that coordinates the work that has to
be done by human workers in collaboration with computers. Workflow systems
are challenging real-world applications because they need to handle many things.
First of all, a workflow system has to provide a way to specify workflows: what

!Originally published as [PJKA0S]
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are the tasks that have to be done, how do these tasks depend on each other, and
who should do them? The specification is used by the system at run-time for the
real-time coordination and monitoring of the actual work being performed. Hence,
somehow a mapping has to be made between the workflow specification and the
real work that has to be done given the concrete human and software resources
which are available. Daily work can be structured in quite a complex way which has
direct consequences for the way tasks are depending on each other. The result of
the work of one worker might determine the work of many others in both a positive
or negative way. One needs a good understanding of how tasks depend on each
other, and one also needs a sufficiently powerful specification formalism to express
such complicated dependencies. In addition, one has to control a process which is
quite dynamic: the amount and kind of work, the time it takes to do a job (ranging
from split seconds to months), the number of available workers, the allocation of
resources (both human, software, and hardware), they may all vary over time and
may depend on the concrete work that takes place. Last but not least, one generally
has to deal with a technically complicated distributed, heterogeneous environment:
people working together all over the world using their own personal computer, pda’s,
mobile phone, and so on.

How to express this all? How to control this given a specification? It should
be clear that a software system that can deal with all the above is bound to be
complex. There exist many, mainly commercial, workflow systems. Examples
are COSA Workflow [Sol], Business Process Manager FLOWer [PA], i-Flow 6.0
[Fuj|, Staffware [TIB], Websphere MQ Workflow [IBM], and YAWL [YAW] (see
also [RHAMO6, Pat]). Although these systems all have their own way of dealing
with the challenges mentioned above, they also have a lot in common. Usually the
systems are based on Petri-nets. The advantage is that dependencies between tasks
can be depicted which makes them attractive to non-experts, while these drawings
can straightforwardly be mapped to a corresponding Petri-net. This Petri-net is
used at run-time as scheme to control the real work to do. Furthermore the net
can be used as a formal model at compile-time to determine desired properties of
the specified workflow: one can calculate reachability of a certain task or determine
the absence of deadlock. The kind of task dependencies one can specify in these
systems, the so-called workflow patterns, are summarized in [AHKBO02|, together
with a discussion of the systems mentioned above. However, the use of Petri-nets as
semantic model also has big disadvantages. The nets are static and only first order:
tasks cannot deliver new tasks. Hence they cannot be used to describe the dynamic
way of working that takes place in the real world.

The main research question that we address in this paper has been asked to
us by industry being confronted with the limitations of the current systems: can
declarative programming, and functional programming in particular, provide new
concepts and implementation methods and tools for workflow systems that can deal
with the dynamic behavior of daily work? In answering this question, we have
developed the iTask toolkit [PAKO7| as a first step towards a realistic workflow
system. This toolkit is a web-based combinator library written in the lazy, purely
functional programming language Clean. The novel and declarative contributions
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that this toolkit provides, which cannot be found in the existing commercial systems,
are:

e workflows are constructed fully dynamically instead of statically: they can
depend on the intermediate inputs and outputs that are yielded by workers
and computations;

e workflows can be higher-order, i.e. yield partially evaluated tasks which can
be passed around for further evaluation to other workers at other locations;

e workflow cases are specified as pure, strongly-typed functional expressions,
using the predefined iTask combinators;

e the workflow application can handle multiple workers, multiple tasks, and
multiple clients dynamically, yet everything is controlled by one, single Clean
application running on the server;

e the specification of the workflow is executable; all implementation details
like web-page generation, web-page handling, client-server communication and
database storage handling is handled fully automatically by making intensive
use of generic programming techniques [Hin00, AP02]: from the types being
used the required code is generated fully automatically.

Tasks have to be offered to the workers in such a way that it is clear what they
have to do. The iTask application generates, given the workflow specification and
the work that has been done so far, an appropriate web page for each user. The
key advantage of using browsers to display the work to do, is of course that they
are available on any thinkable platform. No special software needs to be installed to
connect iTask workflow users. Workflow systems are distributed software systems,
hence it makes sense to not only deploy web technology for rendering purposes, but
also for the distribution, communication, and control of tasks. However, although
the web seems to be very suited for all this, it is actually technically quite difficult
to realize the rendering and communication automatically from a given declarative
workflow specification. Workflow systems exhibit state, support multiple users, and
guide the flow of work. None of these concepts are readily supported by the web
and hence additional software is needed for the realization. Commonly, a web ap-
plication which guides a user through several working steps does not consist of one,
single application. The implementation often consists of a collection of software ap-
plications and scripts, written in several languages, which somehow together do the
job: one can think of HTML-code, php-scripts, Ajax-scripts, SQL-queries. Since they
are commonly not generated from one single source code, it is very hard to design,
implement and maintain systems which such an architecture. In the iTask system
all software is generated from one single source in Clean. To understand what the
application is doing, one only needs to look at the iTask specification. It is a specifi-
cation on a very high level of abstraction which can be read as if we are dealing with
an ordinary simple desktop application. We take full advantage of the fact that we
are working with a pure functional language. First of all we solve the lack-of-state
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problem of the web, by using generic programming techniques to store the state of
the interactive elements, the iTask, only. Because we have the most recent states
of the iTask at our disposal, we only need to rerun the function that represents the
program and provide it with the most recent input action of any worker to advance
to the next state. This reduces the programming burden on the workflow developer.
It allows her to focus on the workflow case, rather than its implementation. Another
advantage of such an approach is that one obtains a clean separation between the
workflow specification and its implementation.

In this paper we explain the use and implementation of two new important
features added to the iTask toolkit. In the old system, any event received from an
iTask user is handled by the single iTask application on the server. It computes the
next state and calculates a whole new web page for a particular user showing her
the new tasks to do. New web technology such as Ajax [Gar05], makes it possible to
update only a part of a page. Updating only the relevant part of a page improves
the behavior of the web application in a way that resembles desktop behavior. The
first feature is that we incorporate partial page updates. This is a challenge since
the iTask system has to calculate dynamically which part of the page has to be
updated, and this depends on the state of the task being performed and the state
of the work of all other users. In most existing systems the part of the page to be
updated is fixed rather than computed dynamically. Furthermore we require that
the program which executes the tasks can run partially on the client instead of on
the server. Client-side evaluation is essential in eliminating delays associated with
the communication between server and client. The impact of this feature cannot
be overestimated because it is fundamental to create coarse grained computational
tasks on clients with rich interaction and quick response times (think of modern
day web applications like Google Docs and gmail). There are three ways to obtain
client-side evaluation of tasks in a browser: plug-ins, JavaScript, or Java code. The
disadvantages of plug-ins is the explicit installation that they require. In the current
iTask system we prefer Java over JavaScript since it seems better suited for the large
applications that have to be run on the client.

Instead of a single server, one can also think of using several servers, as well
as tasks that are migrating over the internet. Distribution of client tasks is also
required when one wants to work with distributed document repositories that can
be accessed by client workflows. This is not addressed in this paper, but will be
subject of future research. The feature of client-side workflows also challenges the
underlying architecture of the iTask tool-kit.

In this paper we show how these two major web techniques can nevertheless
be incorporated smoothly in the iTask toolkit, while fully retaining its declarative
nature:

o We rearrange the iTask toolkit in such a way that worker-tasks automatically
use the asynchronous, partial page update technology that is offered by Ajax.
Besides this default arrangement, we allow the workflow designer to annotate
workflow expressions in a light-weight way to give fine-grained control of other
parts of the workflow application.
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e We rearrange the iTask toolkit in such a way that any workflow task expression
can be evaluated at the client side. To indicate which parts are to be executed
at the client side is only a matter of adding a simple annotation to an existing
specification.

The workflow engineer can use the new contributions of the iTask tool-kit by
annotating ordinary iTask applications. The implementation of these new annota-
tions is however challenging. We wish to evaluate complete task expressions on the
client instead of on the server, which requires that we can evaluate full Clean code
on the client side within the browser. Worker actions can have non-local effects, and
hence we need to implement some sort of synchronization. We show that this can
be implemented without loss of the semantic model of the system, without client
side evaluation and partial page updates.

The declarative nature of the iTask toolkit is retained by implementing an eval-
uation strategy that can automatically switch between client-side evaluation and
server-side task rewriting if necessary. The details are presented in Sections 6.5 and
6.6; roughly speaking the system can perform tasks on the client side (within a
browser) as well as on the server side (within the server application). Moreover, if
client-side evaluation is no longer possible (because of a non-local effect of a remote
worker, or because the local computation requires a server resource), the system
automatically can continue to perform the computation on the server side. The
workflow designer does not have to specify this, unlike other approaches as for in-
stance in Hop [SGL06, LS07| (see also Sect. 6.7). This implies that the approach as
described in this paper is not only more declarative, but also more robust: it can
handle situations dynamically that would otherwise be considered programming er-
rors.

The iTask toolkit has been created in Clean. A concise overview of the syntactic
differences with Haskell is [Ach07]. We assume the reader is familiar with the concept
of generic programming.

We start with a short overview of the iTask combinator system in Sect. 6.2. The
new annotations are introduced in Sect. 6.3. Their ease of use contrasts strongly
with their implementation. To understand why, we present the basic architecture of
the standard implementation in Sect. 6.4. The high level specification of workflows
offered by the iTask system is achieved due to the fact that the system is able to
reconstruct the state of evaluation of all tasks of all users, the so-called Task Tree.
To avoid the Task Tree from growing infinitely, a task expression is rewritten by its
result in a similar way as function applications are rewritten by their result. This
is called Global Task-Tree Rewriting. In Sect. 6.5 we discuss the implementation
consequences of agsynchronous partial page updates and introduce Local Task-Tree
Rewriting. In Sect. 6.6 we do the same for client-side evaluation and introduce
Client-Side Local Task-Tree Rewriting. Related work is presented in Sect. 6.7 and
we conclude in Sect. 6.8.
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6.2 Introduction to iTasks

In this section we give a concise overview of the iTask system. First we select the
combinators that are used in this paper (Sect. 6.2.1). We present the complete
code of a small, but representative case study (Sect. 6.2.2). Finally, we discuss
opportunities for optimization (Sect. 6.2.3).

6.2.1 The iTask Combinators

Although the iTask system supports all common workflow patterns found in com-
mercial workflow systems ([AHKBO02| gives an excellent overview), it is beyond the
scope of this paper to discuss them all. The selection of iTask combinators that we
use in this paper are shown in Fig. 6.1.

:: Task a

:: Pred a:==a — (Bool, [BodyTag|)

:: LabeledTask a:== (String, Task a)

:: UserId == Int

editTaskPred :: a (Pred a) — Task a | iData a

editTask 1t a — Task a | iData a

(=>) infix 1 :: (Task a) (a — Task b) — Task b | iData b

return_V 1t a — Task a | iData a

buttonTask :: String (Task a) — Task a | iData a

chooseTask :: HtmlCode [LabeledTask a] — Task a | iData a

(-11-) infixr 3 :: (Task a) (Task a) — Task a | iData a

(-&&-)infixr 4 :: (Task a) (Task b) — Task (a,b) | iData a
& iData b

(7>>) infixr 5 :: HtmlCode (Task a) — Task a | iData a

(@:) infix 3 :: UserId (LabeledTask a) — Task a | iData a

Figure 6.1: The selection of iTask toolkit combinators

In the iTask toolkit tasks are represented by the opaque type (Task a). The
primitive task (editTaskPred a p) generates a web form for values that have the type
of the initial value a. The predicate p is used to impose further constraints on
entered values (they at least have to be of correct type). Only when the worker
has entered a value of correct type that also meets the given predicate the task
can be finished by the worker and that value is returned. If the predicate p is not
needed one can use editTask a. The type class restriction | iData a at the end of the
type signature guarantees that this function works for any type a provided that all
generic instances for this type of the generic functions being used are available. The
compiler can automatically derive these instances on request of the programmer (see
Sect. 6.2.2). An edit task for a string is specified as:

et :: Task String
et — editTask "Finished" "edit string here"
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The initial string is "edit string here". The task is finished when the user presses
the button labeled Finished.

The iTask library uses the monadic combinators = and return_V for their stan-
dard purposes. The task return_V "Approved" is a task that returns the string "Approved"
without any user interaction.

A buttonTask s ¢ activates the task ¢ after the user has pressed the button la-
beled by the string s. As an example: the task yt (nt ) yields the string "Approved"
("Rejected") when the user presses the button labeled Yes (No).

yt :: Task String
yt = buttonTask "Yes" (return_V "Approved")

nt :: Task String
nt = buttonTask "No" (return_V "Rejected")

chooseTask html [(lo,to) . .. (Ln, tn)] allows the worker to pre-select one labeled task
t; from the list. After the choice, the other tasks have disappeared. For example

ct = chooseTask [Txt "choose"|
[("Yes", return_V "Approved")
,("No", return_V "Rejected")
,("Edit" ,et)]

prompts the user with the text choose and offers three buttons labelled Yes, No, and
Edit. After using one of the first two buttons ct will be finished and deliver the
indicated string. If the user presses the Edit button the iTask system offers the user
the edit task et.

The expression t -| |- u offers tasks ¢ and u simultaneously. As soon as either
one is finished first, ¢ -1 1-w is also finished. Any work in the other task is discarded.
The -1 |- combinator is very useful to express work that can be aborted by other

workers or external circumstances. In
ot=yt-ll-nt-||-et

the iTask system offers the task yt, nt, and et simultaneously. Any edit work in et is
discarded when the user presses one of the buttons labelled Yes or No. Discarding of
work is prevented in ct where the user chooses the task to be done before she starts
editing.

Tasks can be composed sequentially by the monadic = operator. For instance
the string resulting from ot can be edited until the Done button is pressed by executing
ot =>> editTask "Done".

If one really needs both results of tasks ¢ and u, then this is expressed by ¢ -&&-
u, which runs both tasks to completion and returns both results. For instance, if we
need a string and an integer (with default value 5) we can use the task:

at :: Task (String, Int)
at = ot -&&- editTask "Done" 5

It is useful to provide the worker with additional information info while she is
working on a task ¢. This is expressed with info ?>>¢t. Finally, any task t labeled
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delegate :: UserId UserId (a — Task a) — Task a | iData a 5.
delegate userA userB taskf =a-|[|-D 6.
where 7.
a = userA @: ("Task of A" taskf createDefault) 8.

b =userB @: ("Task of B",taskf createDefault 9.
=> \rb — userA @: ("A checks B",taskf rb)) 10.

The function delegate specifies the main structure of the workflow as described
above: two tasks (a and b) are created simultaneously (-1[-). The first task is
provided with an initial default value (createDefault), and this is the task that needs
to be performed by worker A (line 8). The second task is provided with the same
initial default value, and needs to be performed by worker B (line 9). When finished,
worker B has produced rb, which is passed along via the monadic bind combinator
=> to worker A again, who can decide to work with rb (line 10).

The task person_admin that is performed by worker A and B double-checks filling
in a personnel record of type Person:

:: Person = { name :: String, e_mail :: String 11.
, dateOfBirth :: HtmlDate, gender :: Gender } 12.

:: Gender — Female | Male 13,
person_admin :: Person — Task Person 14.
person_admin p = doubleCheck p checkPerson 15.
checkPerson :: Pred Person 16.
checkPerson {name,e_mail} 17.
| name=="" = (False, |[Txt "Please fill in your name"|) 18.

| not ok = (False, [Txt "Incorrect e-mail address"|) 10.

| otherwise = (True, []) 20.
where 21.
ok =not (isMember ’@’ (fromString e_mail)) || e_mail=="" 22.

The predicate checkPerson determines whether the worker did a good job. Double-
checking a worker’s output is also a parametrized workflow function:

doubleCheck :: a (Pred a) — Task a | iData a 23.
doubleCheck a p 24.
= [Txt "Please fill in the form:"| 25.
7>> editTaskPred a p ==> dna — 2.
chooseTask | Txt "Received information:" 27,

, toHtml na, Txt "Is it correct?" | 28.

[ ("Yes", return_V na) 20.

, ("No", doubleCheck p na)] 30.

(doubleCheck a p) uses (editTaskPred a p) (line 26) to generate a web form to enter a
value of the type of a: again, the type class restriction guarantees that this is possible
for the particular type of a. Once the worker has successfully entered a correct value,
then this is passed monadically as na (line 26) to the next sub-task (lines 27-30):
the value is displayed (toHtml na, line 28), and the same worker is asked to confirm
whether she is sure about the information she has entered: if she confirms (line 29),
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then doubleCheck returns that value, and if she declines (line 30), then doubleCheck
recurses with the new value.

What remains to be done is to include ‘boilerplate’ code for deriving instances
of the custom data types of the required generic functions:

derive gForm  Person, Gender // create form s1.
derive glpd Person, Gender // process edit operation 32,
derive gPrint Person, Gender // serialize value 33.
derive gParse Person, Gender // deserialize value 3.

This completes the case study.

6.2.3 Opportunities for optimization

The case study illustrates a number of opportunities for efficient evaluation: in the
current iTask implementation, every worker action triggers a round-trip between
the client browser and server application. The actions of worker A and B are
largely independent: still, the application takes both current states into account
whenever either worker submits information. This can be improved if the system
would restrict itself only to the required information. Also, one can imagine that the
complete person_admin task can be executed on the client, without any communication
with the server. This requires on-client evaluation of arbitrary Clean code. In the
next section, we present an extension to the iTask system that allows the workflow
engineer to specify these properties, while maintaining correct handling of multiple
users and global effects.

6.3 Controlling the evaluation of tasks

In this section we introduce two annotations that the workflow engineer can use
to control the behavior of any task ¢. The annotations are (UseAjax @ {) and
(OnClient @>¢), and are implemented as type class instances:

:: SubPage = UseAjax | OnClient

class (@) infixl 7b :: b (Task a) — Task a | iData a
instance @>> SubPage

6.3.1 The “UseAjax” annotation

Modern web browsers support Ajax-technology. Ajax allows web applications to de-
fine call-back functions on the client in JavaScript. When a client browser submits a
request for a new page to the server it usually receives a completely new page and
renders the new page. Using Ajax, the call-back function handles the response of
the server instead of the browser. This happens asynchronously, hence the user can
continue to work on the page in the browser while the request is being processed.
With this technique web pages can be updated partially, which results in a much
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more responsive behavior resembling desktop applications. As we will see, the im-
plementation can benefit from it too: in many cases only the effect of the particular
task being performed has to be calculated, instead of all tasks.

The workflow engineer can annotate any task expression. This requires some
consideration, because Ajax imposes a performance penalty. As a rule of thumb,
worker tasks (tasks assigned to a worker with the @: operator) are suitable candidates
for annotation because they clearly form a unit of work and they own graphical
estate on the web page. To support this rule of thumb, the workflow engineer can
set these tasks to “UseAjax” by default by setting a switch in the iTask library and
hence readily create “Ajax threads” for explicit worker tasks. For some applications
this default granularity might turn out to be too coarse grained. Using the UseAjax
annotation allows the workflow engineer to create Ajax threads at any level. They
may be invoked conditionally, they may be nested, and they may occur in recursive
definitions.

The UseAjax facility is also a useful feature because it can serve as an automatic
backup mechanism when client site evaluation is somehow not possible.

6.3.2 The “OnClient” annotation

In Sect. 6.2.3 we suggested that the double checking personnel data task can be
executed completely on a client instead of the server. The only change to the case
study specification is adding the appropriate OnClient annotations in the delegate
function:

delegate :: UserId UserId (a — Task a) — Task a | iData a
delegate userA userB taskf =a-|[|-D
where
a — userA@: ("Task of A",OnClient @> taskf createDefault)
b = userB@:("Task of B",OnClient @>> taskf createDefault
=> \rb — userAQ:("A checks B", OnClient @>> taskf rb)) 10.

© w N o o

Any such annotated task is a “client thread”, and is supposed to be executed in the
client browser. Not every task can always be evaluated on the client. For instance,
a task might inspect or change information in a database stored at the server side.
Due to the non-locality of worker actions, their effect can only be determined with
global knowledge of the state of worker tasks, which is only available on the server.
Consequently, the OnClient annotation must be seen as a wish: if possible the task is
evaluated on the client, but the evaluation strategy might be forced to do the work
on the server. It is also possible that a client task is part of a larger task to be
executed on the server. When the client task is finished one has to be able to switch
back to the server for the continuation. Now we can appreciate the availability of the
UseAjax annotation even more: whenever 0nClient evaluation of a task is not possible
we can simply change it into an Ajax call instead and execute the task on the server.
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6.3.3 Discussion

With the two new annotations, UseAjax and OnClient, the workflow engineer can
control the evaluation of tasks in a lightweight way. However, the implementation
of these annotations is by no means lightweight because it needs to handle many
issues. One issue is that for every worker event it needs to figure out which Ajax
thread (if any) has to handle the event. This event may cause the associated task
to terminate. In that case the Ajax thread has to terminate as well, and the parent
thread has to be activated to determine the next tasks to deal with. This can
result in a cascade of activated-terminated Ajax threads. Another issue is that,
due to non-locality of worker actions, tasks may disappear and consequently also
their associated Ajax threads. In these cases the evaluation strategy has to resort
to the standard evaluation technique. Switching of evaluation strategy is also vital
for those OnClient tasks for which it turns out that they cannot be evaluated on
the client. Using the Ajax infrastructure allows the iTask toolkit to turn a failing
OnClient task automatically into a UseAjax task, and hence have the task evaluated
on the server. This can only be done if the server has either full knowledge of the
states of all clients, or if it can completely reconstruct their state on demand. The
iTask toolkit uses the latter strategy, which is explained in Sect. 6.4. After that, we
show in Sect. 6.5 how Ajax technology is incorporated and client-side evaluation in
Sect. 6.6.

6.4 Standard iTask Implementation

In order to appreciate the implementation of the new extensions to the iTask toolkit,
we need to focus on its initial implementation. The material presented in this section
is a revision of [PAKO7].

6.4.1 A Functional Approach

As discussed earlier, the initial iTask toolkit creates thin-client web applications.
This means that the client browsers are used for rendering purposes only. All events
of all web clients that correspond with the workers that are currently using the
workflow application are sent to a single server application. This server iTask appli-
cation is executed whenever an event is received. The result is a new web page for
the worker. This page depends only on the input event and the current state. The
state is adapted by the iTask server application. A number of fundamental design
decisions have been taken in the creation of the iTask toolkit. In a nutshell, these
are:

1. There is a single declarative iTask specification such as the admin case study in
Sect. 6.2 from which all code (including Html) is generated.

2. Task editors have persistent state. A task editor displays the state and allows
the user to alter this state in such a way that only values of the same type can
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be created. Rendering, editing, updating, and storing and retrieving values is
all done generically.

3. An iTask program is a pure function, hence referentially transparent, and will
produce the same result (and same effect) when applied to the same input
(and state). More precisely, it will produce the same task editors in the same
order.

An iTask application has an effect on its external world and keeps track of the various
persistent storages. Its state is used for this purpose, and is discussed in Sect. 6.4.2.
The evaluation of an iTask expression gives rise to the concept of a Task Tree, which
is presented in Sect. 6.4.3. Finalized tasks are rewritten in an analogous way as
graph reduction takes place in the implementation of functional languages. This is
explained in Sect. 6.4.4.

6.4.2 The iTask State

To the workflow engineer, the task type (Task a) is opaque. Internally, it is a state
transformer function of type:

:: Task a:==x*TSt — (a,xTSt)

The state of an iTask application is the uniquely attributed *TSt. Every task is
applied to a *Tst value, and returns a modified *TSt value, as well as the result of the
work being performed, which is a value of type a. Although iTask applications are
programmed in a monadic style, it is the underlying uniqueness typing of Clean that
guarantees that the *TSt value is passed single threadedly from one iTask transition
function to the other.

:: #TSt = { hst :: xHSt, activated :: Bool
, html :: HtmlTree, params :: TParams }

*TSt extends the uniquely typed iData state *HSt [PAO6b]. For this paper, two com-
ponents of *xHSt are relevant. The first is an accumulator in which the state of all web
form editors is collected, such that they can be saved in persistent memory when
the iTask application terminates. The second is the #World environment value that
allows it to perform these operations effectively.

The boolean value activated acts as a control token passed from one combinator
to another indicating which tasks have terminated, which tasks are active, and which
tasks need to be activated. When a combinator is called, activated tells it whether
it has to be activated or not. If its value is False the task will not be activated at all
and a (default) value of proper type is returned immediately, generated by making
use of the generic machinery. Otherwise the task is activated and the combinator
is applied on the current *TSt state, possibly activating other iTask combinators in
turn. When the combinator is returning a result, the corresponding task may or
may not be terminated. If the task is not terminated, the returned activated value
is False and a (default) value is again returned as result of the task. If the task is
completely terminated, activated is set, and the value returned is the final result of
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the task. Since the task has ended, this result is passed on to the next task or set
of tasks which in turn are activated as well. Hence, a combinator always returns a
result of proper type, but only the values returned from finished iTask are meaningful
and are passed on to other activated tasks. The meaningless default values are only
passed around and never used.

The Html code generated by tasks is accumulated in the html field. The informa-
tion for the intended worker is filtered out.

The remaining information is collected in the TParams record. This information
is necessary to construct a *TSt value when needed.

:: TParams = { userId :: Userld
, options :: Options
, taskNr :: TaskNr }
:: TaskNr :== [Int]
:: Options = { tasklife :: Lifespan
, taskstorage :: StorageFormat
, taskmode :: Mode
, g¢ :: GarbageCollect }

The userId is the unique identification of the worker who has to perform the cor-
responding task. An iTask can have many options which are stored in the options
field. For instance, the Lifespan option defines in which memory (in the web page on
the client side, or on the server side in a relational database or in a file on disk) the
status of the task is stored when the application ends. Last but not least, every iTask
obtains a unique identification, for which the tasknr field in the *TSt state is used.
Such a unique identifier is crucial in order to retrieve the iTask state information
from the different persistent stores. Tasks are numbered dynamically, in the same
way as chapters, sections and subsections are numbered in a book or in this paper:
tasks on the same level are numbered subsequently, whereas a subtask j of task i
is numbered i.j. Task numbering allows us to determine how tasks are related to
each other. Just by looking at the task numbers we can figure out the ancestors of
a task and which subtasks it has spawned. In the standard iTask implementation
this knowledge is used for garbage collection of subtasks. We can now use it con-
veniently for our new annotations to determine which (parent) thread to activate
when an event has occurred.

6.4.3 The Task Tree

An iTask application remembers its point of evaluation. In a language like C or Java
the point of evaluation is remembered by using a stack. For iTask it is better to
use a tree, the so-called Task Tree. The reason is that we are dealing with a multi
user system: people can work on many tasks simultaneously. As a matter of fact,
also one user can have several tasks she can work on at the same time. At any time
we have to be able to administrate the progress made on any task by any worker.
Furthermore we have seen that new tasks can be created while other existing tasks
might not be needed anymore.
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A tree structure is well suited for the administration of all this. Fach iTask
may depend on other iTask and finally on basic iTask editors. The dependencies are
determined completely by specified iTask combinators. The used combinators form
the nodes in the Task Tree, the basic editors the leaves.

The contents of a Task Tree varies over time. An activated task might be changed
into a finished task, new tasks can appear and complete old sub trees may be pruned
because the corresponding tasks are no longer needed.

Fig. 6.3 depicts a snapshot of the Task Tree of the admin case study. User A
(id 0) and user B (id 1) are working on their person_admin task. The user id (in the
left upper corner), the iTask combinator name, and the task number are displayed
in each node. User 0 finished an editTaskPred and is now working on a chooseTask.
User 1 is still working on an editTaskPred. There are two threads created, one for
each person_admin task. The grey area indicates which combinators belong to which
thread.

Figure 6.3: The Task Tree at work with the admin case study.

Although an iTask application can remember its previous point of evaluation,
it is not realized by interrupting a running Clean application, waiting for the next
event received from some user, and continuing execution as one would do in a C
implementation. The reason is that there is not a single point of execution, there
are several: all active worker tasks. So, a parallel evaluation order of the iTask
specification would be appropriate, which is quite different from the normal order
evaluation used in Clean. Implementing a parallel evaluation strategy is challenging
and time-consuming. It turns out that there is an elegant, much simpler technique
that achieves the same result. We exploit the fact that we are working with a
purely functional language: the result of a function only depends on its arguments.
We also make use of the iData library: every editor ever being used automatically
stores its state in its specified (persistent) memory and this state is automatically
recovered when the editor is activated again (see [PA06b]). Reconstruction of the
previous point of evaluation is accomplished by re-evaluation of the program with
the new input received where at the same time the effect of old inputs is recovered
automatically thanks to the iData being used.

Consequently, the Task Tree does not really exist: part of it is reconstructed via
the re-evaluation of iTask combinators (they are just plain Clean functions), part of
it is reconstructed using the stored information of the iData editors. In this way
the Task Tree is reconstructed from scratch whenever an event is received. This
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technique is also very suited for dealing in a robust way with a complicated, hard
to control, distributed environment such as the internet.

On demand, the iTask application can show the contents of this virtual Task Tree
to the user. In this way one can get an overview of who is doing what, which tasks
are finished and what their results are.

6.4.4 Global Task Rewriting

Mature workflow systems should run for years and are used by many workers. This
implies that the Tusk Tree as described above would grow indefinitely over time. For
a real world workflow application this is of course unacceptable. The evaluation of
an i Task is therefore optimized in a similar way as a function application is optimized
in any implementation of a functional language: when a function has been evaluated,
the function call is replaced by its result. Similarly, when a task is finished, it is
replaced by its result. This is noticeable in the Task Tree as well: a combinator
node in the Task Tree is replaced by the resulting task value. This Global Task
Rewriting increases efficiency because Task Trees can be reconstructed much faster.
Although not discussed in this paper, the iTask toolkit has iterative combinators
such as foreverTask that repeat tasks infinitely many times. These can restart from
scratch and even reuse the task numbers. In this way both the Task Tree and the
task numbers have proper upper bounds (in size).

The downside is that the implementation becomes more complicated as well. The
iTask information stored in the persistent memories needs to be garbage collected
which is not always trivial. As we will see, Task-Tree rewriting also has an impact
on the implementation of our new annotations.

6.5 Implementing Ajax calls via Local Task Rewri-
ting

In this section we show how Ajax-threads are incorporated within the iTask toolkit.
The key idea of Ajax is to enable JavaScript fragments that reside in a web page
to engage in asynchronous communication with servers, a functionality that was
strictly reserved to browsers before Ajax came along. The result of this technology
is that one can create web pages that are constructed out of arbitrarily many ‘classic’
components (i.e. go along with the browser-server communication cycle) as well as
arbitrarily many components that handle their private content with servers of their
choice. In order to set up the asynchronous communication, a JavaScript creates a
so-called XML http request object. With that object, it can communicate with any
server of its choice. Usually, this communication is asynchronous, but synchronous
communication is also possible. In case of asynchronous communication, a callback
function is associated with the XML hitp request object, by overriding its onreadys-
tatechange method. This function is called whenever the server has responded, and
it will find its result in the responseXML data member of the XML http request
object.
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If we want to use this technology within the iTask framework we will need to cre-
ate and store the proper callback functions. These callback functions will necessarily
update the Task Tree locally instead of globally as described in Sect. 6.4. We make
use of the property that a Task Tree cannot only be reconstructed from the root
of the tree: any subtree can be reconstructed in a similar way as well. The reason
is that due to referential transparancy, the same Task Tree will be reconstructed,
and this property also holds for any subtree. So, we can reconstruct and rewrite the
Task Tree locally, i.e. starting from any node in the tree if only we can store and
determine the callback function that handles this part of the tree. This is discussed
in Sect. 6.5.1. Due to possible non-local effects of worker tasks, we may need to
switch between local Task Tree rewriting and global Task-Tree rewriting. This is
described in Sect. 6.5.2. Finally, we discuss what has been achieved after this step
in Sect. 6.5.3.

6.5.1 Thread Storage and Creation

Every subtree of the Task Tree has been created by one of the iTask combinators (see
also Fig. 6.1). To reconstruct a subtree we have to know which iTask combinator
(thread) is responsible for its construction and we need to know with which argu-
ments this function has been called. This information has to be stored somewhere
such that we can re-evaluate the function later, as a special kind of callback function.
So, we must be able to store and retrieve closures. Clean already has powerful means
for doing that. By using Dynamics, any type, including function types, can type
safely be stored and even be exchanged between independently programmed Clean
applications [Wee07]. Exchange of dynamics between two applications requires the
presence of a dynamic linker. Loading dynamic code and data with a linker con-
sumes a significant amount of time. Because we are dealing with one and the same
server application, this is not necessary. We only make use of Clean’s ability to
serialize and de-serialize functions. The two functions that do this are serializeClean
and deserializeClean:

serializeClean :: (Task a) — CleanSerialization
deserializeClean :: CleanSerialization — Task a

:: CleanSerialization :—==String

Note that type correctness is no longer automatically guaranteed, so our storage
administration should better be correct, which is assured by the way they are created
and used.

:: ThreadTable :== |TaskThread|

:: TaskThread = { thrCallback :: CleanSerialization
, thrParams :: TParams }

insertNewThread :: TaskThread *TSt — *TSt

deleteThreads :: TaskNr *TSt — *TSt

findThreadInTable :: TaskNr *TSt — (Maybe TaskThread,*TSt)
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In the ThreadTable threads are stored in a record structure of type TaskThread. The
serialized iTask combinator is stored in the field thrCallback. In order to reconstruct
the *TSt value on which the combinator function has to be applied, we also store
the TParams information, which contains the appropriate options, userId, and tasknr.
There is no need to store the activated token nor the accumulated html because this
information gets accumulated from nodes above the subtree.

mkTaskThread :: (Task a) — Task a
mkTaskThread task — storeAndEvalThread
where storeAndEvalThread tst—:{activated,params}
= case findThreadInTable params.tasknr tst of
(Nothing,tst) = storeAndEvalThread (insertNewThread

thrParams — params

p
, thrCallback = serializeClean task
} tst)

(Just thr,tst) = evalTaskThread thr tst

For every task annotated with UseAjax, mkTaskThread is called. It stores the corre-
sponding task, a state transition function, in the table if this has not been done in a
previous incarnation (note that also this code might be re-evaluated several times).
Finally it evaluates the task thread by calling evalTaskThread.

evalTaskThread :: TaskThread — Task a
evalTaskThread {thrParams,thrCallback} — evalTask
where
evalTask tst= {params,html}
# (a,tst={activated html-nhtml})
— deserializeClean thrCallback
{tst & params = thrParams, html = noHtml}
| activated
= (a,{deleteThreads thrTaskNr tst & params — params})
| otherwise
# newhtml — DivCode (showTaskNr thrParams.taskNr) nhtml
= (a,{tst & params = params, html = html +|+ newhtml}) 12.
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The function evalTaskThread can reconstruct the desired subtree of the Task Tree. 1t
is crucial to observe that this function can be called in any context. Therefore we
can use it to regenerate the subtree when an Ajax call is done. In that case one
first has to determine which thread from the ThreadTable should be selected. This is
explained in Sect. 6.5.2.

The function evalTaskThread de-serializes the stored iTask combinator and recon-
structs the iTask TSt state such that the proper subtree is reconstructed (lines 6-7).
When the combinator task is finished (lines 8-9) the thread removes itself from the
thread table. If the thread is not finished, more work on it has to be done in the fu-
ture. The new Html code generated by the thread, nhtml, is appended to the HTML
accumulator html marked by an Html Div construct that is labelled with the task
number of the thread. This enables the JavaScript callback function on the client
side to replace the old HTML code (which is labeled with the same task number)
with the new one, leaving all other code unchanged. Therefore the part of the page
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that is updated depends on the chosen thread.

6.5.2 Determining which Threads to Activate
Given an Event

Using callback functions for handling events is a common technique. However, in
this case we cannot assign callback functions for an event beforehand because we
deal with a distributed multi-user web enabled system. Due to global effects, a once
constructed subtree might not even exist any-more. As a matter of fact, when a task
is no longer needed, all its administration is removed. Also its threads are removed
from the thread table. We have to determine dynamically which thread is able to
handle an event, if any. How can we do this?

The form committed by a user has been created by an iTask editor. Each iTask
has a unique number, so we can encode this number in the event. The numbering
discipline (Sect. 6.4.2) allows us to determine which thread to activate.

Assume that no global effects occurred. In the thread table we search for the
ancestor thread that is most closely related to the event: a task with the same prefix
number. If such a thread can be found, and the corresponding task is indeed assigned
to this particular user, it is evaluated. The subtree is reconstructed as described
above and this subtree includes the basic iTask corresponding to the event. This task
can handle the event as usual. If afterwards the chosen thread task is not finished
yet, the corresponding Html code is communicated to the client (6.5.1) where the
JavaScript callback function uses it to update the corresponding area on the web
page. If the thread is finished, it removes itself from the table (6.5.1). Termination
of this thread can trigger the evaluation of the next thread in the workflow structure.
We search again in the thread table to find an enclosed thread which is now most
closely related to the event and activate it. This process can repeat itself several
times. Eventually, the page area that gets updated depends on the last thread
activated in this way.

Assume that global effects did occur. How can we find out what has happened?
We can find it out by reconstructing the whole Task Tree because this gives us the
exact status of all worker tasks, but that is exactly what we wanted to avoid in
the first place. Instead, for every worker we maintain an administration of type
GlobalEffect, in which we keep track of global effects:

:: GlobalEffect = { versionNr :: Int
, newlhread :: Bool
, deletedThreads :: [TaskNr| }

If a thread has become obsolete due to an action of another worker, its task number
is added to the administration (deletedThreads) of the worker of that task. If a new
task is assigned to a specific worker, this fact is administrated in newThread as well.
Also a version number is administrated for proper handling of browser buttons and
cloning of windows.

The GlobalEffect administration is inspected before threads are determined. If
there is a new thread, or if a thread has been deleted related to the event, we fall back
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to the old way and reconstruct the Task Tree starting from the root and construct
a whole new page. Otherwise we can start looking for the right thread as described
earlier. As a result, one cannot predict which part of a page will be updated. It can
vary from a small area exactly covered by the closest thread, or a bigger area, or
ultimately even the entire page.

6.5.3 Discussion

In this section we have shown how to incorporate Ajax threads in the iTask toolkit.
As we have explained in Sect. 6.3, we have chosen to turn every worker task (i.e.
a task assigned to a worker with the @: function) into an Ajax thread. As a result,
the page that is displayed to a worker consists of a set of tasks, each of which can
be handled individually by the worker without the need to wait for the full page to
reload. The latter is only necessary in case her action has caused a non-local effect.
In this way, the user experiences a smoothly operating workflow application. The
workflow engineer can further fine-tune the workflow application by adding UseAjax
annotations in the right places.

6.6 Implementing Local Task Rewriting on the
Client

The contributions to the iTask toolkit described so far still result in a thin-client
architecture: web browsers are used for rendering purposes, and all computations
take place on the server. Any iTask that does not require server-side database or
file access can in principle be evaluated on the client instead of on the server. In
this section we describe how this can incorporated within the iTask toolkit. Because
task expressions are full-fledged Clean functions, and the iTask toolkit is based on
generics, this means that non-trivial Clean code needs to run in a browser, which is
something new. In Sect. 6.6.1 we show how we have done this by compiling an iTask
program to two images. One image runs on the server and is a Clean executable, and
one image runs as an interpreted program on every client. The two images run the
same program, and reconstruct the Task Tree as described in the previous sections.
Hence, also for the interpreted image callback functions need to be created and
stored. This is described in Sect. 6.6.2. Again, non-local effects need to be taken
into account. This is explained in Sect. 6.6.3. Finally, we discuss the achievements
in Sect. 6.6.4.

6.6.1 Client-Side Evaluation of Clean Code

The clients need to execute iTask expressions, which can be arbitrarily complex
Clean expressions. One may choose to create a plug-in for Clean applications for
these client browsers, but this conflicts with our design decision to implement iTask
as much as possible using existing web technology. Instead, we have chosen to make
use of the Sapl interpreter [JKP06] (chapter 3). Sapl is a very simple functional


















































































































































































































